Главные выводы специальной и общей теории относительности
Основные представления об общей теории относительности. Принцип эквивалентности и геометризация тяготения. Классические опыты по проверке ОТО. Гравитационные линзы и коричневые карлики. Эйнштейновский принцип относительности. Преобразование Лоренца.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.12.2011 |
Размер файла | 131,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Контрольная работа по Концепции современного естествознания
на тему: Главные выводы специальной и общей теории относительности
Введение
Название “теория относительности” возникло из наименования основного принципа (постулата), положенного Пуанкаре и Эйнштейном в основу из всех теоретических построений новой теории пространства и времени. Содержанием теории относительности является физическая теория пространства и времени, учитывающая существующую между ними взаимосвязь геометрического характера.
Название же “принцип относительности” или “постулат относительности”, возникло как отрицание представления об абсолютной неподвижной системе отсчета, связанной с неподвижным эфиром, вводившимся для объяснения оптических и электродинамических явлений.
Дело в том, что к началу двадцатого века у физиков, строивших теорию оптических и электромагнитных явлений по аналогии с теорией упругости, сложилось ложное представление о необходимости существования абсолютной неподвижной системы отсчета, связанной с электромагнитным эфиром. Зародилось, таким образом, представление об абсолютном движении относительно системы, связанной с эфиром, представление, противоречащее более ранним воззрениям классической механики (принцип относительности Галилея). Опыты Майкельсона и других физиков опровергли эту теорию “неподвижного эфира” и дали основание для формулировки противоположного утверждения, которое и получило название “принципа относительности”. Так это название вводится и обосновывается в первых работах Пуанкаре и Эйнштейна.
Эйнштейн пишет: “.. неудавшиеся попытки обнаружить движение Земли относительно “светоносной среды” ведут к предположению, что не только в механике, но и в электродинамике никакие свойства явлений не соответствуют понятию абсолютного покоя, и даже более того,- к предположению, что для всех координатных систем, для которых справедливы уравнения механики, имеют место те же самые электродинамические и оптические законы, как это уже доказано для величин первого порядка. Мы намерены это положение (содержание которого в дальнейшем будет называться “принципом относительности”) превратить в предпосылку... “ /1/. А вот что пишет Пуанкаре: “Эта невозможность показать опытным путем абсолютное движение Земли представляет закон природы; мы приходим к тому, чтобы принять этот закон, который мы назовем постулатом относительности, и примем его без оговорок.”
Но крупнейший советский теоретик Л. И. Мандельштам в своих лекциях по теории относительности /2/ разъяснял: “Название “принцип относительности” - одно из самых неудачных. Утверждается независимость явлений от неускоренного движения замкнутой системы. Это вводит в заблуждение многие умы”. На неудачность названия указывал и один из творцов теории относительности, раскрывший ее содержание в четырехмерной геометрической форме, - Герман Минковский. В 1908 г. он утверждал: “... термин “постулат относительности” для требования инвариантности по отношению к группе , кажется мне слишком бедным. Так как смысл постулата сводится к тому, что в явлениях нам дается только четырехмерный в пространстве и времени мир, но что проекции этого мира на пространство и на время могут быть взяты с некоторым произволом, мне хотелось бы этому утверждению дать название: постулат абсолютного мира”. Таким образом, мы видим, что названия “принцип относительности” и “теория относительности” не отражают истинного содержания теории.
1. Основные представления об общей теории относительности
1.1 Принцип эквивалентности и геометризация тяготения
Факт этот по существу был установлен еще Галилеем. Он хорошо известен каждому успевающему старшекласснику: все тела движутся в поле тяжести (в отсутствие сопротивления среды) с одним и тем же ускорением, траектории всех тел с заданной скоростью искривлены в гравитационном поле одинаково. Благодаря этому, в свободно падающем лифте никакой эксперимент не может обнаружить гравитационное поле. Иными словами, в системе отсчёта, свободно движущейся в гравитационном поле, в малой области пространства-времени гравитации нет. Последнее утверждение -- это одна из формулировок принципа эквивалентности /4/.
Данное свойство поля тяготения отнюдь не тривиально. Достаточно вспомнить, что в случае электромагнитного поля ситуация совершенно иная. Существуют, например, подзаряженные, нейтральные тела, которые электромагнитного поля вообще не чувствуют. Так вот, гравитационно- нейтральных тел нет, не существует ни линеек, ни часов, которые не чувствовали бы гравитационного поля. Эталоны привычного евклидова пространства меняются в поле тяготения.
Размещено на http://www.allbest.ru/
Геометрия нашего пространства оказывается неевклидовой.
Некоторое представление о свойствах такого пространства можно получить на простейшем примере сферы, поверхности обычного глобуса. Рассмотрим на ней сферический треугольник -- фигуру, ограниченную дугами большого радиуса. (Дуга большого радиуса, соединяющая две точки на сфере, -- это кратчайшее расстояние между ними: она естественный аналог прямой на плоскости.) Выберем в качестве этих дуг участки меридианов, отличающихся на 90o долготы, и экватора (рис. 1). Сумма углов этого сферического треугольника отнюдь не равна сумме углов р,треугольника на плоскости:
Заметим, что превышение суммы углов данного треугольника над может быть выражено через его площадь S и радиус сферы R:
Можно доказать, что это соотношение справедливо для любого сферического треугольника. Заметим также, что обычный случай треугольника на плоскости тоже вытекает из этого равенства: плоскость может рассматриваться как сфера с R>?
Перепишем формулу (2) иначе:
Отсюда видно, что радиус сферы можно определить, оставаясь на ней, не обращаясь к трехмерному пространству, в которое она погружена. Для этого достаточно измерить площадь сферического треугольника и сумму его углов. Иными словами, K (или R) является внутренней характеристикой сферы. Величину K принято называть гауссовой кривизной, она естественным образом обобщается на произвольную гладкую поверхность:
Здесь углы и площадь относятся к малому треугольнику на поверхности, ограниченному линиями кратчайших расстояний на ней, а кривизна, вообще говоря, меняется от точки к точке, является величиной локальной. И в общем случае, так же как и для сферы, K служит внутренней характеристикой поверхности, не зависящей от ее погружения в трехмерное пространство. Гауссова кривизна не меняется при изгибании поверхности без ее разрыва и растяжения. Так, например, конус или цилиндр можно разогнуть в плоскость, и поэтому для них, так же как для плоскости, K = 0.
На соотношения (3), (4) полезно взглянуть несколько иначе. Вернемся к рисунку 1. Возьмем на полюсе вектор, направленный вдоль одного из меридианов, и перенесем его вдоль этого меридиана, не меняя угла между ними (в данном случае нулевого), на экватор. Далее, перенесем его вдоль экватора, снова не меняя угла между ними (на сей раз р/2), на второй меридиан. И наконец, таким же образом вернемся вдоль второго меридиана на полюс. Легко видеть, что, в отличие от такого же переноса по замкнутому контуру на плоскости, вектор окажется в конечном счете повернутым относительно своего исходного направления на р/2, или на
Этот результат, поворот вектора при его переносе вдоль замкнутого контура на угол, пропорциональный охваченной площади, естественным образом обобщается не только на произвольную двумерную поверхность, но и на многомерные неевклидовы пространства. Однако в общем случае n-мерного пространства кривизна не сводится к одной скалярной величине K(x). Это более сложный геометрический объект, имеющий n2(n2 - 1)/12 компонентов. Его называют тензором кривизны, или тензором Римана, а сами эти пространства -- римановыми. В четырехмерном римановом пространстве-времени общей теории относительности тензор кривизны имеет 20 компонентов.
1.2 Классические опыты по проверке ОТО
В начале предыдущего раздела уже отмечалось, что гравитационное поле влияет на движение не только массивных тел, но и света. В частности, фотон, распространяясь в поле Земли вверх, совершает работу против силы тяжести и поэтому теряет энергию. Как известно, энергия фотона пропорциональна его частоте, которая, естественно, тоже падает. Этот эффект -- красное смещение -- был предсказан Эйнштейном еще в 1907 году. Нетрудно оценить его величину. Работа против силы тяжести, очевидно, пропорциональна gh, где g -- ускорение свободного падения, а h -- высота подъема. Произведение gh имеет размерность квадрата скорости. Поэтому результат для относительного смещения частоты выглядит из соображений размерности так:
где c = 3 . 1010 см/с -- скорость света. При g?103 см/с2, h~103 см относительное смещение ничтожно мало ~10-15. Неудивительно, что экспериментально красное смещение удалось наблюдать лишь спустя полвека, с появлением техники, использующей эффект Мёссбауэра. Это сделали Паунд и Ребка.
Еще один эффект, предсказанный Эйнштейном на заре ОТО, -- отклонение луча света в поле Солнца. Его величину нетрудно оценить следующим образом. Если характерное, прицельное, расстояние луча от Солнца равно с, то радиальное ускорение составляет GM/с2
где G -- ньютоновская гравитационная постоянная, а M -- масса Солнца. За характерное время пролета с/c радиальная компонента скорости фотона изменится на GM/(сc) и угол отклонения составит соответственно
Удобно ввести часто используемую в ОТО характеристику массивного тела, так называемый гравитационный радиус:
Наивное использование полуклассических соображений действительно приводит к ответу
Именно этот результат был получен Эйнштейном в одном из первоначальных вариантов ОТО. Первая мировая война воспрепятствовала проверке, неблагоприятной для теории. Окончательный, правильный результат ОТО вдвое больше:
Гравитационный радиус Солнца rg?3 км, а прицельный параметр естественно сделать как можно ближе к обычному радиусу Солнца, который составляет 7 . 105 км. Таким образом, для луча света, проходящего вблизи поверхности Солнца, угол отклонения равен 1,75". Измерения, проведенные группой Эддингтона во время солнечного затмения 1919 года, подтвердили последнее предсказание. Это был подлинный триумф молодой общей теории относительности.
И наконец, к числу классических тестов ОТО относится также вращение перигелия орбиты Меркурия. Замкнутые эллиптические орбиты -- это специфика нерелятивистского движения в притягивающем потенциале 1/r. Неудивительно, что в ОТО орбиты планет незамкнуты. Малый эффект такого рода удобно описывать как вращение перигелия эллиптической орбиты. Задолго до появления ОТО астрономы знали, что перигелий орбиты Меркурия поворачивается за столетие примерно на 6000" . Поворот этот в основном объяснялся гравитационными возмущениями движения Меркурия со стороны других планет Солнечной системы. Оставался, однако, неустранимый остаток -- около 40" в столетие. В 1915 году Эйнштейн объяснил это расхождение в рамках ОТО.
Из простых соображений размерности можно ожидать, что поворот перигелия за один оборот составляет
где R -- радиус орбиты. Аккуратный расчет в рамках ОТО для орбиты, близкой к круговой, дает
При радиусе орбиты Меркурия R?0.6.108 км это дает 43" в столетие, снимая таким образом существовавшее расхождение. Ясно, кстати, чем выделяется в этом отношении Меркурий: это планета, ближайшая к Солнцу, планета с наименьшим радиусом орбиты R. Поэтому вращение перигелия орбиты у нее максимально.
1.3 Черные дыры
Однако роль ОТО отнюдь не сводится к исследованию малых поправок к обычной ньютоновской гравитации. Существуют объекты, в которых эффекты ОТО играют ключевую роль, важны стопроцентно. Это так называемые черные дыры.
Еще в XVIII веке Митчел и Лаплас независимо заметили, что могут существовать звезды, обладающие совершенно необычным свойством: свет не может покинуть их поверхность. Рассуждение выглядело примерно так. Тело, обладающее радиальной скоростью v, может покинуть поверхность звезды радиусом R и массой M при условии, что кинетическая энергия этого тела mv2/2 превышает энергию притяжения GMm/R,т.е. при v2 > 2GM/R. Применение последнего неравенства к свету (как мы теперь понимаем, совершенно не обоснованное) приводит к выводу: если радиус звезды меньше чем
то свет не может покинуть ее поверхность, такая звезда не светит! Последовательное применение ОТО приводит к такому же выводу, причем, поразительно, правильный критерий количественно совпадает с наивным, необоснованным. Величина rg, гравитационный радиус, уже встречалась раньше (см. формулу (7)).
Черная дыра -- вполне естественное название для такого объекта. Свойства его весьма необычны. Черная дыра возникает, когда звезда сжимается настолько сильно, что усиливающееся гравитационное поле не выпускает во внешнее пространство ничего, даже свет. Поэтому из черной дыры не выходит никакая информация.
Занятно выглядит падение пробного тела на черную дыру. По часам бесконечно удаленного наблюдателя это тело достигает гравитационного радиуса лишь за бесконечное время. С другой стороны, по часам, установленным на самом пробном теле, время этого путешествия вполне конечно.
Многочисленные результаты астрономических наблюдений дают серьезные основания полагать, что черные дыры -- это не просто игра ума физиков-теоретиков, а реальные объекты, существующие по крайней мере в ядрах галактик.
1.4 Гравитационные линзы и коричневые карлики
И наконец, сюжет, еще более свежий, чем пульсар PSR 1913+16. Он тесно связан, однако, с идеей, возникшей еще на заре ОТО. В 1919 году Эддингтон и Лодж независимо заметили, что, поскольку звезда отклоняет световые лучи, она может рассматриваться как своеобразная гравитационная линза. Такая линза смещает видимое изображение звезды-источника по отношению к ее истинному положению.
Размещено на http://www.allbest.ru/
Первая наивная оценка может привести к выводу о полной безнадежности наблюдения эффекта. Из простых соображений размерности можно было бы заключить, что изображение окажется сдвинутым на угол порядка rg /d, где rg -- гравитационный радиус линзы, а d -- характерное расстояние в задаче. Даже если взять в качестве линзы скопление, состоящее из 104 звезд, а для расстояния принять оценку d~10 световых лет, то и тогда этот угол составил бы всего 10-10 радиан. Разрешение подобных углов практически невозможно.
Однако такая наивная оценка просто неверна. Это следует, в частности, из исследования простейшего случая соосного расположения источника S, линзы L и наблюдателя O (рис. 2). Задача эта была рассмотрена в 1924 году Хвольсоном (профессор Петербургского университета, автор пятитомного курса физики, широко известного в начале века) и спустя 12 лет Эйнштейном. Обратимся к ней и мы. Ясно, что для всякого расстояния d1 между источником и линзой, d -- между линзой и наблюдателем для любого гравитационного радиуса rg линзы (звезды или скопления звезд) найдется такое минимальное расстояние с
между лучом из источника и линзой, при котором этот луч попадает в приемник. При этом изображения источника заполняют окружность, которую наблюдатель видит под углом ц Углы ц и и1 малы, так что ц=h/d,ц1=h/d а, кроме того, h=с Отсюда легко находим
С другой стороны, для и справедлива, очевидно, формула (8). Таким образом,
И наконец, интересующий нас угол составляет
Таким образом, правильный порядок величины угловых размеров изображения не rg /d, а vrg/d (мы считаем здесь, что все расстояния по порядку величины одинаковы). Он оказался намного больше первой, наивной, оценки, и это радикально меняет ситуацию с возможностью наблюдения эффектов гравитационных линз.
Размещено на http://www.allbest.ru/
Изображение источника в виде окружности (ее принято называть кольцом Эйнштейна), создаваемое гравитационной линзой при аксиально-симметричном расположении, реально наблюдалось. Сейчас известно несколько источников в радиодиапазоне, которые выглядят именно так, кольцеобразно.
Если, однако, гравитационная линза не лежит на прямой, соединяющей источник с наблюдателем, картина оказывается иной. В случае сферически-симметричной линзы возникают два изображения (рис. 3), одно из которых лежит внутри кольца Эйнштейна, соответствующего осесимметричной картине, а другое -- снаружи. Подобные изображения также наблюдались, они выглядят как двойные квазары, как квазары-близнецы.
Если источник движется, то перемещаются и оба изображения. Пока яркости обоих сравнимы с яркостью источника, для оценки углового расстояния между ними можно по-прежнему использовать выражение (10). Если масса звезды, действующей в качестве линзы, невелика, скажем на два -- три порядка величины меньше массы Солнца, то разрешить такой угол между изображениями, ~0,001", практически немыслимо. Тем не менее обнаружить подобное явление можно. Дело в том, что при сближении изображений их суммарная яркость растет. Явление это, так называемое микролинзирование, имеет достаточно специфический характер: рост яркости и ее последующее падение происходят симметрично во времени, причем изменение яркости происходит одинаково на всех длинах волн (угол отклонения (10) не зависит от длины волны).
Поиски микролинзирования, которые велись на протяжении нескольких лет двумя группами астрономов, австралийско-американской и французской, не просто привели к обнаружению эффекта. Таким образом был открыт новый класс небесных тел: слабосветящиеся карликовые звезды, так называемые коричневые карлики, именно они играют роль микролинз. Все это произошло совсем недавно. Если еще в январе 1994 года было известно лишь два -- три подобных события, то в настоящее время они уже исчисляются десятками. Поистине первоклассное открытие в астрономии.
2. Основные представления о специальной теории относительности
2.1 Эйнштейновский принцип относительности
Специальная теория относительности (СТО) наряду с предположением о том, что
a) пространство - трёхмерно, однородно и изотропно, (что означает, что в пространстве нет выделенных мест и направлений)
б) время - одномерно и однородно, (нет выделенных моментов времени) использует следующие два основополагающие принципа:
1. Никакими физическими опытами внутри замкнутой физической системы нельзя определить, покоится ли эта система или движется равномерно и прямолинейно (относительно системы бесконечно удаленных тел). Этот принцип называют принципом относительности Галилея - Эйнштейна, а соответствующие системы отсчёта - инерциальными.
2. Существует предельная скорость (мировая константа c) распространения физических объектов и воздействий, которая одинакова во всех инерциальных системах отсчета. Со скоростью c распространяется свет в вакууме.
Прямая проверка независимости скорости света от скорости источника была выполнена А.М. Бонч-Бруевичем в 1956 г. с использованием света, испускаемого экваториальными краями солнечного диска. Скорости диаметрально противоположных участков диска (за счет вращения Солнца) отличаются на 3,5·103м/с, а скорость испущенного ими света изменялась на 65 ?240м/c. В пределах точности эксперимента, которая составляла [(?v)/( v)] ? 7·10-2, зависимость скорости света от скорости источника не наблюдалось.
Таким образом, все физические явления, включая распространение света (и, следовательно, все законы природы), в различных инерциальных системах отсчета выглядят совершенно одинаково. Такая особенность Законов Природы носит название лоренцевой инвариантности (от латинского invariantis - неизменяющийся).
Согласно СТО, если скорость частицы меньше скорости света в вакууме c в некоторой инерциальной системе отсчета в данный момент времени, то она не может быть сделана равной или большей c ни кинематически - переходом в другую систему отсчета, ни динамически - изменением скорости частицы, приложенными к ней силами. Поэтому распространение электромагнитных волн в вакууме является самым быстрым способом распространения взаимодействия в физических системах.
Это положение принято распространять на все типы частиц и взаимодействий, хотя прямая проверка осуществлена только для электромагнитного взаимодействия.
Существование предельной скорости распространения взаимодействия приводит к ограничениям на модели в релятивистской физике. Оказывается, например, недопустимой модель абсолютно твердого тела, так как под воздействием приложенной к нему силы, все точки тела мгновенно изменяют свои механические состояния.
2.2 Синхронизация часов
В упомянутой статье Эйнштейн проанализировал свойства времени и кажущееся "очевидным" понятие одновременности. Он показал, что классическая механика приписывает времени такие свойства, которые, вообще говоря, не согласуются с опытом и являются правильными только при малых скоростях движения. Одним из центральных пунктов эйнштейновского анализа понятия времени является синхронизация часов, т.е. установление единого времени в пределах одной инерциальной системы отсчета. Если двое часов находятся в одной точке пространства (т.е. в непосредственной близости), то их синхронизация производится непосредственно - стрелки ставятся в одно и то же положение (полагают, что часы совершенно одинаковы и абсолютно точны).
Синхронизацию часов, находящихся в двух разных точках пространства, Эйнштейн предложил проводить с помощью световых сигналов. Испустим из точки A в момент t1 короткий световой сигнал, который отразится от некоторого зеркала B и вернется в точку A в момент t2 (Рис. 4). Времена распространения сигнала туда и обратно конечны (скорость сигнала конечна!) и одинаковы (изотропия пространства!). Поэтому часы в точке B будут согласованы с показаниями часов в точке A в моменты испускания (t1) и возвращения (t2) сигнала соотношениями
t1 = tB - h/c, t2 = tB + h/c,
где h = rAB - расстояние между точками A и B. Отсюда положение, в которое нужно поставить стрелки часов B в момент прихода сигнала: tb = (t1 + t2)/2. Таким способом можно синхронизовать показания всех часов, неподвижных друг относительно друга в некоторой инерциальной системе отсчета S.
Рис. 4
Рис. 5
Мысленные эксперименты с движущимися часами, аналогичные только что описанному, показывают, что здесь синхронизация невозможна и единого для всех инерциальных систем времени не существует. Расмотрим пример с "эйнштейновским поездом" (см. Рис. 5).
Пусть наблюдатель A находится посередине длинного поезда, движущегося со скоростью сравнимой со скоростью света, а наблюдатель B стоит на земле вблизи железнодорожного полотна. Устройства, находящиеся в хвосте и в голове поезда на одинаковых расстояниях от A, испускают две короткие вспышки света, которые достигают наблюдателей A и B одновременно - в тот момент, когда они поравняются друг с другом. Какие выводы сделают из одновременного прихода к ним световых сигналов наблюдатели в поезде и на земле?
Наблюдатель A: Сигналы испущены из точек, удаленных от меня на равные расстояния, следовательно, они и испущены были одновременно.
Наблюдатель B: Сигналы пришли ко мне одновременно, но в момент испускания голова поезда была ко мне ближе, поэтому сигнал от хвоста поезда прошел больший путь, следовательно он и был испущен раньше, чем сигнал от головы.
Этот пример показывает, что часы в системе "поезд" синхронизованы только с точки зрения наблюдателя, который в ней неподвижен. С точки зрения наблюдателя на земле, часы, расположенные на поезде в разных точках (в голове, в хвосте и в середине поезда) показывают разное время. События, одновременные в одной системе отсчета (световые вспышки в системе отсчета поезда), не являются одновременными в другой системе отсчета земли. Синхронизация часов находящихся в разных системах отсчета невозможна. Этот вывод не исключает совпадения показаний часов в отдельный момент времени - например, наблюдатели A и B в момент встречи могут установить одинаковые показания своих часов. Но уже в любой последующий момент показания часов разойдутся.
2.3 Преобразования Лоренца
Преобразования Лоренца, обобщающие формулы Галилея перехода от одной инерциальной системы отсчета в другую, можно получить из анализа еще одного мысленного эксперимента. Пусть начала координат систем отсчета S и S? в начальный момент t = t? совпадают и оси координат в них имеют одинаковую ориентацию (см. Рис. 6). В этот момент времени в их общем начале координат пусть произошла световая вспышка. С точки зрения наблюдателя, находящегося в системе S, в ней распространяется сферическая электромагнитная волна, которая за время t пройдет расстояние r = c t ( ) от начала координат.
Но наблюдатель в движущейся системе S? также регистрирует сферическую световую волну, распространяющуюся из начала координат этой системы (точки 0?) со скоростью света в вакууме c. По его часам за время t? волна пройдет расстояние r? = c t?, где . Это связано с тем, что физические явления в инерциальных системах происходят одинаковым образом. Иначе, регистрируя различия, можно было бы найти "истинно" покоящуюся систему отсчета, что невозможно.
Теперь ясно, что координаты точек волнового фронта в системе S и S? связаны уравнением
c2 t2 - (x2 + y2 + z2) = 0 = c2 t?2 - (x?2 + y?2 + z?2), (11)
решение которого и является искомым обобщением преобразований перехода из одной инерциальной системы координат в другую.
Опуская сам формальный вывод, который использует общие соображения об однородности и изотропии пространства и однородности времени (из которых, например, следует, что связь "штрихованных" и "нештрихованных" координат должна быть линейной), можно получить, что в условиях рассматриваемого мысленного эксперимента, параметры {x?,y?,z?,t?} связаны с параметрами {x,y,z,t} соотношениями
Преобразования Лоренца оставляют неизменными уравнения Максвелла, однако проверка этого утверждения выходит за рамки школьной программы по физике.
Легко видеть, что уравнения Ньютона теперь не сохраняют свой вид при преобразовании (12). Поэтому второй закон Ньютона необходимо модифицировать. Новая механика, основанная на принципе относительности Эйнштейна, называется релятивистской (от латинского relativus - относительный).
При безразмерном параметре V/c ???1 формулы (4) переходят в формулы (1). Поэтому в теории относительности выполняется принцип соответствия - при малых скоростях движения частиц и систем отсчета релятивистские выражения переходят в формулы ньютоновой механики. Этот переход является характерной чертой любой физической теории: старые знания не перечеркиваются новыми достижениями, а включаются них как предельный частный случай.
2.4 Преобразование скорости
Если частица движется относительно движущейся системы координат S? со скоростью , то ее скорость в системе отсчета S может быть найдена с помощью преобразований Лоренца (12).
Если закон движения частицы в движущейся системе координат имеет вид
x? = v? t?, y? = z? = 0,
то в покоящейся (лабораторной) системе координат этот закон, очевидно, имеет вид
x = v t, y = z = 0.
Выполнив подстановку (13), найдем, что
v = v? + V
Размещено на http://www.allbest.ru/
1 + v? V/c2 .
Эта формула определяет релятивистский закон сложения скоростей.
При ? = V/c ? 0 релятивистский закон сложения скоростей (13) с точностью до линейных по ? членов переходит в формулу преобразования скоростей в классической механике:
v = v? + V.
Из (13) следует, что скорость частицы меньшая скорости света в вакууме (v? ??c) в одной системе отсчета, останется меньше скорости света в вакууме (v ??c) в любой другой системе отсчета, движущейся по отношению к первой с досветовой скоростью V ??c. Если же ? = (c,0,0), то = (c,0,0): скорость света одна и та же во всех системах отсчета.
2.5 Геометрический смысл преобразований Лоренца
Выясним теперь геометрический смысл преобразований Лоренца. Еще раз запишем его только для x и t в виде
x? = ? (x - ? ct), ct? = ? (ct - ? x).
Это линейное однородное преобразование, очень похожее на преобразование поворота на угол ? в плоскости XY:
x? = x cos?+ y sin?, y? = - x sin?+y cos?.
Новые оси x?, y?, получающиеся в результате поворота изображены на Рис. 8 б).
Важнейшим свойством преобразования поворота является сохранение расстояния между любыми двумя точками: r12 = r?12.
Здесь:
теория относительность эйнштейновский эквивалентность
Введем величину, зависящую от параметров двух событий { [(r1)\vec],t1 } и { [(r2)\vec],t2 } и определенную равенством
s12 = [ c2 (t2 - t1)2 - (x2 - x1)2 - (y2 - y1)2- (z2 - z1)2 ]1/2. (15)
Она называется пространственно - временным интервалом.
Прямой подстановкой формул (12) можно проверить, что величина пространственно - временного интервала между двумя событиями является инвариантом преобразований Лоренца:
s12? = s12. (16)
В двумерном случае можно рассматривать как "расстояние" между точками плоскости ct, x. Но квадрат разности координат входит в s12 со знаком "минус". Пространство, в котором расстояние между точками определено формулой (15) называется псевдоевклидовым. Наряду с отмеченным сходством, между евклидовым и псевдоевклидовым пространствами имеются принципиальные различия. В евклидовом пространстве расстояние между любыми точками r212 ? 0, равенство нулю означает, что точки совпадают. В псевдоевклидовом пространстве s212 может иметь любой знак, а его обращение в нуль возможно для двух совершенно различных точек пространства - времени.
Найдем положение новых осей (x?, ct?) на псевдоевклидовой плоскости. Отложим координата x, ct на прямоугольных осях. (Рис. 9). Точка x? = 0, сопадающая с началом координат системы S?, движется в системе S со скоростью V. Ее мировая линия будет представлять собой ось времени ct? системы S?. Эта ось будет наклонена к оси ct на угол ? = arctg (V/c). Ось x? новой системы можно определить условием ct? = 0. Но тогда в старой системе координат это будет прямая ct = ?x, проходящая через начало координат и составляющая с осью x тот же угол ? = arctg (V/c).
Приходим к выводу, что новая система координат косоугольна! Если попытаться найти связь между отрезками x?, ct? и x, ct, посто проектируя отрезки (так как это делается в эвклидовом случае), то получится неправильный результат. Преобразования Лоренца не только поворачивают оси, но и искажают масштабы координат по осям!
Итак, основной результат состоит в том, что преобразования Лоренца можно интерпретировать, как псевдоевклидово вращение системы координат в пространстве Минковского.
Рис. 9
С помощью Рис. 9 можно дать геометрическую интерпретацию различным следствиям из преобразований Лоренца. Вспомним, например, относительность одновременности. В системе S линии равного времени - прямые параллельные оси 0x. В системе S? - это прямые, параллельные 0x?, не совпадающие с линиями равного времени в системе S. Поэтому события, одновременные в S, не будут в общем случае одновременными в S. Например, между одновременными в системе S событиями A и B в системе S? пройдет промежуток времени ? t? = ?A?B??/c, причем событие B произойдет раньше.
Как ясно из вышеизложенного, на псевдоевклидовой плоскости квадрат интервала s212 может быть как положительным, так и равным нулю и отрицательным.
Если s212 ??0, его называют времениподобным, при s212 ??0 - пространственноподобным, при s212 = 0 - светоподобным или нулевым.
Характер интервала тесно связан c причинностью - он определяет возможность причинной связи событий, происходящих в пространственно - временных точках 1 и 2. Если s212 ??0, то из точки 1 можно послать сигнал со скоростью , который вызовет событие 2. В случае s212 = 0 это также возможно, но сигнал должен посылаться с предельной скоростью c. События, разделенные пространственноподобным интервалом, не могут быть причинно обусловлены, т.к. сигналы не могут распространяться со скоростью .
2.6 Замедление времени
Рассмотрим часы, покоящиеся в начале координат движущейся системы (x? = 0), которые перемещаются относительно лабораторной системы координат со скоростью V, так что их координата x = V t пропорциональна времени, определяемому неподвижными часами. Инвариантность интервала позволяет, тогда, определить показания движущихся часов:
t? = t ________ ?1 - V2/c2 . (17)
Время, измеряемое часами, движущимися относительно лабораторной системы отсчета, замедляется.
Как ни покажется странным, но тот же вывод справедлив относительно замедления темпа хода часов в лабораторной системе координат с точки зрения наблюдателя из движущейся системы отсчета, т.е. "движущиеся" и "покоящиеся" часы взаимно отстают друг от друга.
С последним замечанием тесно связан широко известный парадокс близнецов (см. ниже раздел "Задачи").
Замедление хода времени в движущейся системе отсчета было экспериментально подтверждено американскими физиками Б. Росси и Д.Х. Холлом в 1941 году. Они наблюдали увеличение среднего времени жизни мюонов, двигавшихся со скоростью v ? c, в 6 ?8 раз по сравнению с временем жизни неподвижных мюонов.
Особая ценность этого эксперимента состоит в том, что процесс распада мюонов определяется слабым взаимодействием, в то время как СТО была построена для описания систем с электромагнитным взаимодействием.
Заключение
ОТО -- завершенная физическая теория. Она завершена в том же смысле, что и классическая механика, классическая электродинамика, квантовая механика. Подобно им, она дает однозначные ответы на физически осмысленные вопросы, дает четкие предсказания для реально осуществимых наблюдений и экспериментов. Однако, как и всякая иная физическая теория, ОТО имеет свою область применимости. Так, вне этой области лежат сверхсильные гравитационные поля, где важны квантовые эффекты. Законченной квантовой теории гравитации не существует.
ОТО -- удивительная физическая теория. Она удивительна тем, что в ее основе лежит, по существу, всего один экспериментальный факт, к тому же известный задолго до создания ОТО (все тела падают в поле тяжести с одним и тем же ускорением). Удивительна тем, что она создана в большой степени одним человеком. Но прежде всего ОТО удивительна своей необычайной внутренней стройностью, красотой. Не случайно Ландау говорил, что истинного физика-теоретика можно распознать по тому, испытал ли человек восхищение при первом же знакомстве с ОТО.
Примерно до середины 60-х годов ОТО находилась в значительной мере вне основной линии развития физики. Да и развитие самой ОТО отнюдь не было весьма активным, оно сводилось в большой степени к выяснению определенных тонких мест, деталей теории, к решению пусть важных, но достаточно частных задач.
Вероятно, одна из причин такой ситуации состоит в том, что ОТО возникла в некотором смысле слишком рано, Эйнштейн обогнал время. С другой стороны, уже в его работе 1915 года теория была сформулирована в достаточно завершенном виде. Не менее важно и то обстоятельство, что наблюдательная база ОТО оставалась очень узкой. Соответствующие эксперименты чрезвычайно трудны. Достаточно напомнить, что красное смещение удалось измерить лишь спустя почти 40 лет после того, как было обнаружено отклонение света в поле Солнца.
СТО возникла больше для решения специальных задач и никоим образом не противоречит принципам ОТО. Она лишь дополнение реального состояния науки с точки зрения потребности современной физики и естествознания. Релятивизм не мертв, он лишь отражение состояния научно-технической мысли того времени.
Тем не менее, в настоящее время СТО -- бурно развивающаяся область современной физики. Это результат огромного прогресса наблюдательной астрономии, развития экспериментальной техники, впечатляющего продвижения в теории.
Список литературы
1. “Принцип относительности” Лоренц, Пуанкаре, Эйнштейн и Минковский; ОНТИ ; 1935 г., стр. 134
2. Полное собрание трудов, Л. И. Мандельштам; Том 5, стр. 172
3. А.Эйнштейн. К электродинамике движущихся сред. - М.: 1966.
4. "Общая теория относительности"; Н. В. Мицкевич; Москва., 1927 г
5. "Парадоксы теории относительности"; Я. П. Терлецкий; Москва., 1965 г.
6. Л.В. Тарасов, Современная физика в средней школе. М.: Просвещение, 1990.
7. В.Н. Дубровский, Я.А. Смородинский, Е.Л. Сурков, Релятивистский мир. (Библиотечка "Квант", выпуск 34). М.: Наука, 1984.
8. Э.Тейлор, Дж. Уилер, Физика пространства - времени. М.: Мир, 1969.
9. И.И. Гольденблат, Парадоксы времени в релятивистской механике. М.: Наука, 1972.
10. И.М. Гельфгат, Л.Э. Генденштейн, Л.А. Кирик, 1001 задача по физике с ответами, указаниями, решениями. Москва - Харьков, Илекса. 1997.
11. И.И. Воробьев Теория относительности в задачах. М.: Наука, 1989.
12. П.В. Елютин, Г.А. Чижов, Словарь-справочник по элементарной физике. Часть 3. М., 1995.
13. Эйнштейн, Л.Инфельд. Эволюция физики. - М.: 1966.
14. В.Л.Гинзбург. О теории относительности. - М.: Наука, 1970.
15. Г.Линдер. Картины современной физики. - М.: Мир, 1977.
16. А.В.Горелов. Элементы теории относительности- элементарное изложение специальной теории относительности.
17. П.А.М.Дирак. Воспоминания о необычайной эпохе. - М.: Наука, 1990.
Размещено на Allbest.ru
Подобные документы
Истоки теории относительности, порядок ее формирования и значение. Принцип относительности Галилея. Сущность преобразования Галилея и Лоренца. Теория относительности А. Эйнштейна, особенности и отличительные признаки ее общей и специальной формы.
реферат [2,4 M], добавлен 09.11.2010Изучение принципа относительности Галилея. История возникновения и содержание концепции наименьшего действия. Ознакомление с основными постулатами специальной теории относительности Эйнштейна. Экспериментальные подтверждения общей теории относительности.
реферат [30,5 K], добавлен 30.07.2010Основные черты и отличия науки от других отраслей культуры. Проблемы, решаемые отдельными естественными науками. Свойства пространства и времени. Главные выводы специальной и общей теории относительности. Естественнонаучные модели происхождения жизни.
контрольная работа [40,6 K], добавлен 18.11.2009Понятие общей теории относительности - общепринятой официальной наукой теории о том, как устроен мир, объединяющей механику, электродинамику и гравитацию. Принцип равенства гравитационной и инертной масс. Теория относительности и квантовая механика.
курсовая работа [111,1 K], добавлен 17.01.2011Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна. Основные закономерности развития биогеоценоза. Взаимодействие между компонентами как важнейший механизм поддержания целостности и устойчивости биогеоценозов.
контрольная работа [150,8 K], добавлен 13.04.2012Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения. Идея построения материального мира из элементарных, фундаментальных "кирпичиков".
реферат [888,7 K], добавлен 07.01.2010Суть современных концепций относительности пространства и времени в специальной и общей теориях. Гиперхронологическое историческое пространство, ускорение исторического времени. Раскрытие понятий бифуркаций, фракталов, аттракторов, факторов случайности.
контрольная работа [466,4 K], добавлен 10.12.2009Категории пространства и времени, анализ концепции их относительности. Инвариантность пространственных и временных интервалов как отражение свойств симметрии физического мира. Эволюционная теория относительности. Теория относительности А. Эйнштейна.
реферат [35,2 K], добавлен 11.07.2013Инертная, гравитационная массы и принцип эквивалентности. Ускоренное движение и сила тяжести. Время в разных системах отсчета, одновременность событий и собственное время. Принцип эквивалентности и теория относительности. Взаимосвязь массы и энергии.
контрольная работа [17,9 K], добавлен 24.05.2009Ознакомление с уравнениями Максвелла, ньютоновскими законов и концепциями близкодействия Фарадея как с этапами развития общей теорий относительности Эйнштейна, объединяющей пространство и время. Изучение эволюции и структурной организации Вселенной.
реферат [845,0 K], добавлен 26.04.2010