Понятие пространства и времени

Понятие реального, концептуального и перцептуального пространства. Отношение к природе и сущности пространства и времени в античной философии. Ньютоновские представления о данных категориях. Основные свойства пространства и времени в классической науке.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 02.12.2011
Размер файла 33,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

9

Размещено на http://www.allbest.ru/

Содержание

1. Понятие пространства и времени

2. Представления о пространстве и времени в античной философии

3. Ньютоновские представления о пространстве и времени. Основные свойства пространства и времени в классической науке

Список используемой литературы

1. Понятие пространства и времени

Пространство и время - основные формы существования материи и в этом проявляется их универсальность и всеобщность. Принято считать, что пространство трехмерно. Время имеет одно измерение. Пространство выражает порядок расположения одновременно существующих объектов. Время показывает последовательность существования сменяющих друг друга явлений - от прошлого к будущему. Развитие естествознания показало, что пространство и время не могут существовать независимо от материальных процессов и друг от друга. Пространство и время связаны с движущейся материей. [1]

Движение материи - это сущность пространства и времени. Естествознание 17-19 вв., трактуя объективность пространства и времени, рассматривало их в отрыве друг от друга, как нечто самостоятельное, существующее совершенно независимо от материи и движения. Естествоиспытатели вплоть до 20 века отождествляли пространство с пустотой, считая его абсолютным, всегда и везде одинаковым и неподвижным, а время - протекающим равномерно. Современная физика отбросила старые представления о времени как едином для всей бесконечной Вселенной и пространстве как пустом вместилище тел. [1]

Для правильного понимания проблемы универсальности основных свойств пространства необходимо различать пространство реальное, существующее "на самом деле", пространство концептуальное, то есть некоторое научное представление о реальном пространстве (в основном это физические и абстрактные математические пространства) и пространство перцептуальное (от лат. perceptio - восприятие, непосредственное отражение объективной действительности органами чувств), то есть пространство, воспринимаемое человеком своими органами чувств, прежде всего, зрением и осязанием, иными словами, кажущееся пространство, которое может быть сугубо индивидуальным. [2]

В некоторой степени перцептуальное пространство связывает реальное и концептуальное пространства. В начальный период познания мира эти три вида пространства могут сливаться в один, отождествляемый с реальным пространством, что и проявляется в мифологии. С развитием первых философских систем и геометрии происходит интуитивное осознание различий между реальным, концептуальным и перцептуальным пространствами. Причем если для философии характерным было отождествление преимущественно реального и концептуального ("мыслимого") пространства, то в науке того времени, как правило, отождествлялись концептуальное и перцептуальное пространства. [3]

Впрочем, отождествление разных видов пространства (в их различном сочетании) характерно и для многих современных исследователей, как философов, так и естествоиспытателей и обществоведов. И поскольку реальность познается человеком в процессе теоретической и чувственно-практической деятельности, постольку больше всего "страдает" представление о реальном пространстве. Как правило, реальному пространству приписываются свойства концептуального и перцептуального пространств, то есть на него переносятся наши теоретические представления о пространстве и чувственное восприятие пространства.

Такая экспансия "мыслимых" свойств пространства на реальные приводит к искажению содержания самих представлений о пространстве, так как отождествляются эти свойства без учета относительности познания. Поэтому в истории познания существуют разные представления о пространстве. [3]

Выявляя различия между реальным, концептуальным и перцептуальным пространствами, необходимо выделить и общее между ними. Строго говоря, общее между этими видами пространства - в их соответствии, так как последние два, отражая, моделируют первое. [1] Одним из основных свойств является их топологическое сходство: между точками реального и перцептуального пространств существует взаимооднозначное соответствие и порядок точек в реальном пространстве определяет порядок точек в перцептуальном. В свою очередь, непрерывному движению тела в перцептуальном пространстве соответствует непрерывное движение тела в пространстве реальном. [4]

Установление топологического сходства между реальным и концептуальным пространствами значительно сложнее. Эта сложность обусловлена тем, что концептуальное пространство создается только в уме человека для научного познания реального пространства. Оно носит порой предельно абстрактный характер и выражается в виде символов - математических, физических и других. [4]

Перцептуальное пространство, будучи непосредственным отражением реального пространства, есть отражение чувственное. Оно проявляется в процессе обыденного, повседневного опыта, который постоянно соотносит это пространство с пространством реальным, что и позволяет человеку ориентироваться в нем. Здесь нет символов, есть лишь непосредственное восприятие: даже стол, например, не стол вообще, а данный конкретный стол. Но как только мы вводим символическое представление о пространстве, так сразу же, переходим на уровень концептуального пространства, независимо от того, каковы эти символы. [4]

В виде символов можно представлять и реальное, и перцептуальное пространство: физическое пространство, пространство художественное (представление реального или перцептуального пространства на художественном полотне, например, или на сцене), математическое и т. д. Поэтому концептуальных пространств может быть сколько угодно, и все они будут представлением двух других видов пространства. Мало того, именно благодаря концептуальному пространству мы порой отождествляем реальное и перцептуальное пространства, утверждая, что при описании наших ощущений пространства мы описываем реальное пространство (это, в частности, характерно для вульгарно-материалистических философских систем). Но, к сожалению, тем самым перцептуальное пространство, накладываясь своеобразной "матрицей" на наше мышление, что, вполне естественно, затрудняет понимание концептуального пространства. Последнее мы стремимся представить в виде очевидной, понятной картины, а это, в свою очередь, затрудняет исследование реального пространства. [1]

2. Представления о пространстве и времени в античной философии

Уже в античном мире мыслители задумывались над природой и сущностью пространства и времени. Так, одни из философов отрицали возможность существования пустого пространства, или, по их выражению, небытия. Это были представители элейской школы в Древней Греции. А знаменитый врач и философ Эмпедокл, хотя и поддерживал учение о невозможности пустоты, в отличие от элеатов утверждал реальность изменения и движения. Он говорил, что рыба, например, передвигается в воде, а пустого пространства не существует. [5]

Некоторые философы, в том числе Демокрит, утверждали, что пустота существует, как материи и атомы, и необходима для перемещений и соединений атомов. [1]

Еще в древности было подмечено, что в спокойно плывущем по глади реки корабле путешественник не может сказать, движется он или стоит на месте, если не видит берега. Галилей распространил эти наблюдения и на физические опыты. Он писал, что столь же безразличным к движению окажется и камень, "падающий с высоты корабельной мачты; этот камень всегда окончит свое падение, ударив в одно и то же место как в том случае, когда корабль неподвижен, так и в том, когда он идет быстрым ходом... Я... произвел этот опыт; но еще перед тем естественное рассуждение привело меня к твердому убеждению в том, что из него должно получиться именно то, что действительно и получилось". Следовательно, никакими опытами нельзя установить, движемся мы или нет, если движение происходит без ускорения. В этом - суть "принципа относительности" Галилея. [3]

В 1675 г. датский астроном Олаус Ремер представил в Парижскую академию наук мемуар "Относительно доказательства движения света". В работе описывались наблюдения за Юпитером и его спутником Ио. Оказывается, в январе Ио появлялась из-за Юпитера на целых 16 минут 36 секунд раньше, чем в июне. Поскольку в июне Земля и Юпитер находились по разные стороны от Солнца, а в январе - по одну сторону, оставалось предположить, что все дело в конечной скорости света. Ему требовалось в каждом случае проходить до Земли иное расстояние. Несложное деление - и Ремер получает первую в истории науки величину скорости света: около 280 тыс. километров в секунду, - превосходный результат, особенно если принять во внимание неточность часов того времени и другие ошибки. [2]

Согласно аристотелевской традиции, все законы, которые управляют Вселенной, можно вывести чисто умозрительно и нет никакой необходимости проверять их на опыте. Поэтому до Галилея никто не задумывался над тем, действительно ли тела разного веса падают с разными скоростями. Галилей демонстрировал ложность учения Аристотеля, скатывая по гладкому откосу шары разного веса. Такой эксперимент аналогичен сбрасыванию тяжелых тел с башни, но он проще для наблюдений, так как меньше скорости. Измерения Галилея показали, что скорость всякого тела увеличивается по одному и тому же закону независимо от веса тела. Например, если взять шар и пустить его вниз по наклонной плоскости с уклоном метр на каждые десять метров, то, каким бы тяжелым ни был шар, его скорость в конце первой секунды будет один метр в секунду, в конце второй секунды - два метра в секунду и т. д. Конечно, свинцовая гиря будет падать быстрее, чем перышко, но только из_за того, что перо сильнее замедляется силой сопротивления воздуха, чем гиря. Если бросить два тела, сопротивление воздуха для которых невелико, например две свинцовые гири разного веса, то они будут падать с одинаковой скоростью. [1]

Космологическая теория Д. Бруно связала воедино бесконечность Вселенной и пространства. В своем произведении "О бесконечности, Вселенной и мирах" Бруно писал: "Вселенная должна быть бесконечной благодаря способности и расположению бесконечного пространства и благодаря возможности и сообразности бытия бесчисленных миров, подобных этому..."1. Представляя Вселенную как "целое бесконечное", как "единое, безмерное пространство", Бруно делает вывод и о безграничности пространства, ибо оно "не имеет края, предела и поверхности".

Практическое обоснование выводы Бруно получили в "физике неба" И. Кеплера и в небесной механике Г. Галилея. В гелиоцентрической картине движения планет Кеплер увидел действие единой физической силы. Он установил универсальную зависимость между периодами обращения планет и средними расстояниями их до Солнца, ввел представление об их эллиптических орбитах. Концепция Кеплера способствовала развитию математического и физического учения о пространстве. [2]

Подлинная революция в механике связана с именем Г. Галилея. Он ввел в механику точный количественный эксперимент и математическое описание явлений. Первостепенную роль в развитии представлений о пространстве сыграл открытый им общий принцип классической механики -- принцип относительности Галилея. Согласно этому принципу все физические (механические) явления происходят одинаково во всех системах, покоящихся или движущихся равномерно и прямолинейно с постоянной по величине и направлению скоростью. Такие системы называются инерциальными. Математические преобразования Галилея отражают движение в двух инерциальных системах, движущихся с относительно малой скоростью (меньшей, чем скорость света в вакууме). Они устанавливают инвариантность (неизменность) в системах длины, времени и ускорения. [3]

Дальнейшее развитие представлений о пространстве и времени связано с рационалистической физикой Р. Декарта, который создал первую универсальную физико-космологическую картину мира. В основу ее Декарт положил идею о том, что все явления природы объясняются механическим воздействием элементарных материальных частиц. Взаимодействием элементарных частиц Декарт пытался объяснить все наблюдаемые физические явления: теплоту, свет, электричество, магнетизм. Само же взаимодействие он представлял в виде давления или удара при соприкосновении частиц друг с другом и ввел таким образом в физику идею близкодействия.

Декарт обосновывал единство физики и геометрии. Он ввел координатную систему (названную впоследствии его именем), в которой время представлялось как одна из пространственных осей. Тезис о единстве физики и геометрии привел его к отождествлению материальности и протяженности. Исходя из этого тезиса он отрицал пустое пространство и отождествил пространство с протяженностью.

Декарт развил также представление о соотношении длительности и времени. Длительность, по его мнению, "соприсуща материальному миру. Время же -- соприсуще человеку и потому является модулем мышления". "...Время, которое мы отличаем от длительности, -- пишет Декарт в "Началах философии", -- есть лишь известный способ, каким мы эту длительность мыслим..." [2]

Время, как и пространство, имеет объективный характер. Они неотделимы от материи, связаны с ее движением и друг с другом. По выражению И. Пригожина, "для большинства основателей классической науки (и даже А. Эйнштейна) наука была попыткой выйти за рамки мира наблюдаемого, достичь вневременного мира высшей рациональности -- мира Спинозы". Фактически все картины мира, рожденные точной наукой, освобождены от развития, "отрицают время". [1]

Понимание времени, увлекающего мир в непрерывное движение, наиболее ярко выразил Гераклит (ок. 530 -- 470 до н.э.): "В одну реку нельзя войти дважды", "Все течет, все изменяется", "Мир является совокупностью событий, а не вещей". Законы природы неизменны, они сохраняются в любом месте и в любое время. У Прокла (ок. 412 -- 485) для большей строгости к понятию времени применены геометрические рассуждения: "Время не подобно прямой линии, безгранично продолжающейся в обоих направлениях. Оно ограничено и описывает окружность. Движение времени соединяет конец с началом, и это происходит бесчисленное число раз. Благодаря этому время бесконечно". Платон (ок. 428 -- 347 до н. э.) писал: "Поскольку день и ночь, круговороты месяцев и лет, равноденствия и солнцестояния зримы, глаза открыли нам число, дали понятие о времени и побудили исследовать природу Вселенной". Архимед в трактате "О спирали" показывал, что спираль соединяет цикличность с поступательным движением. Может быть, спираль подойдет для наглядного образа времени, соединив поток и окружность?! Узор из спирали с солнцами был найден на остатках кувшинов неолита и на древнем календаре -- жезле из бивня мамонта, обнаруженном недавно в Восточной Сибири. Археологи истолковывают эти узоры как отображение идеи Времени. [5]

3. Ньютоновские представления о пространстве и времени. Основные свойства пространства и времени в классической науке

пространство время ньютон

Развитие представлений о пространстве и времени в доньютоновский период способствовало созданию концептуальной основы изучения физического пространства и времени. Эти представления подготовили математическое экспериментальное обоснование свойств пространства и времени в рамках классической механики.

Новая физическая гравитационная картина мира, опирающаяся на строгие математические обоснования, представлена в классической механике Ньютона. Ее вершиной стала теория тяготения, провозгласившая универсальный закон всемирного тяготения. Согласно этому закону сила тяготения универсальна и проявляется между любыми материальными телами независимо от их конкретных свойств. Она всегда пропорциональна квадрату расстояния между ними.

Распространив на всю Вселенную закон тяготения, Ньютон рассмотрел и возможную ее структуру. Он пришел к выводу, что Вселенная является не конечной, а бесконечной. Лишь в этом случае может существовать множество космических объектов - центров гравитации. Так, в рамках ньютоновской гравитационной модели Вселенной утверждается представление о бесконечном пространстве, в котором находятся космические объекты, связанные между собой силой тяготения. [3]

Ньютон сделал наиболее полную и последовательную попытку оторвать время от материи. И пространство у него было точно таким же: абсолютным, истинным и пустым, не связанным ни с предметами, в нем находящимися, ни с их изменениями, ни со временем. Оно было как бы рамкой для мира реальных вещей, и в этом абсолютном пространстве царило абсолютное движение, измеряемое уже известным нам абсолютным временем. Зачем понадобилось творцу теории всемирного тяготения это пространство? Затем, что без него никак не удавалось справиться с движением. [1]

В 1687 году вышел основополагающий труд Ньютона «Математические начала натуральной философии». Этот труд более чем на два столетия определил развитие всей естественно научной картины мира. В нем были сформулированы основные законы движения и дано определение понятий пространства, времени, места и движения.

Раскрывая сущность времени и пространства, Ньютон характеризует их как «вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве - в смысле порядка положения». Он предлагает различать два типа понятий пространства и времени: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) и дает им следующую типологическую характеристику:

- абсолютное, истинное, математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно иначе называется длительностью;

- относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами, внешняя мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год;

- абсолютное пространство по своей сущности, безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным;

- относительное пространство есть мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное. [5]

Ньютон соглашался с принципом относительности Галилео. И все-таки ему казалось, что должно быть нечто незыблемое, некая основа, опираясь на которую, наблюдатель может ощутить движение без ускорения. Абсолютное пространство и было для Ньютона неподвижной системой отсчета.

Ньютон вывел свои законы движения, исходя из измерений, проведенных Галилеем. В экспериментах Галилея на тело, катящееся по наклонной плоскости, всегда действовала одна и та же сила (вес тела) и в результате скорость тела постоянно возрастала. Отсюда следовало, что в действительности приложенная к телу сила изменяет скорость тела, а не просто заставляет его двигаться, как думали раньше. Это еще означало, что если на тело не действует сила, оно будет двигаться по прямой с постоянной скоростью. Такую мысль впервые четко высказал Ньютон в своей книге "Математические начала", вышедшей в 1687 г. Этот закон теперь называется «Первым законом Ньютона». О том, что происходит с телом, когда па него действует сила, говорится во «Втором законе Ньютона». Он гласит, что тело будет ускоряться, т. е. менять свою скорость, пропорционально величине силы. (Если, например, сила возрастет в 2 раза, то и ускорение в 2 раза увеличится). Кроме того, ускорение тем меньше, чем больше масса (т. е. количество вещества) тела. (Действуя на тело вдвое большей массы, та же сила создает вдвое меньшее ускорение). Всем хорошо известно, как обстоит дело с автомобилем: чем мощнее двигатель, тем больше создаваемое им ускорение, но чем тяжелее автомобиль, тем меньше ускоряет его тот же двигатель. [1]

Кроме законов движения Ньютон открыл закон, которому подчиняется сила тяготения. Этот закон таков: всякое тело притягивает любое другое тело с силой, пропорциональной массам этих тел. Следовательно, если вдвое увеличить массу одного из тел (скажем, тела А), то и сила, действующая между телами, тоже увеличится в 2 раза. Мы так считаем потому, что новое тело А можно представить себе составленным из двух тел, масса каждого из которых равна первоначальной массе. Каждое из этих тел притягивало бы тело В с силой, равной первоначальной силе. Следовательно, суммарная сила, действующая между телами А и В, была бы вдвое больше этой первоначальной силы. А если бы одно из тел имело массу, скажем, вдвое, а второе - втрое больше первоначальной массы, то сила взаимодействия возросла бы в 6 раз. Теперь понятно, почему все тела падают с одинаковой скоростью: тело с удвоенным весом будет тянуть вниз удвоенная гравитационная сила, но и масса тела при этом будет в 2 раза больше. По Второму закону Ньютона эти два эффекта компенсируют друг друга, и ускорение будет во всех случаях одинаковым.

Закон тяготения Ньютона говорит, что чем дальше тела друг от друга, тем меньше сила их взаимодействия. Согласно этому закону, гравитационная сила притяжения звезды составляет ровно четверть силы притяжения такой же звезды, но находящейся на вдвое меньшем расстоянии. Закон Ньютона позволяет с большой точностью предсказать орбиты Земли, Луны и планет. Если бы закон всемирного тяготения был иным и сила гравитационного притяжения уменьшалась быстрее, чем по закону Ньютона, то орбиты планет были бы не эллипсами, а спиралями, сходящимися к Солнцу. Если же гравитационное притяжение убывало бы с расстоянием медленнее, то притяжение удаленных звезд оказалось бы сильнее притяжения Земли. [1]

Тем не менее ньютоново понимание пространства и времени было основным в науке вплоть до создания теории относительности. Ведь без признания существования абсолютной пустоты, казалось, нельзя объяснить, в частности, отсутствие торможения в движении планет вокруг Солнца. Кроме того, понятия абсолютного пространства и абсолютного времени, не связанных с материей, играли важную роль в концептуальном каркасе классической механики. Дело в том, что законы Ньютона справедливы лишь для инерциальных систем отсчета. Но существуют ли такие системы? Ясно, что вполне инерциальной может быть лишь система отсчета, не подверженная возмущающему влиянию со стороны материальных объектов, т.е. система отсчета, связанная с чем-то, что существует независимо от материи. Функцию строго инерциальной системы отсчета и выполняли в механике Ньютона субстанциально понимаемые абсолютное пространство и абсолютное время. [2]

Исследование электромагнитых взаимодействий привело в конечном счете к созданию теории относительности (СТО), в рамках которой пространство и время неразрывно связаны друг с другом, ибо предельный характер скорости света, ограничивающей скорость передачи взаимодействий, указывает на невозможность процессов в пространстве, не требующих времени; с движением материи, ибо протяженность и длительность имеют смысл (определенное численное значение) лишь при указании системы отсчета, связываемой с телом отсчета.

Необходимо подчеркнуть, что в СТО поле приобретает существенно новый статус, становясь важнейшим компонентом физической реальности.

Таким образом, в современной науке нет места абсолютно пустым пространству и времени. Также следует отметить, что в области явлений, изучаемой СТО, идеализация абсолютно твердого тела уже не является оправданной, вследствие чего СТО отказывается от нее введением постулата ограниченности скорости передачи взаимодействий, что находит выражение во введении четырехмерного пространственно-временного многообразия (элементом которого является событие), описывающегося псевдоэвклидовой геометрией. [3]

Исследование движения микрообъектов (квантовая механика) привело к представлению о дискретности пространства и времени. Дело в том, что при понимании последних как непрерывных ряд наиболее содержательных физических величин (масса, заряд, энергия и др.), описывающих изучаемые квантовой механикой объекты, в ее уравнениях теряют физический смысл ввиду своей расходимости (бесконечности значений). Разрешить проблему удалось лишь введением “фундаментальной длины” - некоего минимального расстояния (Rmin), чем исключаются из рассмотрения взаимодействия на бесконечно малых расстояниях,- теория соответствует опыту лишь тогда, когда взаимодействия элементарных частиц учитываются в ней на расстояниях, не превышающих Rmin=97. Дискретность пространства, ввиду существования предельной скорости передачи взаимодействий, влечет и дискретность времени. [3]

Пространство и время как формы координации материальных объектов обладают определенными свойствами, изучение которых сыграло выдающуюся роль в развитии физики. Этими свойствами являются:

- трехмерность пространства и одномерность и необратимость времени;

- однородность и изотропность пространства;

- однородность времени. [3]

Трехмерность пространства представляет собой эмпирически констатируемое фундаментальное его свойство, которое выражается в том, что положение любого объекта может быть определено с помощью трех независимых величин. Здесь существенно наличие именно независимых величин, а не конкретный их характер, ибо последний зависит от выбираемого познающим субъектом способа описания положения тел в пространстве, проще говоря, от используемой системы координат. В прямоугольной декартовой системе координат это будут координаты X, Y, Z обычно называемые длиной, шириной и высотой; в сферической системе координат это будут радиус-вектор R и углы и ; в цилиндрической системе -- высота Z, радиус-вектор R и угол и т. д. Разумеется, если положение точки в пространстве задано в одной системе координат, то по соответствующим формулам можно всегда перейти к любой другой системе. Применение той или иной системы координат есть лишь вопрос практического удобства; объективным фактом является необходимость использования трех независимых величин для характеристики положения тела в пространстве. [3]

Наряду с понятием трехмерного пространства в науке широко используется понятие многомерного (n-мерного) пространства, или n-мерного многообразия.

Понятие n-мерного пространства является математической абстракцией, позволяющей применить ранее разработанный геометрический аппарат к изучению новых сторон действительности. Это не пустая фикция, а тоже отражение действительности, но отражение не ее пространственных свойств, а самых разнообразных иных свойств, которые в определенном отношении оказываются как бы пространственно-подобными. [2]

В отличие от пространства время одномерно и необратимо. Одномерность его означает, что для фиксации положения объекта или события во времени достаточно одной величины -- промежутка времени протекшего от некоторого начала отсчета t = 0. Важнейшей чертой времени является его необратимость. Пространство «обратимо» в том смысле, что в любую его точку можно попасть и дважды, и трижды и т. д. Во времени это невозможно -- оно необратимо течет от прошлого через настоящее к будущему, в одну и ту же временною точку нельзя попасть дважды, нельзя вернуться в прошлое и т. п. [4]

Идея необратимости времени навязывается человеку непосредственным опытом его психической жизни. В своем сознании каждый человек четко различает непосредственное переживание и воспоминание о чем-либо. То, что воспроизводится с помощью памяти, образует прошлое, а непосредственно переживаемое -- настоящее. Отсюда рождается мысль вообще вывести направленность (необратимость) времени из особенностей нашего сознания. [4]

Материализм не может согласиться с такой трактовкой вопроса. Исходя из объективности времени, и его необратимость надо выводить не из сознания, а из свойств объективных процессов. Весьма распространенной является точка зрения, согласно которой необратимость времени выводится из причинности. Причем обычно просто заявляют, что раз причина предшествует действию во времени, то этим и определяется направление времени. Но это неверно.

Во-первых, в механических процессах существует «причинная связь явлений, находящая свое выражение в действии законов природы», а именно в законах механики. Однако законы механики безразличны к знаку времени, они одинаково справедливы и при положительном и при замене t на ­t, т. е. при обращении направления времени.

Во-вторых, попытка использовать для определения направления времени факт предшествования причины действию уже предполагает тем самым это направление (ибо иначе теряет всякий смысл фраза: «Причина предшествует действию»). Следовательно, эта попытка содержит логический круг. Необратимость (однонаправленность) времени представляет собой фундаментальное свойство действительности, и попытка логической дедукции его из принципа причинности дает иллюзорное объяснение. Речь должна идти не о дедукции одной философской категории из другой (необратимости из причинности), а о том, находит ли необратимость времени выражение в фундаментальных естественно - научных законах, и если находит, то в чем это раскрывается. [3]

В противоположность субъективистским взглядам на время, выводящим присущую ему необратимость из свойств человеческого сознания, наука в полном соответствии с материализмом раскрывает объективный характер необратимости времени.

В макроскопических процессах эта необратимость находит свое отражение в законе возрастания энтропии. Этот закон утверждает, что в любой замкнутой системе энтропия никогда не убывает, она возрастает или в пределе остается постоянной. Процессы, в которых энтропия увеличивается, называются необратимыми, в которых она остается постоянной -- обратимыми. Первые не могут протекать в обратном направлении, вторые могут. Однако последние «представляют собой, разумеется, идеальный предельный случай; реально происходящие в природе процессы могут быть обратимыми лишь с большей или меньшей степенью точности». Необратимость и обусловливает физическую неэквивалентность двух направлений времени: прошлое и будущее различаются как состояния с соответственно меньшей и большей энтропией. [2]

Для микромира вопрос о необратимости времени должен решаться на основе теории микропроцессов -- квантовой механики. На первый взгляд, кажется, что здесь оба направления времени равноправны. Действительно, основное уравнение квантовой механики -- уравнение Шрёдингера симметрично по отношению к изменению знака времени (как и основное уравнение классической механики -- второй закон Ньютона). [4]

Однородность пространства означает равноправие всех его точек, отсутствие каких-либо выделенных точек, а изотропность -- равноправие всех возможных направлений; наконец, однородность времени проявляется в равноправии всех моментов времени.

Однородность пространства и времени и изотропность пространства выражают фундаментальные свойства мира и связаны с важнейшими законами физики -- законами сохранения. В начале XX в. в работах ученых гёттингенской школы Давида Гильберта, Феликса Клейна и Эмми Нетер была сформулирована так называемая теорема Нетер, гласящая, что если свойства системы не меняются от какого-либо преобразования переменных, то этому соответствует некоторый закон сохранения. Поскольку независимость свойств от преобразования переменных означает наличие в системе симметрии относительно данного преобразования, постольку теорема Нетер может быть сформулирована как утверждение о том, что наличие в системе симметрии обусловливает существование сохраняющейся для нее физической величины, и наоборот. [1]

Однородность пространства и времени и изотропность пространства как раз и означают инвариантность системы по отношению к определенным преобразованиям переменных: однородность времени -- по отношению к сдвигам времени, т. е. к изменению начала отсчета; однородность пространства -- по отношению к сдвигам в пространстве, т. е. к переносу начала координат; изотропность пространства -- по отношению к повороту осей системы координат в пространстве. Отсюда вытекают наиболее фундаментальные законы сохранения: симметрии относительно сдвига времени (т. е. однородности времени) соответствует закон сохранения энергии; симметрии относительно пространственного сдвига (т. е. однородности пространства) -- закон сохранения импульса; симметрии относительно поворота координатных осей (т. е. изотропности пространства) -- закон сохранения момента импульса (углового момента). Теорема Нетер, таким образом, показывает, что пространство и время действительно являются формами существования материи, их свойства находят свое выражение в фундаментальных законах, определяющих течение материальных процессов. [3]

Однородность и изотропность пространства и однородность времени связаны не только с фундаментальными законами сохранения, они лежат и в основе галилеевского принципа относительности, и в основе специальной теории относительности. [1]

Список используемой литературы

1. Концепции современного естествознания: учеб. пособие для студ. вузов / Татьяна Яковлевна Дубнищева. -- 6-е изд., испр. и доп. -- М.: Издательский центр "Академия", 2006. -- 608 с.

2. Концепции современного естествознания: Учебник для вузов / Под ред. проф. В.Н. Лавриненко, проф. В.П. Ратникова. -- 3-е изд., перераб. и доп. -- М.: ЮНИТИ-ДАНА, 2006. - 317 с

3. Кунафин М.С. Концепции современного естествознания: Учебное пособие. Изд-е. - Уфа, 2003. - с. - ISBN

4. Найдыш В.М. Концепции современного естествознания: Учебник. - Изд. 2-е, перераб. и доп. - М.: ИНФРА - М, 2003. - 476 с.

5. Стивен Хокинг Краткая история времени от большого взрыва до черных дыр.

Размещено на Allbest.ru


Подобные документы

  • Изучение понятий пространства (реального, концептуального, перцептуального) и времени как форм существования материи. Ознакомление с принципом относительности Галилея, законами Ньютона, космологической теорией Бруно и координационной системой Декарта.

    контрольная работа [28,0 K], добавлен 25.04.2010

  • Понятия пространства и времени являются философскими категориями и в этом смысле не определяются в естествознании. Для естественных же наук важно уметь определять их численные характеристики - расстояния между объектами и длительности процессов.

    реферат [28,2 K], добавлен 05.06.2008

  • Концепции времени и пространства, этапы их зарождения и развития, направления исследования на сегодня. Эксперимент Майкельсона-Морли. Принцип относительности Галилея. Относительность одновременности событий. Общая и специальная теория Эйнштейна.

    контрольная работа [27,7 K], добавлен 10.03.2013

  • Категории пространства и времени, анализ концепции их относительности. Инвариантность пространственных и временных интервалов как отражение свойств симметрии физического мира. Эволюционная теория относительности. Теория относительности А. Эйнштейна.

    реферат [35,2 K], добавлен 11.07.2013

  • Рассмотрение и изучение современных представлений о пространстве и времени. Эволюция базовых понятий пространства, Евклидова геометрия. "Декартовы координаты", положение в пространстве. История развития представлений о времени. Физическая теория времени.

    реферат [27,1 K], добавлен 12.04.2009

  • Понятие эмпирического и теоретического уровней, их различие и методы. Развитие представлений о пространстве и времени в доньютоновский период. Концепция абсолютного пространства и времени И. Ньютона. Понятие биоэтики. "Иерархия" потребностей человека.

    контрольная работа [23,3 K], добавлен 27.01.2009

  • Понятие симметрии - неизменности структуры, свойств, формы материального объекта относительно его преобразований. Симметрии, выражающие свойства пространства и времени, физических взаимодействий. Примеры симметрии в неживой природе, ее обратимость.

    презентация [312,0 K], добавлен 18.10.2015

  • Понятие и типы симметрии, ее элементы и основные принципы. Формы и симметрия кристаллических и геологических образований. Граница между живой и неживой природой. Симметрия и ассиметрия в живой природе. Золотое сечение. Симметрия пространства и времени.

    реферат [257,8 K], добавлен 13.01.2012

  • Суть современных концепций относительности пространства и времени в специальной и общей теориях. Гиперхронологическое историческое пространство, ускорение исторического времени. Раскрытие понятий бифуркаций, фракталов, аттракторов, факторов случайности.

    контрольная работа [466,4 K], добавлен 10.12.2009

  • Взаимосвязь пространства-времени и черных дыр. Поведение лучей света и вещества в момент образования черной дыры,"горизонт событий" как определение той поверхности в пространстве-времени, из которой ничто не может выбраться. Излучение черной дыры.

    контрольная работа [20,2 K], добавлен 02.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.