Теория относительности А. Эйнштейна. Простые и сложные вещества

Сущность естественных и гуманитарных наук, анализ их взаимосвязи. Влияние гравитации на пространство и время в общей теории относительности А. Эйнштейна. Учение о составе вещества - первый уровень химического знания. Содержание закона кратных отношений.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 28.11.2011
Размер файла 120,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Российский государственный профессионально-педагогический университет»

Институт электроэнергетики и информатики

Кафедра общей физики

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: «Концепции современного естествознания»

специальности 050501.65 Профессиональное обучение

(экономика и управление) (030500.18)

Екатеринбург 2011

Содержание

Вопрос 1. Естествознание и гуманитарные науки. В чем их различие?

Вопрос 2. Влияние гравитации на пространство и время в общей теории относительности А. Эйнштейна. Неинерциальные системы отсчета. Искривление пространства-времени в гравитационном поле. Геодезическая линия. Взаимосвязь структуры пространства с распределением в нем материи. Эффект замедления времени вблизи массивных тел

Вопрос 3. Вещество. Состав вещества. Простые и сложные вещества. Химическое соединение. Учение о составе вещества - первый уровень химического знания. Закон сохранения массы М.В. Ломоносова. Закон постоянства состава Ж. Пруста. Закон кратных отношений Дж. Дальтона. Что доказывает закон кратных отношений Закон А. Авогадро?

Литература

Вопрос 1. Естествознание и гуманитарные науки. В чем их различие?

Всем известно, что науки делятся на естественные (или естествознание) и гуманитарные (также часто называемые социально-гуманитарными). Предметом естественных наук является природа, исследуемая астрономией, физикой, химией, биологией и другими дисциплинами; а предметом гуманитарных - человек и общество, изучаемые психологией, социологией, культурологией, историей и т.д.

Естественные науки являются составной частью естественнонаучной культуры, а гуманитарные соответственно гуманитарной культуры.

Естественнонаучная культура - это:

· совокупный исторический объем знания о природе и обществе;

· объем знания о конкретных видах и сферах бытия, который в сокращенно-концентрированной форме актуализирован и доступен изложению;

· усвоенное человеком содержание накопленного и актуализированного знания о природе и обществе.

Гуманитарная культура - это:

· совокупный исторический объем знания философии, религиоведения, юриспруденции, этики, искусствознания, педагогики, литературоведения и других наук;

· системообразующие ценности гуманитарного знания (гуманизм, идеалы красоты, совершенства, свободы, добра и т. п.).

Специфика естественнонаучной культуры: знания о природе отличаются высокой степенью объективности и достоверности (истинности). Кроме того, это глубоко специализированное знание.

Специфика гуманитарной культуры: системообразующие ценности гуманитарного знания определяются и активизируются исходя из принадлежности индивида к определенной социальной группе. Проблема истинности решается с учетом знания об объекте и оценки полезности этого знания познающим или потребляющим субъектом. При этом не исключается возможность толкований, противоречащих реальным свойствам объектов, насыщенность теми или иными идеалами и проектами будущего.

Взаимосвязь естественнонаучной и гуманитарной культур заключается в следующем:

· имеют общую культурную основу;

· являются основополагающими элементами единой системы знаний;

· представляют собой высшую форму человеческих знаний;

· взаимно координируют в историко-культурном процессе;

· стимулируют появление новых междисциплинарных отраслей знания на стыках естественных и гуманитарных наук.

Обратим внимание на то, что естественные науки, в отличие от гуманитарных, часто называют точными. И действительно, гуманитарным наукам не хватает той степени точности и строгости, которая характерна для естественных. Даже на интуитивном уровне под наукой подразумевается, в первую очередь, естествознание. Когда звучит слово «наука», то, прежде всего, на ум приходят мысли о физике, химии и биологии, а не о социологии, культурологии и истории. Точно так же, когда звучит слово «ученый», то перед мысленным взором сначала встает образ физика, химика или биолога, а не социолога, культуролога или историка.

Кроме того, по своим достижениям естественные науки намного превосходят гуманитарные. За свою историю естествознание и базирующаяся на ней техника добились поистине фантастических результатов: от примитивных орудий труда до космических полетов и создания искусственного интеллекта. Успехи же гуманитарных наук, мягко говоря, намного скромнее. Вопросы, связанные с постижением человека и общества, по крупному счету, до настоящего времени остаются без ответов. Мы знаем о природе в тысячи раз больше, чем о самих себе. Если бы человек знал о себе столько же, сколько он знает о природе, люди, наверное, уже добились бы всеобщего счастья и процветания. Однако все обстоит совсем иначе. Давным-давно человек вполне осознал, что нельзя убивать, воровать, лгать и т.п., что надо жить по закону взаимопомощи, а не взаимопоедания. Тем не менее вся история человечества, начиная с египетских фараонов и заканчивая нынешними президентами, - это история бедствий и преступлений, которая говорит о том, что человек почему-то не может жить так, как он считает нужным и правильным, не может сделать себя и общество такими, какими они должны быть по его представлениям. Все это - свидетельство в пользу того, что человек почти нисколько не продвинулся в познании самого себя, общества и истории. Вот почему под понятиями «наука», «научное познание», «научные достижения» и т.п., как правило, подразумевается все, связанное с естествознанием.

Вопрос 2. Влияние гравитации на пространство и время в общей теории относительности А. Эйнштейна. Неинерциальные системы отсчета. Искривление пространства-времени в гравитационном поле. Геодезическая линия. Взаимосвязь структуры пространства с распределением в нем материи. Эффект замедления времени вблизи массивных тел

Для отображения физического пространства необходимо кроме геометрической кривизны римановой геометрии, которую положил в основу своего пространства - времени Эйнштейн, учитывать физические свойства каждой точки пространства. А. Эйнштейн сделал эту попытку, введя к понятию пространства понятие времени и, объединив эти понятия как пространство-время. Физическая категория времени впервые была соединена с геометрией пространства. В общей теории относительности время зависит от гравитации. Иллюзию времени придумал человек для своих нужд и отображения длительности и порядка окружающих его событий. Думаю, что реальность времени можно восстановить, связав его не с гравитацией, а с периодичностью вращения материи и временем жизни и устойчивостью ее элементов. Только в этом случае оно приобретает физический смысл и материальность. Вращение объясняет природу гравитации и инерции, как основных свойств материи. Это может относиться как к веществу, так и окружающему его полю. Таким образом, чтобы наделить пространство физическим смыслом надо добавить к нему понятие времени вращения и говорить как о пространстве и времени вращения. Гравитация формирует свойство инертности тел. Свойство тяготения связывают тело с окружающей средой. Для того, чтобы тело сдвинуть с места необходимо преодолеть эти силы. Свойство инерции материи формируется из свойства реактивного движения тел материи. Основой реактивного движения тел является «выбрасывание» полевой массы тел в сторону противоположную движению этих тел.

Анализируя неинерциальные системы отсчета, движущиеся с одинаковым ускорением, Эйнштейн пришел к неожиданному выводу о том, что в этих системах возникает явление, сходное с явлением тяготения в однородном поле гравитации. Однородное гравитационное поле - это некая абстракция или идеализация. В этом поле сила гравитации имеет одинаковую величину по всем его направлениям и в каждой его точке. Учитывая это сходство, А. Эйнштейн пришел к выводу, что силу тяжести можно создать или уничтожить переходом в систему отсчета, движущуюся с ускорением. Например, если человек находится в лифте без окон вне действия силы тяготения, то он будет находиться в состоянии невесомости. Все окружающие его предметы и он сам не будут притягиваться к полу лифта. Если мысленно тянуть лифт вверх с помощью каната со скоростью, равной ускорению свободного падения на Земле, то этот человек ощутит действия силы гравитации, которая будет аналогична силе гравитации в однородном гравитационном поле, где в каждой его точке ускорение свободного падения тел имеет одну и ту же величину. На самом деле из внешней системы отсчета правильно говорить о том, что лифт, его пол, движется к находящемуся в нем человеку и предметам.

Искривление пространства-времени в гравитационном поле.

Если запустить из двух близких точек два тела параллельно друг другу, то в гравитационном поле они постепенно начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических линий. Аналогичный эффект можно наблюдать непосредственно, если запустить два шарика параллельно друг другу по резиновой мембране, на которую в центр положен массивный предмет. Шарики разойдутся: тот, который был ближе к предмету, продавливающему мембрану, будет стремиться к центру сильнее, чем более удалённый шарик. Это расхождение (девиация) обусловлено кривизной мембраны.

Аналогично, в пространстве-времени девиация геодезических линий (расхождение траекторий тел) связана с его кривизной. Кривизна пространства-времени однозначно определяется его метрикой - метрическим тензором. Различие между общей теорией относительности и альтернативными теориями гравитации определяется в большинстве случаев именно способом связи между материей (телами и полями негравитационной природы, создающими гравитационное поле) и метрическими свойствами пространства-времени.

Геодезическая линия

Геодезимческая линия - кривая определённого типа, обобщение понятия «прямая» в искривлённых пространствах. Конкретное определение геодезической линии зависит от типа пространства. Например, на двумерной поверхности, вложенной в евклидово трёхмерное пространство, геодезимческие линии - это линии, достаточно малые дуги которых являются на этой поверхности кратчайшими путями между их концами. На плоскости это будут прямые, на круговом цилиндре - винтовые линии, на сфере - большие круги.

Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а, следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого пространства в этой точке.

Таким образом описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела двигаются по кратчайшим (в некотором смысле) траекториям - геодезическим линиям. Теория геодезических линий была разработана математиками ранее, ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени расстояние между двумя событиями, называемое по традиции интервалом или мировой функцией. Интервал задаётся 10 величинами, составляющими так называемый метрический тензор или метрику. Он определяет расстояние между двумя бесконечно близкими точками пространства-времени в различных направлениях.

Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.

Взаимосвязь структуры пространства с распределением в нем материи. Эффект замедления времени вблизи массивных тел.

Под структурой материи обычно понимается ее строение в микромире, существование в виде молекул, атомов, элементарных частиц и т. д. Это связанно с тем, что человек, являясь микроскопическим существом, привык к соответствующим масштабам, поэтому понятие строения материи ассоциируется, как правило, с микрообъектами. Но если рассматривать материю в целом, то понятие структуры материи будет охватывать также различные макроскопические тела, все космические системы мегамира. С этой точки зрения структура материи проявляется в существовании бесконечного многообразия целостных систем, тесно связанных между собой. Из всего многообразия форм объективной реальности (то есть материи), эмпирически доступной для наблюдения является конечная область материального мира, которая простирается от 10-15 см до 1028 см (около 20 млрд. световых лет), а во времени - до 2*1010 лет. В этих доступных нам масштабах структурность материи проявляется в ее системной организации, существовании в виде множества иерархически взаимосвязанных систем: Метагалактика, отдельная галактика, звездная система, планета, отдельные тела, молекулы, атомы, элементарные частицы.

Гравитационное замедление времени - физическое явление, заключающееся в изменении темпа хода часов в гравитационном потенциале. Основная сложность в восприятии этого обстоятельства состоит в том, что в теориях гравитации временная координата обычно не совпадет с физическим временем, измеряемым стандартными атомными часами.

При использовании формул эффекта Доплера в специальной теории относительности для расчёта изменения энергии и частоты (при условии, что мы пренебрегаем эффектами зависимости от траектории, вызванными, например, увлечением пространства вокруг вращающейся чёрной дыры), гравитационное красное смещение в точности обратно величине фиолетового смещения. Таким образом, наблюдаемое изменение частоты соответствует относительному замедлению хода часов в точке приёма и передачи. Однако метод расчёта гравитационного красного смещения через замедление времени становится слишком громоздким, если учитывать эффекты увлечения пространства, которые делают величину смещения зависящей от траектории распространения света.

В то время как гравитационное красное смещение измеряет наблюдаемый эффект, гравитационное замедление времени говорит, что можно заключить на основании результатов наблюдения. То есть, говоря иными словами: измеряя единое красное/фиолетовое смещение для любого способа посылки сигналов «оттуда»-«сюда», мы приходим к выводу, что одинаковые с нашими часы там идут «как-то не так», быстрее или медленнее.

Вопрос 3. Вещество. Состав вещества. Простые и сложные вещества. Химическое соединение. Учение о составе вещества - первый уровень химического знания. Закон сохранения массы М.В. Ломоносова. Закон постоянства состава Ж. Пруста. Закон кратных отношений Дж. Дальтона. Что доказывает закон кратных отношений Закон А. Авогадро?

гравитация относительность вещество химический

Вещество (в химии) - физическая субстанция со специфическим химическим составом. В философском словаре Григория Теплова в 1751 году словом вещество переводился латинский термин Substantia.

Вещество в физике - форма материи, в отличие от поля обладающая массой покоя. Вещество состоит из частиц, среди которых чаще всего встречаются электроны, протоны и нейтроны. Последние два образуют атомные ядра, а все вместе - атомы (атомное вещество), из которых - молекулы, кристаллы и т. д.

Вещество в биологии - материя, образующая ткани организмов, входящая в состав органелл клеток.

Согласно современной теории, в том числе квантовой, вещество - разновидность материи, которая содержит число химических частиц от 1015 и более. Структурные единицы макроскопического вещества - электроны и ядра. Отсюда следует, что определение «вещество состоит из атомов и молекул» не совсем верно. Не во всех макроскопических веществах мы можем выделить молекулы. А электроны и ядра мы можем выделить при любых условиях. Поэтому все вещества и частицы состоят из электронов и ядер. Тогда, атом - это одноядерная, в целом нейтральная система, а молекула - неодноядерная, в целом нейтральная система.

Каждое вещество характеризуется определенным качественным и количественным составом.

Качественный состав вещества показывает, из атомов каких элементов оно состоит. Например, вода состоит из атомов водорода и кислорода, а метан - из атомов углерода и водорода. Число атомов каждого элемента в составе мельчайшей частицы вещества характеризует его количественный состав. Например, молекула воды состоит из двух атомов водорода и одного атома кислорода, а молекула метана - из одного атома углерода из четырех атомов водорода.

Любое сложное вещество можно с помощью различных химических методов разложить на несколько новых веществ, и так до тех пор, пока не получатся вещества, каждое из которых будет являться простым. Свойства простых веществ, которые при этом получаются (углерода, кислорода и водорода) совершенно не похожи на свойства сложных веществ сахара и воды. Это разные вещества с разными свойствами. Свойства сложного вещества не являются суммой свойств простых веществ, которые образуются при его разложении.

Сложные вещества, как и простые, имеют либо молекулярное, либо немолекулярное строение. При этом вещества молекулярного строения могут существовать в обычных условиях в различных агрегатных состояниях. Например, метан - газ, вода - жидкость, сахар - твердое вещество.

Вещества немолекулярного строения при обычных условиях - твердые кристаллы, например поваренная соль, мел. Конечно, при нагревании (иногда до нескольких тысяч градусов) такие вещества также плавятся, а затем переходят и в парообразное состояние.

Простые вещества - вещества, состоящие исключительно из атомов одного химического элемента (из гомоядерных молекул), в отличие от сложных веществ. Являются формой существования химических элементов в свободном виде; или, иначе говоря, элементы, не связанные химически ни с каким другим элементом, образуют простые вещества. Известно свыше 400 разновидностей простых веществ.

В зависимости от типа химической связи между атомами простые вещества могут быть металлами (Na, Mg, Al, Bi и др.) и неметаллами (H2, N2, Br2, Si и др.).

Примеры простых веществ: молекулярные (O2, O3, H2, Cl2) и атомарные (He, Ar) газы; различные формы углерода, йод (I2), металлы (не в виде сплавов).

Химимческое соединемние - сложное вещество, состоящее из химически связанных атомов двух или нескольких элементов (гетероядерные молекулы). Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной (азот, кислород, йод, бром, хлор, фтор, предположительно астат). Инертные (благородные) газы и атомарный водород нельзя считать химическими соединениями. Состав химического соединения записывается в виде химических формул, а строение часто изображается структурными формулами.

В подавляющем большинстве случаев химические соединения подчиняется закону постоянства состава и закону кратных отношений. Однако известны довольно многочисленные соединения переменного состава (бертоллиды), например: PaO2,18 - PaO2,21.

Химические соединения получают в результате химических реакций. Сложные вещества могут разлагаться с образованием нескольких других веществ. Образование химических соединений сопровождается выделением (экзотермическая реакция) или поглощением (эндотермическая реакция) энергии. Физические и химические свойства химических соединений отличаются от свойств веществ, из которых они получены. Химические соединения разделяются на неорганические и органические. Известно более 100 тыс. неорганических и более 3 млн. органических соединений. Каждое химическое соединение, которое описано в литературе, имеет уникальный идентификатор - CAS-номер.

Сложные вещества:

оксиды (H2O, CaO, CO2, P2O5 (P4O10) и др.)

основания (Na(OH), Ca(OH)2, Al(OH)3, Fe(OH)3 и др.)

кислоты (HCl, HNO3, H2SO4, H3PO4 и др.)

соли (NaCl, KNO3, Fe2(SO4)3, LiBr и др.)

Учение о составе вещества - первый уровень химического знания

Учение о составе веществ является первым уровнем химических знаний. До 20-30-х гг. XIX в. вся химия не выходила за пределы этого подхода. Но постепенно рамки состава (свойств) - стали тесны химии, и во второй половине XIX в. главенствующую роль в химии постепенно приобрело понятие «структура», ориентированное, что и отражено непосредственно в самом понятии, на структуру молекулы реагента.

Первый действенный способ решения проблемы происхождения свойств вещества появился в XVII в. в работах английского ученого Р. Бойля. Его исследования показали, что качества и свойства тел не имеют абсолютного характера и зависят от того, из каких химических элементов эти тела составлены. У Бойля наименьшими частичками вещества оказывались неосязаемые органами чувств мельчайшие частички (атомы), которые могли связываться друг с другом, образуя более крупные соединения - кластеры (по терминологии Бойля). В зависимости от объема и формы кластеров, от того, находились они в движении или покоились, зависели и свойства природных тел. Сегодня мы вместо термина «кластер» используем понятие «молекула».

В период с середины XVII в. до первой половины XIX в. учение о составе вещества представляло собой всю химию того времени. Оно существует и сегодня, представляя собой первую концептуальную систему химии. На этом уровне химического знания Ученые решали и решают три важнейшие проблемы: химического элемента, химического соединения и задачу создания новых материалов с вновь открытыми химическими элементами.

Химическим элементом называют все атомы, имеющие одинаковый заряд ядра. Особой разновидностью химических элементов являются изотопы, у которых ядра атомов отличаются числом нейтронов (поэтому у них разная атомная масса), но содержат одинаковое число протонов и поэтому занимают одно и тоже место в периодической системе элементов. Термин «изотоп» был введен в 1910 г. английским радиохимиком Ф. Содди. Различают стабильные (устойчивые) и нестабильные (радиоактивные) изотопы.

С момента открытия изотопов наибольший интерес вызвали радиоактивные изотопы, которые стали широко использоваться в атомной энергетике, приборостроении, медицине и т. д.

Первое научное определение химического элемента, когда еще не было открыто ни одного из них, сформулировал английский химик и физик Р. Бойль. Первым был открыт химический элемент фосфор в 1669 г., потом кобальт, никель и другие. Открытие французским химиком А. Л. Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений об «огненной материи» (флогистоне).

В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном. В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент.

Закон сохранения массы М.В. Ломоносова.

В этой реакции метан и кислород - реагенты, а диоксид углерода и вода - продукты.

СН4 + 2О2 = СО2 + 2Н2О

Изготовим пластилиновые модельки реагентов, похожие на те, что изображены на рисунке:

Получатся модельки одной молекулы метана и двух молекул кислорода. Мы можем разобрать эти модельки на отдельные атомы и тут же собрать из них модельки продуктов. Для этого нам не потребуется никаких других деталей - только те атомы, которые мы взяли из одной “молекулы” метана и двух “молекул” кислорода.

Разумеется, масса всех пластилиновых "атомов" при этом не изменилась, хотя перед нами теперь лежат уже совсем другие "молекулы" - диоксида углерода и воды.

Этот простой опыт иллюстрирует один из важнейших законов природы - ЗАКОН СОХРАНЕНИЯ МАССЫ. Новые вещества не получаются из ничего и не могут обратиться в ничто. Масса (вес) реагентов всегда в точности равна массе (весу) продуктов химической реакции. Этот фундаментальный закон впервые открыл русский ученый М.В. Ломоносов. Немного позже французский химик А. Лавуазье пришел к тем же выводам и независимо от Ломоносова сформулировал тот же закон.

Закон постоянства состава Ж. Пруста.

Все индивидуальные вещества имеют постоянный качественный и количественный состав независимо от способа их получения.

На основании этого закона состав веществ выражается химической формулой с помощью химических знаков и индексов. Например, Н2О, СН4, С2Н5ОН и т.п.

Закон постоянства состава справедлив для веществ молекулярного строения. Наряду с веществами, имеющими постоянный состав, существуют вещества переменного состава. К ним относятся соединения, в которых чередование нераздельных структурных единиц (атомов, ионов) осуществляется с нарушением периодичности.

В связи с наличием соединений переменного состава современная формулировка закона постоянства состава содержит уточнения:

Состав соединений молекулярного строения, то есть состоящих из молекул, является постоянным независимо от способа получения.

Состав же соединений с немолекулярной структурой (с атомной, ионной и металлической решеткой) не является постоянным и зависит от условий получения.

Закон кратных отношений Дж. Дальтона.

Закон кратных отношений гласит - Если два элемента образуют друг с другом несколько химических соединений, то массы одного из элементов, приходящиеся на одну и ту же массу другого, относятся между собой как небольшие целые числа.

Дальтон придерживался атомной теории строения вещества. Открытие закона кратных отношений явилось подтверждением этой теории. Закон непосредственно свидетельствовал о том, что элементы входят в состав соединений лишь определенными порциями.

Подсчитаем, например, массу кислорода, соединяющуюся с одним и тем же количеством углерода при образовании оксида углерода (II) и диоксида углерода. Для этого разделим друг на друга величины, выражающие содержание кислорода и углерода в том и в том оксидах. Мы получим, что на одну единицу массы углерода в диоксиде углерода приходится ровно в 2 раза больше кислорода, чем в оксиде углерода (II).

Соединение

Число единиц массы кислорода, приходящихся на одну единицу массы углерода

Оксид углерода (II)

1.33

Диоксид углерода

2.66

Что доказывает закон кратных отношений Закон А. Авогадро?

Закон Авогамдро - одно из важных основных положений химии, гласящее, что «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул». Было сформулировано ещё в 1811 году Амедео Авогадро (1776-1856), профессором физики в Турине.

Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объём.

В частности, при нормальных условиях, т. е. при 0°C (273 К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа Vm. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона:

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму. Положение это имело громадное значение для развития химии, так как оно дает возможность определять частичный вес тел, способных переходить в газообразное или парообразное состояние. Если через m мы обозначим частичный вес тела, и через d - удельный вес его в парообразном состоянии, то отношение m / d должно быть постоянным для всех тел. Опыт показал, что для всех изученных тел, переходящих в пар без разложения, эта постоянная равна 28,9, если при определении частичного веса исходить из удельного веса воздуха, принимаемого за единицу, но эта постоянная будет равняться 2, если принять за единицу удельный вес водорода. Обозначив эту постоянную, или, что то же, общий всем парам и газам частичный объём через С, мы из формулы имеем с другой стороны m = dC. Так как удельный вес пара определяется легко, то, подставляя значение d в формулу, выводится и неизвестный частичный вес данного тела.

Элементарный анализ, например, одного из полибутиленов указывает, в нём пайное отношение углерода к водороду, как 1 к 2, а потому частичный вес его может быть выражен формулой СН2 или C2H4, C4H8 и вообще (СН2)n. Частичный вес этого углеводорода тотчас определяется, следуя закону Авогадро, раз мы знаем удельный вес, т. е. плотность его пара; он определен Бутлеровым и оказался 5,85 (по отношению к воздуху); т. е. частичный вес его будет 5,85 · 28,9 = 169,06. Формуле C11H22 отвечает частичный вес 154, формуле C12H24 - 168, а C13H26 - 182. Формула C12H24 близко отвечает наблюденной величине, а потому она и должна выражать собою величину частицы нашего углеводорода CH2.

Литература

1. Д.А. Гусев. Концепции современного естествознания. Учебный курс (учебно-методический комплекс).

2. Мицкевич, Н.В. Системы отсчета: описание и интерпретация эффектов релятивистской физики / Н.В. Мицкевич // Итоги науки и техники / Гл. ред. Б.Б. Кадомцев. Научный редактор проф. В.Н. Мельников. - М.: ВИНИТИ, 1991. - Т. 3: Сер. Классическая теория поля и теория гравитации. - С. 108-165.

3. Ахметов Н.С. Общая и неорганическая химия. - 4 изд., испр. - Москва: Высшая школа, Издательский центр "Академия", 2001. - 743 с. - 15 000 экз. - ISBN 5-06-003363-5, 5-7695-0704-7

4. Глинка Н.Л. Общая химия - 22 изд., испр. - Ленинград: Химия, 1977. - С. 18-19. - 719 с.

Размещено на Allbest.ru


Подобные документы

  • Истоки теории относительности, порядок ее формирования и значение. Принцип относительности Галилея. Сущность преобразования Галилея и Лоренца. Теория относительности А. Эйнштейна, особенности и отличительные признаки ее общей и специальной формы.

    реферат [2,4 M], добавлен 09.11.2010

  • Категории пространства и времени, анализ концепции их относительности. Инвариантность пространственных и временных интервалов как отражение свойств симметрии физического мира. Эволюционная теория относительности. Теория относительности А. Эйнштейна.

    реферат [35,2 K], добавлен 11.07.2013

  • Изучение принципа относительности Галилея. История возникновения и содержание концепции наименьшего действия. Ознакомление с основными постулатами специальной теории относительности Эйнштейна. Экспериментальные подтверждения общей теории относительности.

    реферат [30,5 K], добавлен 30.07.2010

  • Ознакомление с уравнениями Максвелла, ньютоновскими законов и концепциями близкодействия Фарадея как с этапами развития общей теорий относительности Эйнштейна, объединяющей пространство и время. Изучение эволюции и структурной организации Вселенной.

    реферат [845,0 K], добавлен 26.04.2010

  • Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна. Основные закономерности развития биогеоценоза. Взаимодействие между компонентами как важнейший механизм поддержания целостности и устойчивости биогеоценозов.

    контрольная работа [150,8 K], добавлен 13.04.2012

  • Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения. Идея построения материального мира из элементарных, фундаментальных "кирпичиков".

    реферат [888,7 K], добавлен 07.01.2010

  • Понятие общей теории относительности - общепринятой официальной наукой теории о том, как устроен мир, объединяющей механику, электродинамику и гравитацию. Принцип равенства гравитационной и инертной масс. Теория относительности и квантовая механика.

    курсовая работа [111,1 K], добавлен 17.01.2011

  • Естественнонаучная и гуманитарная культура. Дифференциация, интеграция и математизация в современной науке. Культурный уровень организации материи. Квантовомеханическая концепция описания микромира. Пространство и время в общей теории относительности.

    курс лекций [47,9 K], добавлен 16.11.2009

  • Суть современных концепций относительности пространства и времени в специальной и общей теориях. Гиперхронологическое историческое пространство, ускорение исторического времени. Раскрытие понятий бифуркаций, фракталов, аттракторов, факторов случайности.

    контрольная работа [466,4 K], добавлен 10.12.2009

  • Концепции времени и пространства, этапы их зарождения и развития, направления исследования на сегодня. Эксперимент Майкельсона-Морли. Принцип относительности Галилея. Относительность одновременности событий. Общая и специальная теория Эйнштейна.

    контрольная работа [27,7 K], добавлен 10.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.