Биологические мембраны

Изучение химического состава, липидов, асимметрии и основных функций мембран. Характеристика восприятия сигналов биологическими мембранами, сенсорных белков и экспрессии генов. Анализ механизмов адаптации клеток к меняющимся условиям окружающей среды.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 27.10.2011
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Биологические мембраны -- капсула жизни

Биологии известны и бесклеточные формы жизни -- вирусы. Хотя многие из них и облачены в оболочку, истинной жизни в ней все равно не происходит. Вся активность начинается и заканчивается исключительно под покровом мембраны клеток заражённого организма, потому что любой вирус -- лишь молекулярный паразит, «взламывающий» программу, по которой работает живая клетка, и заставляющий её использовать свои мощности для «штамповки» новых копий вирусов.

Однако все остальные, по-настоящему живые организмы -- и эукариоты, и прокариоты, -- заключены в мембрану (а иногда ещё и в дополнительную клеточную стенку), чётко разделяющую весь мир на внешний и внутренний. В последнем и творится всё таинство жизни. Именно по этой причине огромное множество жизненных процессов так или иначе связано с работой мембраны клетки, а интегральные белки мембраны играют необычайное многообразие ролей, без которых вообразить существование жизни просто невозможно. Транспорт веществ, передача любых сигналов от клетки к клетке, создание и поддержание трансмембранных потенциалов, без которых не живёт ни одна клетка, и даже рецепция внешних импульсов, таких как свет или запахи, -- всё это функции мембранных белков.

Однако изучать строение и работу этих белков очень сложно, потому что их немыслимо рассматривать в отрыве от мембран, представляющих естественную среду их «обитания», а это неизбежно влечёт за собой многократное увеличение сложности рассматриваемой системы. Кроме того, сворачивание мембранных белков протекает в гетерогенном окружении, включающем как гидрофобный слой липидов мембраны, так и полярную среду вне её, -- а это задаёт очень непростые «граничные» условия для процесса фолдинга. Молекулярное моделирование мембранных белков сталкивается и с такими плохо формализуемыми (а значит, и поддающимися учёту в виде формул) явлениями, как влияние растворителя в этой сложной «многослойной» системе и гидрофобный эффект, играющий в жизни белков мембраны ещё более важную роль, чем в случае растворимых белков цитоплазмы.

Рисунок 3. Биологическая мембрана и её «начинка».

Липидный бислой мембраны, а также её интегральные и периферические белки, играют в жизни клетки роль, которую сложно переоценить. Далеко неполный перечень функций белков мембраны -- трансмембранная передача сигналов и веществ, межклеточное распознавание, создание электрохимических потенциалов, реакция на свет и другие импульсы и др.

Однако понимание всей важности ролей, которые играют мембранные белки (рисунок 3), а также огромной практической значимости изучения их строения и функций только разжигает интерес исследователей к проблеме биологических мембран и их белковой «начинки», -- и это касается не только экспериментаторов, но и биофизиков-теоретиков, которых занимают молекулярные аспекты течения жизни.

Лаборатория моделирования биомолекулярных систем в Институте биоорганической химии им. академиков М. М. Шемякина и Ю. А. Овчинникова Российской академии наук специализируется именно на этом вопросе. Основной её профиль -- молекулярное моделирование биологических мембран и процессов, проходящих с участием мембранных белков. В следующем разделе в общих чертах будет обрисован фронт исследований, проводимых в Лаборатории.

химический биологический мембрана клетка

Не только игры: как с помощью компьютеров моделируют белки биологических мембран

Для компьютерных имитаций мембранных белков в первую очередь необходимы, конечно, реалистичные молекулярные модели мембран, в которых эти белки «живут». Мембраны состоят из липидов -- молекул амфифильной природы, включающих гидрофильную головку и гидрофобные хвосты. Простейший аналог мембраны -- это липидный бислой, состоящий из двух «листочков», «склеенных» гидрофобными хвостами молекул. Противоположные части молекул -- полярные головки -- формируют внешние поверхности бислоя, граничащие с водой. Конечно, реальные биологические мембраны состоят не из одного типа молекул, а из множества компонентов -- фосфолипидов различного заряда, ганглиозидов, сфингомиелина, кардиолипина, стероидных липидов и прочих соединений (и это не считая белков, которыми «нашпигованы» мембраны). Причем липидный состав мембран существенным образом меняется для разных клеток и разных организмов в связи со спецификой возложенных на эти клетки функций.

Молекулярно-динамическая модель мембраны, даже если это бислой, состоящий из одинаковых молекул, -- это уже достаточно большая система. В её состав входит несколько сотен молекул липида, упорядоченных в форме бислоя, и десятков тысяч молекул воды, изображающих окружающую мембрану водную среду. Для каждого атома в этой системе заданы координаты, химические связи и нековалентные взаимодействия с другими атомами в системе. Компьютерный расчёт динамики такой элементарной ячейки проводят на многопроцессорных системах, и длится он обычно несколько недель, описывая при этом всего лишь несколько десятков или сотен наносекунд (10?9 с) «реальной» жизни мембраны.

Несмотря на столь малые времена, которые удаётся проследить с помощью такого моделирования, система начинает вести себя подобно реальному бислою, -- в частности, толщина мембраны и плотность упаковки липидных «головок» становятся очень близки к значениям, известным из эксперимента, подтверждая реалистичность проводимых расчётов. Однако кроме получения и так уже известных параметров моделирование позволяет проникнуть в детали устройства границы вода / мембрана, чего вряд ли можно добиться другими средствами -- очень уж тонко устроена и подвижна эта граница.

Рисунок 4. Молекулярные модели клеточных мембран.

Варьирование липидного состава позволяет имитировать мембраны эукариот и прокариот: «эритроциты» (слева, изображают эукариотическую мембрану) и «грам?» (справа, изображают мембрану бактерий). Бислои представлены в виде поверхности, доступной растворителю (вид «сверху»). Цветом показаны липиды: ПОФЭ, ПОФХ, ПОФГ и ХОЛ.

В Лаборатории накоплен банк динамических моделей бислоёв различного состава -- с разной длиной и структурой гидрофобных «хвостов» и природой полярных «головок» (заряженных или нейтральных) [10]. Созданы и модели двухкомпонентных мембран, в том числе несущих на своей поверхности отрицательный заряд. Наличие заряда в модельных мембранах важно потому, что это позволяет имитировать мембраны бактерий (и не только их), заряженные отрицательно, а значит, и изучать влияние различных веществ на «бактериальные» мембраны в сравнении с мембранами «эукариот». Почему это важно? Потому что такие вещества могут обладать антимикробной активностью, а, значит, -- использоваться в медицине!

Важнейшие из таких веществ, найденные в живых организмах, -- это небольшие молекулы белковой природы, которые назвали мембрано-активными пептидами. Делятся они на три группы -- антимикробные пептиды (избирательно убивающие бактерий), фузионные пептиды (вызывающие слияние двух клеток между собой) и транслокационные пептиды, самопроизвольно проникающие сквозь мембрану и способные «протащить» за собой полезный груз. Практическое значение этих молекул -- альтернатива традиционным антибиотикам, утратившим былую универсальность из-за появления резистентности к ним микроорганизмов [11], направленная доставка веществ (например, лекарств или же, наоборот, ядов) в заданные типы клеток и дизайн противовирусных препаратов, блокирующих слияние мембраны клетки с мембраной «захватчика» (например, гриппа).

Кроме того, из-за небольшого размера (обычно это не более 20-30 аминокислотных остатков) такие молекулы можно исследовать на компьютере, имитируя их взаимодействие с различными типами модельных мембран [12]. В результате таких расчётов стало понятно, что взаимодействие пептид-мембрана -- очень тонкий процесс, существенно зависящий от свойств последней и не оставляющий без изменений ни пептид, ни мембрану. И тот, и другая точно подстраиваются друг к другу, формируя селективные области взаимодействия с особыми свойствами, отличными от «незатронутой» мембраны [13]. Подробный анализ на атомном уровне механизма таких взаимодействий позволяет «вмешиваться» в процесс и увеличивать или уменьшать «сродство» молекулы к мембранам определённого типа -- в частности, увеличивать антимикробный потенциал и уменьшать токсичность по отношению к клеткам эукариот. В результате такого «дизайна» были созданы аналоги антимикробного пептида латарцина, убивающие бактерий (например, стафилококков или патогенные штаммы кишечной палочки), но не затрагивающие эритроциты, а, значит, являющиеся потенциальным прототипом лекарственного препарата [14].

Более сложная задача -- моделирование структуры интегральных белков мембраны, например, мембранных рецепторов, роль которых в работе всех без исключения клеток сложно переоценить. Экспериментально строение таких рецепторов установлено лишь для небольшого числа представителей этого важнейшего семейства [15-17], -- в связи с чем молекулярное моделирование приобретает особенное значение. Первым приближением в моделировании их структуры являются модели, построенные на основе гомологии с родственными рецепторами, структура которых уже установлена, однако точность таких моделей почти всегда оказывается недостаточной для практических применений [9]. Вызвано это тем, что, несмотря на сходный план строения, разнообразие выполняемых функций определяет существенные отличия в устройстве активных центров и близлежащих областей.

Для оптимизации моделей структуры можно использовать статистические закономерности упаковки мембранных белков, наблюдаемые в уже известных структурах. Выраженные численно, эти закономерности помогают уточнить модель, получая более «правильно» упакованную структуру [18, 19]. Кроме того, использование алгоритмов для учёта гидрофобного эффекта, важного не только для сворачивания белковых молекул в мембране, но и для процессов межмолекулярного распознавания рецептор-лиганд, даёт возможность ещё точнее «настроить» расположение функционально важных остатков в активном центре рецепторов [20, 21].

Эти технологии использовали для моделирования пространственной организации ряда рецепторов из крупного семейства, действующего через активацию G-белка -- внутриклеточного мессенджера, запускающего биохимические каскады внутри клетки. Среди таких белков -- рецепторы нейрогормонов мелатонина [22, 23] и вазоактивного интестинального пептида [24] (см. рис. 6), играющих важную роль в иммунитете и адаптационных процессах (в том числе -- циркадных ритмах).

Рисунок 6. Молекулярная структура трансмембранного домена рецептора вазоактивного интестинального пептида (ВИП).

Каждая из семи ТМ-б-спиралей окрашена в свой цвет; функционально важные аминокислотные остатки подписаны. Справа показан крупный план, отмеченный слева оранжевой стрелкой [24].

Модели упомянутых рецепторов, обозначаемых также аббревиатурой GPCR (от англ. G-protein coupled receptors), несут в себе большой практический потенциал -- ведь с их помощью в научных лабораториях и исследовательских подразделениях фармацевтических гигантов занимаются дизайном новых лекарственных форм, которые через десятилетие придут на смену сегодняшним лекарствам. Новое поколение лекарств упрочнит сильные стороны препаратов сегодняшнего дня и сведёт к минимуму их многочисленные недостатки (такие как токсичность, малая эффективность и избирательность действия, чрезмерная зависимость от фенотипа больного и другие). Кроме того, лекарства будущего будут нацелены на «новые» биохимические пути, пока никак не задействованные в фармакологии, чтобы дать врачам средства более тонкой и направленной регуляции жизненных процессов для сохранения пациентам жизни и возвращения здоровья.

Компьютерные эксперименты будущего

Несмотря на огромный объём проделанной работы, сегодня in silico-эксперимент делает лишь первые шаги, уже став, однако, существенным подспорьем для «обычного» эксперимента, позволяя формулировать новые гипотезы и выявлять возможные механизмы молекулярных процессов, протекающих внутри живой клетки. Что ждёт эту область в будущем, предсказать под силу, наверное, только фантастам, однако точно сказать можно одно -- имитация жизненных процессов на уровне молекул, выполняемая на электронных (а в будущем -- кто знает -- квантовых?) вычислительных машинах прочно заняла своё место в науках о жизни, гармонично дополняя лабораторные эксперименты. Аналогичным образом около ста лет назад ставшие сегодня рутиной in vitro-опыты «подвинули» исследования на подопытных животных, -- так что новый виток в развитии науки начинается уже сегодня.

ЛИТЕРАТУРА

Чиркова Т.В. Клеточные мембраны и устойчивость растений к стрессовым воздействиям // Соросовский Образовательный Журнал. 1997. № 9. С. 12--17.

Чизмаджев Ю.А. Мембранная биология: От липидных бислоев до молекулярных машин // Там же. 2000. Т. 6, № 8. С. 12--17.

Лось Д.А. Десатуразы жирных кислот: Адаптивная экспрессия и принципы регуляции // Физиология растений. 1997. Т. 44. С. 528--540.

Wood J.M. Osmosensing by bacteria: Signals and membrane-based sensors // Microbiol. Mol. Biol. Rev. 1999. Vol. 63. Р. 230--262.

Heide T. van der, Poolman B. Osmoregulated ABC-transport System of Lactococcus lactis Senses Water Stress Via Changes in the Physical State of the Membrane // Proc. Nat. Acad. Sci. USA. 2000. Vol. 97. P. 7102--7106.

Suzuki I., Los D.A., Kanesaki Y., Mikami K., Murata N. The Pathway for Perception and Transduction of Low-temperature Signals in Synechocystis // EMBO J. 2000. Vol. 19. P. 1327--1334.

Vigh L., Maresca B., Harwood J.L. Does the Membrane's Physical State Control the Expression of Heat Shock and Other Genes? // Trends Biochem. Sci. 1998. Vol. 23. P. 369--374.

Размещено на Allbest.ru


Подобные документы

  • Структура и состав молекулы фосфолипида. Разнообразие липидов элементарных мембран, особенности их химического состава. Образование фосфолипидного бислоя. Характерные черты, свойства и строение плазмалеммы. Изучение ее избирательной проницаемости.

    презентация [335,8 K], добавлен 10.02.2015

  • Характеристика процессов адаптации человека к условиям окружающей среды. Исследование основных механизмов адаптации. Изучение общих мер повышения устойчивости организма. Законы и закономерности гигиены. Описания принципов гигиенического нормирования.

    презентация [8,5 M], добавлен 11.03.2014

  • Образование и встраивание мембранных белков. Сигнальные последовательности белков. Белки, необходимые для распознавания сигналов переноса. Синтез и транспорт липидов у прокариот и эукариот. Изменение в липидном составе под действием окружающей среды.

    курсовая работа [1,2 M], добавлен 10.02.2011

  • Процесс образования мембран. Особенности экзоцитозного пути. Характерные особенности биосинтеза мембранных белков. Сигналы для сортировки белков в эукариотических клетках. Изменения липидного состава мембран в ответ на изменения условий окружающей среды.

    реферат [3,6 M], добавлен 03.08.2009

  • Виды биологических мембран и их функции. Мембранные белки. Виды и функции мембранных белков. Структура биологических мембран. Искусственные мембраны. Липосомы. Методы исследования структуры мембран. Физическое состояние и фазовые переходы в мембранах.

    презентация [9,0 M], добавлен 21.05.2012

  • Назначение и характеристика функции мембран как невидимых пленок, окружающих клетки живых организмов. Изучение строения и анализ химического состава биологических мембран. Описание систем трансмембранного переноса веществ и мембранной передачи сигналов.

    реферат [110,5 K], добавлен 10.12.2015

  • Строение мембран. Мембраны эритроцитов. Миелиновые мембраны. Мембраны хлоропластов. Внутренняя (цитоплазматическая) мембрана бактерий. Мембрана вирусов. Функции мембран. Транспорт через мембраны. Пассивный транспорт. Активный транспорт. Ca2+ –насос.

    реферат [18,2 K], добавлен 22.03.2002

  • Понятие и строение биологической мембраны, принципы ее жизнедеятельности. Функциональные особенности липидов в ее деятельности и развитии, механизмы. Гипотеза возникновения плазматических мембран, оценка биологической роли и значения в них белков.

    реферат [18,8 K], добавлен 03.06.2014

  • Функции биологических мембран и их компонентов. Спектроскопические методы измерения скорости вращения липидов и белков внутри мембраны и скорости латеральной диффузии этих компонентов в плоскости мембраны. Использование спиновых или флуоресцентных зондов.

    реферат [1,6 M], добавлен 01.08.2009

  • Структура биологических мембран и строение их основы - билипидного слоя. Молекулярная масса мембранных белков, их различие по прочности связывания с мембраной. Динамические свойства биологических мембран и значение организации для биологических систем.

    реферат [19,1 K], добавлен 20.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.