Вирусы. Особенности онтогенеза и цикла воспроизведения ДНК и РНК-содержащих вирусов

Вирусы, их химический состав, классификация, особенности строения и жизнедеятельности. Стадии репродукции вирусов, их переносчики. Типы взаимодействия вируса с клеткой. Основные положения, сформулированные Р.Кохом для обнаружении неизвестного возбудителя.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 18.10.2011
Размер файла 99,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

вятский государственный гумАнитарный университет

Вирусы.

Особенности онтогенеза и цикла воспроизведения ДНК и РНК-содержащих вирусов.

Филимоновой Екатерины гр. Б - 21

Киров - 2008

Вирусы, особенности их строения и жизнедеятельности

Краткая характеристика

1. Классификация: империя предклеточные (доклеточные, или неклеточные), царство Вирусы

2. Число видов: 800

3.Отличие вирусов от клетки:

а) не имеют клеточного строения

б) не размножаются делением

в) никогда не размножаются вне клетки хозяина, т.е. являются внутриклеточными паразитами

г) в их состав обязательно входит одна из нуклеиновых кислот (ДНК или РНК)

4. Строение: вирусные частицы (вирионы): генетический материал (ДНК или РНК), покрытый капсидом из капсомеров

5. Значение: вирусы наносят огромный вред, вызывая болезни растений (табачная мозаика, мозаика огурцов, желтуха свеклы, бронзовость томатов и др.). Животных и человека поражают около 300 форм вирусов. Такие болезни человека, как грипп, корь, полиомиелит вызываются вирусами. Некоторые вирусы, обитающие в кишечнике человека и животных полезны, т.к. поражают бактерии, вызывающие дизентерию. Их применяют для лечения брюшного тифа, холеры. Вирусные заболевания могут быть очень опасны, однако если организм обладает хорошим иммунитетом, то он способен бороться с вирусом, начиная с момента проникновения его через клеточную мембрану (плазмалемму) или путем защитной реакции (образование белка интерферона, который препятствует размножению вируса)

6.Наука о вирусах - вирусология

В переводе с латинского языка на русский "вирус" означает яд. Открыты вирусы в 1892 г. русским ученым Д.И. Ивановским, который в настоящее время является основоположником вирусологии - науки о вирусах. Он сделал это открытие на объекте "вирус табачной мозаики". Вирусы мельче большинства известных микробов, почти все они проходят через бактериальные фильтры. В отличие от бактерий, их не удается культивировать на обычных питательных средах. Для экспериментальных и медицинских целей (получение вакцин и др.) вирусы культивируют в животных и растительных организмах, куриных эмбрионах и в культурах тканей и клеток. Вирус состоит из генетического материала - молекулы ДНК или РНК, который входит в состав вирионов (вирусных частиц), покрытых белковой оболочкой - капсидом.

В состав капсида входят 2 типа белков: нейроминидазы (блокируют защитные свойства клеточных мембран) и гемагглютинины (обеспечивают прикрепление вируса к клеточной мембране). У некоторых встречается липопротеидная мембрана и аппарат прикрепления. Форма вирионов очень разнообразна. У многих бактериофагов (вирусов, поражающих бактерии; открыты Ф. Туортом в 1915г.) они состоят из головки и отростка, у вируса оспы они прямоугольные, у вирусов герпеса и гриппа - шарообразные, у вируса мозаичной болезни табака - палочкообразные, у вируса мозаичной болезни картофеля - нитевидные, у вирусов полиомиелита и желтой мозаики турнепса - многогранные шарики и т.д. По размерам вирусы делят на крупные (300-400 нм в диаметре), средние (80-125 нм) и мелкие (20-30 нм). Крупные вирусы можно видеть в световой микроскоп, остальные изучают только с помощью электронного микроскопа. Данные о размерах частиц вируса получены методами ультрафильтрации, ультрацентрифугирования, электрофореза в гелях и электронной микроскопии (табл.)

Размеры некоторых вирусов

Объект исследования

Масса (106 ат. м. водорода)

Диаметр или длина, умноженная на ширину (нм)

Эритроцит

173000000

7500

Кишечная палочка

180000

(1000-3000)*500

Вирус вакцины

2300

262*209

Вирус герпеса

1400

213*175

Вирус гриппа

700

103*90

Вирус бактерии Т2

120

80*60 (головка), 100*20 (хвост)

Вирус мозаичной болезни табака

39,2

300*15

Вирус Х картофеля

39,0

(500-580)*10

Вирус полиомиелита

6,7

28

Вирус желтой мозаики турнепса

5,1

28

Вирус ящура

5,1

28

Белок гемоцианин

6,7

59*13,2

Белок гемоглобина лошади

0,069

2,8*0,6

Белок куриного яйца

0,040

1,8*0,6

В строении самых разных вирионов есть много общего. Все они имеют капсид и внутреннее содержимое - нуклеокапсид, состоящее из нуклеиновой кислоты (НК) - ДНК или РНК. Многие вирусы имеют поверхностную оболочку, покрывающую белковую. Отдельные элементы белковой оболочки называются капсомерами. У некоторых вирусов НК в виде спирали включена в белковую оболочку, без разрушения которой не может быть освобождена. У др. вирусов спирально закрученная нить НК лежит в капсиде, как в коробочке, и может выйти оттуда без разрушения оболочки. НК - носитель наследственной информации о строении и свойствах вируса; белки вируса защищают НК, а также обусловливают ферментативные и антигенные свойства вируса. Строение вирусных частиц, приспособленных к перенесению неблагоприятных условий, может быть и более сложным; таковы, например, полиэдры, образуемые некоторыми вирусами насекомых (они состоят из оболочки, кристаллической белковой массы и включенных в нее частиц вируса).

Химический состав разных вирусов неодинаков. Одни вирусы содержат липиды; среди них есть вирусы с ДНК и с РНК. У др. вирусов липиды отсутствуют. В этой группе также есть вирусы с ДНК или РНК. Кроме липидов, белка и нуклеиновой кислоты, в вирусах встречаются в небольшом количестве полиамины (путресцин, спермидин и др.), иногда витамины (витамин В2, фолиевая кислота), а также ряд металлов; в некоторых вирусах содержатся соединения белка с полисахаридами. Ниже приведена схема ДНК- и РНК-содержащих вирусов, но хочу напомнить, что РНК вирусов называется генетической и способна к самоудвоению. А еще ниже вы видите бактериофаг Т2.

Бактериофаг *174

Аденовирусы Т-четные бактериофаги Вирус оспы Вирус герпеса и др.

Энтеровирусы Вирусы гриппа и бешенства Вирусы растений

Ретровирусы ВИЧ

1 - головка, 2 - ДНК, 3 - сердцевина, 4 - хвост, 5 - базальная пластинка, 6 - нити

Размножение вирусов происходит в клетках. Бактериофаги растворяют оболочку бактерии и вводят в бактерию нить НК, причем капсид фага остается вне клетки (см. рис. ниже)

1 - сократившийся хвост, 2 - сердцевина, 3 - бактериальная клетка, 4 - ДНК

Многие вирусы поглощаются клеткой путем пиноцитоза. Попав в клетку, они освобождаются от оболочки. Первые этапы развития вирусов в клетке в общих чертах состоят в том, что строятся ранние белки, т.е. белки-ферменты, необходимые для репликации (удвоения) вирусной НК. Поздние белки участвуют в образовании оболочек дочерних вирионов. Из ферментов у вирусов, содержащих ДНК, одним из первых синтезируется полимераза РНК, которая строит на нити ДНК информационную РНК (и-РНК). Эта и-РНК попадает на рибосомы клетки, где и происходит синтез др. белков вирусной частицы. Вирусы, содержащие РНК, синтезируют полимеразу, катализирующую синтез новых частиц вирусной РНК; эта РНК переходит на рибосомы и контролирует синтез белка капсида.

Т.о., вирусы, содержащие РНК, не нуждаются в ДНК для размножения и передачи наследственной информации потомству. От такой схемы размножения вирусов имеются отклонения. Так, некоторые вирусы содержат белки-ферменты; вирус осповакцины синтезирует в клетке хозяина двойные нити РНК и т.д. Многие особенности размножения вирусов еще не выяснены. Существуют, например, особые очаги размножения нитей НК, и при созревании частиц вируса синтезируется белок, охватывающий отдельные отрезки НК. Иногда этот процесс идет несовершенно, образуются неполноценные вирионы, в которых нет или мало содержимого, это - т.н. неинфекционные вирусы. Во многих случаях очаги размножения вирусов хорошо видны в клетке под микроскопом. Эти очаги называются внутриклеточными включениями, или Х-телами. Когда Х-тело заканчивает свое развитие, в нем образуется вироспора (вирион). У многих вирусов вирионы образуют в Х-телах кристаллические агрегаты, у др. вирусов они не известны. Некоторые вирусы размножаются в ядре клетки, др. - в ее цитоплазме, третьи - и в ядре, и в цитоплазме. НК находится в вирионе в спирально закрученном состоянии. Длина нити НК у разных вирусов различна. Так, у вируса оспы она достигает 83 мкм, у крупных бактериофагов, например, Т4, - 70 мкм. У мельчайших бактериофагов нить НК имеет длину около 2 мкм. В зависимости от длины нити НК (что определяет объем наследственной информации вируса), т.е. от способности синтезировать более или менее разнообразные молекулы белков, различна степень участия различных частей клетки-хозяина в размножении вируса и их построении.

Вирусы, имеющие длинную нить НК, могут синтезировать многие вещества. Так, некоторые бактериофаги синтезируют в клетке несколько десятков разных белков. Все вирусы, содержащие ДНК, синтезируют собственную РНК. Даже если клетка-хозяин имеет необходимые для вируса ферменты, вирусы очень часто синтезируют собственные ферменты, обладающие подобным действием. Мельчайшие фаги обладают информацией для синтеза только трех собственных белков; например, фаг МЗ-2 синтезирует зависящую от РНК полимеразу и два белка, необходимые для построения вирионов.

Таким образом, степень зависимости вируса от различных ферментов клетки-хозяина различна. Некоторые вирусы так бедны генетической информацией, что могут размножаться в клетке только в присутствии др. вируса. Зависимость вируса не только от клетки, но и от др. вирусов существует, например, между вирусом некроза табака и его спутником, вирионы которого мельче вирионов некроза табака. Еще более тесные взаимоотношения существуют между некоторыми вирусами, поражающими животных и человека. Среди вирусов, способных вызывать злокачественные опухоли, известны вирусы с дефектной частицей, которая не может образовывать собственную белковую оболочку. Эти вирусы достигают зрелого состояния, только если они размножаются в присутствии др. вирусов (таковы отношения, например, между опухолеродным обезьяньим вирусом S-40 и некоторыми аденовирусами). НК опухолеродного вируса в этом случае включается в капсид аденовируса и вместе с ним попадает в чувствительную клетку. Выход вируса из клетки совершается в одних случаях только при разрушении клетки, в др. - вирионы покидают клетку, не убивая ее. Если в клетку попадают вирусы, различающиеся по тем же или др. генам (различие может быть результатом мутации), то в потомстве можно наблюдать вирусы, соединяющие свойства двух и более исходных форм. Это указывает на наличие перекомбинации признаков таких форм при размножении вируса в одной клетке. Закономерности этих процессов изучает генетика вирусов. В конце рассказа о размножении вирусов хочу привести схему репродукции (размножения) большинства вирусов.

Стадии репродукции вирусов

1. Адсорбция - процесс прикрепления вирусных частиц к поверхности клетки.

2. Инъекция - проникновение вирусной частицы в клетку и высвобождение вирусной НК из белкового капсида (у бактериофагов - введение в клетку НК).

3. Репликация молекул вирусной НК - происходит за счет нуклеотидов в клетке.

4. Синтез вирусных белков (белков капсида и ферментов) - происходит на рибосомах клетки.

5. Сборка вирусных частиц - осуществляется из синтезированных пораженной клеткой вирусных НК и вирусных белков.

6. Выход вирусных частиц из пораженной клетки. У бактерий часто сопровождается лизисом (разрушением) клетки, у эукариот происходит путем выпячивания оболочки клетки и "выталкивания" вирусных частиц в окружающую среду. В целом есть 3 способа: а)литический (все вирусы выходят во внешнюю среду, клетка погибает), б)персистентный (постепенный выход), в)латентный (в течение некоторого времени клетки не обнаруживают вирус).

Устойчивость вирионов к внешним воздействиям различна, но по большей части велика. Некоторые вирусы инактивируются только при нагревании до 90 градусов (вирус табачной мозаики), легко переносят очень низкие температуры (-70 градусов и ниже), а также высушивание. Способы распространения вирусов в природе различны: многие из них могут непосредственно заражать чувствительный организм (вирус гриппа, оспы, бактериофаги), иные циркулируют в природе более сложным образом и переносятся с помощью др. организмов. Например, вирус некроза табака передается при помощи обитающего в почве грибка (Olpidium): последний, проникая в корни растения, вносит и вирус. Многие вирусы передаются паразитирующими на растениях нематодами.

Вирусы животных человека и растений переносят клещи и насекомые. Передача одних вирусов сосущими членистоногими носит механический характер, в др. случаях вирусы проделывают часть своего развития в переносчике и даже могут передаваться с яйцами переносчика из поколения в поколение. Многие вирусы, поражающие человека и животных, обитают и в диких животных; поражающие культурные растения - в диких растениях и сорняках. Попытки обнаружить жизнедеятельность вирионов вне клетки, естественно не увенчались успехом: известно, что покоящиеся формы жизни вообще не обнаруживают жизнедеятельности.

В бесклеточных системах можно воспроизвести отдельные этапы размножения вирусов, получить саморепродукцию вирусной НК, а также под контролем этой НК - синтез белков, характерных для вируса. Но эти процессы идут только в присутствии извлеченных из клетки рибосом; следовательно, эти системы, хотя и являются бесклеточными, не могут рассматриваться как вполне искусственно синтезируемые. О происхождении вирусов имеются различные предположения. Некоторые считают, что вирусы могут спонтанно зарождаться в организме хозяина под влиянием неблагоприятных условий. Но это мнение опровергается следами длительной эволюции вирусов, а также отсутствием переходных форм между вирусами и органоидами клетки. Др. исследователи думают, что вирусы - это потомки простейших форм жизни, однако и это предположение маловероятно, т.к. выраженный паразитический характер вирусов предполагает существование более сложно организованных форм, и простота вирусов вторична, она - результат приспособления к паразитическому образу жизни. Такая вторичная простота, связанная с утратой приспособленности к самостоятельному питанию и усилением способности к размножению, вообще очень характерна для паразитов. В пользу древности вирусов и их длительной эволюции говорит также то, что они вступают в сложные взаимоотношения с др. видами животных и растений (трансмиссивные вирусы, передаваемые различными животными).

Систематика вирусов

Общепринятой классификации и обозначения вирусов еще нет. Им дают, как и др. животным и растениям, родовые и видовые названия, пользуются различными сокращениями или ставят родовое название организма, поражаемого вирусом, и номер (например, Nicotiana virus 1 - вирус табачной мозаики). Поэтому каждый вирус может иметь несколько названий. Первую попытку систематики вирусов сделал чешский ученый Г. Провачек (1907 г.); он отнес вирусы к животным, к группе Chamidozoa. К середине XX в. сложилось 3 главных направления в систематике вирусов. Сторонники одного в основу системы вирусов кладут свойства вирионов, при этом учитывают присутствие ДНК или РНК, симметрию нуклеокапсида, наличие или отсутствие пеплоса (особой оболочки капсида), диаметр капсида, число граней и капсомеров. Представители второго направления (нумерическая система), учитывая по возможности все признаки, объединяют те вирусы, у которых больше общих признаков. Сторонники третьего направления, сохраняя принципы классической систематики, объединяют вирусы в группы на основе существенных признаков, характеризующих их родство (химической близости, сходства морфологических стадий развития и способов циркуляции в природе). Международный комитет по номенклатуре вирусов предлагает пользоваться бинарной номенклатурой, добавляя к родовому названию слово "вирус" (например, род вируса оспы - Poxvirus). Многие общепринятые названия сохраняют, хотя они и не соответствуют бинарной номенклатуре. Сторонники нумерической системы предлагают пользоваться криптограммами, которые в условных обозначениях расшифровывают важнейшие свойства вирусов.

Например, вирус табачной мозаики обозначают так: R/1, 2/5, E/E, S/0. Первый член показывает, что этот вирус содержит РНК (R) и она в нем однониточная (1); второй член - молекулярную массу РНК в миллионах и % РНК в частице; третий - что форма этой частицы удлиненная с параллельными концами и концы не закруглены (Е), а также что подобную форму имеет и нуклеокапсид (Е); последний член указывает, что вирус поражает высшие растения (S) и распространяется без переносчика (0). Ниже приведена таблица болезней, опасных для человека.

Болезни, вызываемые вирусами

Болезни, вызываемые бактериями

Бешенство Ветряная оспа Гепатит Грипп Корь Краснуха Некоторые злокачественные (раковые) опухоли (ретро- и аденовирусные) Оспа Острые респираторные заболевания (аденовирусные) Паротит (свинка) Полиомиелит Спид Энцефалит Ящур

Брюшной тиф Бутулизм Газовая гангрена Дизентерия Дифтерия Коклюш Пневмония Сибирская язва Столбняк Туберкулез Туляремия Холера Чума

Типы взаимодействия с клеткой

Существуют два основных типа взаимодействия вируса и клетки, принципиальное различие между которыми - степень автономии вируса от своего "хозяина". Несмотря на то, что любой вирус полностью зависит от энергетического хозяйства клетки, от ее белоксинтезирующего аппарата и других систем, многие вирусы ведут себя в клетке довольно самостоятельно. Самостоятельность проявляется в том, что вирусные нуклеиновые кислоты реплицируются, не подчиняясь клеточному расписанию, а вирусные белки синтезируются хотя и на клеточном "оборудовании", но по собственному расписанию. Такой путь взаимодействия вируса с клеткой называют продуктивным (разумеется, с точки зрения вируса), и он встречается как у РНК-содержащих, так и ДНК-содержащих вирусов. Продуктивное размножение вируса может заканчиваться гибелью клетки. Но некоторые вирусы ведут себя более расчетливо. Они не убивают клетку, обеспечивающую им "хлеб и кров", а находят способ для относительно мирного с ней сосуществования. Развивается хронический инфекционный процесс, при котором и волки (вирусы) сыты и овцы (клетки) целы, хотя и не вполне здоровы. Но есть вирусы-"соглашатели", которые более склонны подчиняться клеточному контролю. Их так и называют умеренными.

Геном этих вирусов включается в состав клеточной хромосомы, при этом вирусная ДНК ковалентно соединяется с клеточной. Вирусные гены как бы превращаются в клеточные. Похоже на троянского коня: вирусный геном обманом проникает в святая святых клетки. Далее события могут развиваться по-разному. В одних случаях вирусный геном, как опытный подпольщик, почти не проявляет активности. Клетки и их хромосомы делятся, а вместе с хромосомами в каждую дочернюю клетку попадают и затаившиеся вирусные гены. Но при определенных обстоятельствах вирус выходит из подполья, его гены начинают активно работать, из разрушающейся клетки выходит молодое поколение вирусных частиц и начинает поиск новых жертв. В самых общих чертах таково поведение, например, фага лямбда. В других случаях вирусные гены в зараженной клетке постоянно работают, производя новые и новые поколения вирионов, но клетка при этом не погибает. Приведем пример. Ретровирусы - умеренные РНК-содержащие вирусы. Казалось бы, в такой формулировке есть внутреннее противоречие. Ведь вирусный геном может включаться в клеточную хромосому только в форме ДНК. Но мы уже знаем, что ревертаза превращает РНК этих вирусов в форму ДНК, которая и встраивается в клеточную хромосому.

Вирусные гены-иммигранты приобретают все "гражданские права" клеточных генов, и в частности активно транскрибируются клеточной ДНК-зависимой РНК-полимеразой. Образующаяся мРНК обеспечивает синтез вирусных белков, которые затем формируют вирионы, включающие вирусный РНК-геном и ревертазу. Вирусная "молодежь" покидает клетку, не убивая ее. Возникает особая форма хронической инфекции, при которой работающий вирусный геном, включенный в состав клеточной хромосомы, передается дочерним клеткам. Другое дело, что такое сосуществование не обходится бесследно для клетки. Свойства ее могут драматически меняться под влиянием хозяйничающих в ней вирусных белков. В некоторых случаях зараженная клетка становится раковой.

Вирусы и клетки

Согласно Львову, "организм - некая независимая единица интегрированных и взаимосвязанных структур и функций". У простейших, то есть у одноклеточных именно клетка является независимой единицей, иными словами, организмом. И клеточные организмы - митохондрии, хромосомы и хлоропласты - это не организмы, ибо они не являются независимыми. Получается, что если следовать определению, данным Львовым, вирусы не являются организмами, так как не обладают независимостью: для выращивания и репликации генетического материала нужна живая клетка. В то же время, у многоклеточных видов независимо от того, животные или растения, отдельные линии клеток не могут эволюционировать независимо друг от друга; следовательно, их клетки не являются организмами.

Для того чтобы изменение было эволюционно значимым, оно должно быть передано новому поколению индивидуумов. В соответствии с этим рассуждением организм представляет собой элементарную единицу некоторого непрерывного ряда со своей индивидуальной эволюционной историей Вирус обретает относительно независимую эволюционную историю благодаря его способности к адаптации в направлении, ведущим к приобретению им способности передаваться от хозяина к хозяину. Он может пережить клетку или организм, в которых паразитирует; фактически вирус часто "эксплуатирует" клетку. Один вирус может встречаться в разных видах, родах и типах и также один и тот же вирус может передаваться от растений насекомым и размножаться в клетках тех и других. Вирус, обладающий соответствующей приспособляемостью, может использовать разнообразные эволюционные ниши. Таким образом, вирус, конечно, обладает большей независимостью, чем любая клеточная органелла.

То есть, в эволюционном плане вирус в большей степени организм, чем хромосома или даже клетка многоклеточного животного, хотя функционально он значительно менее независим, чем любая такая клетка. И в то же время, можно рассматривать данную проблему с точки зрения другого определения: материал является живым если, будучи изолированным, он сохраняет свою специфическую конфигурацию так, что эта конфигурация может быть реинтегрирована, то есть вновь включена в цикл, в котором участвует генетическое вещество: это отождествляет жизнь с наличием независимого специфического самореплицирующегося способа организации.

Специфическая последовательность оснований нуклеиновой кислоты того или иного гена может копироваться; ген - это некая часть запасов информации, которой располагает живой организм. В качестве теста на живое данное выше определение предлагает воспроизведение в различных клеточных линиях и в ряде поколей организмов. Вирус, согласно этому тесту, живой точно так же, как и любой другой фрагмент генетического материала, что его можно извлечь из клетки, вновь ввести в живую клетку и что при этом он будет копироваться в ней и станет хотя бы на некоторое время часть ее наследственного аппарата. При этом передача вирусного генома составляет основной смысл существования этих форм - результат их специализации в процессе отбора. Поэтому специализированность вирусов как переносчиков нуклеиновых кислот дает возможность считать вирусы "более живыми", чем какие либо фрагменты генетического материала, и "более организмами", чем любые клеточные органеллы, включая хромосомы и гены.

Строгие постулаты Коха

Каковы же те основные положения, сформулированные Робертом Кохом (1843-1910), которых должен придерживаться микробиолог при каждом обнаружении неизвестного возбудителя? Что может служить доказательством, что именно он является причиной данного инфекционного заболевания? Вот эти три критерия: Неоднократное получение чистой культуры возбудителя, взятого из организма больного. Возникновение точно такого же или сходного заболевания (как по характеру течения, так и по вызываемым им патологическим изменениям) при инфицировании здорового организма культурой предполагаемого возбудителя. Появление в организме человека или животного после их заражения данным возбудителем всегда одних и тех же специфических защитных веществ. При контакте иммунной сыворотки крови с возбудителем из культуры последний должен терять свои патогенные свойства. Для современной вирусологии характерно бурное развитие и широкое применение самых различных методик - как биологических (включая генетические), так и физико-химических.. Они используются при установлении новых, до сих пор еще неизвестных вирусов, и при изучении биологических свойств и строения уже обнаруженных видов. Фундаментальные теоретические исследования дают обычно важные сведения, которые используются в медицине, в области диагностики или при глубоком анализе процессов вирусной инфекции. Введение новых действенных методов вирусологии связано, как правило, с выдающимися открытиями.

Так например, метод выращивания вирусов в развивающемся курином эмбрионе, впервые примененный А.М. Вудрофом и Е.Дж. Гудпэсчуром в 1931 году, был с исключительным успехом использован при изучении вируса гриппа. Прогресс физико-химических методов, в частности метода центрифугирования, привел в 1935 году к возможности кристалмутации вируса табачной мозаики (ВТМ) из сока больных растений, а в последствии и к установлению входящих в его состав белков. Этим был дан первый толчок к изучению строения и биохимии вирусов. В 1939 году А. В. Арден и Г. Руска впервые применили для изучения вирусов электронный микроскоп. Введение этого аппарата в практику означало исторический перелом в вирусологических исследованиях, поскольку появилась возможность увидеть - хотя в те годы еще и недостаточно четко - отдельные частицы вируса, вирионы. В 1941 году Г.Херст установил, что вирус гриппа при известных условиях вызывает агглютинацию (склеивание и выпадение в осадок) красных кровяных телец (эритроцитов). Этим была положена основа для изучения взаимоотношений между поверхностными структурами вируса и эритроцитов, а также для разработки одного из наиболее эффективных методов диагностики. Коренной перелом и вирусологических исследованиях произошел в 1949 г., когда Дж. Эндерсу, Т. Уэллеру и Ф. Роббинсу удалось размножить вирус полиомиелита в клетках кожи и мышц человеческого зародыша. Они добились разрастания кусочков ткани на искусственной питательной среде. Клеточные (тканевые) культуры были инфицированы вирусом полиомиелита, который до этого изучали исключительно на обезьянах и лишь очень редко на особом виде крыс. Вирус в человеческих клетках, выращенных вне материнского организма, хорошо размножался и вызывал характерные патологические изменения.

Метод культуры клеток (длительное сохранение и выращивание в искусственных питательных средах клеток, выделенных из организма человека и животных) был впоследствии усовершенствован и упрощен многими исследователями и стал, наконец, одним из наиболее важных и результативных для культивирования вирусов. Благодаря этому более доступному и дешевому методу появилась возможность получать вирусы в относительно чистом виде, чего нельзя было достичь в суспензиях из органов погибших животных. Введение нового метода означало несомненный прогресс не только в диагностике вирусных заболеваний, но и в получении прививочных вакцин. Он дал также неплохие результаты и в биологических и биохимических исследованиях вирусов.

В 1956 году удалось показать, что носителем инфекционности вируса является содержащаяся в нем нуклеиновая кислота. А в 1957 году А.Айзекс и Дж. Линдеман открыли интерферон, который позволил объяснить многие биологические явления, наблюдаемые в отношениях между вирусом и клеткой - хозяином или организмом - хозяином. С. Бреннер и Д. Хорн ввели в технику электронной микроскопии метод негативного контрастного окрашивания, сделавший возможным изучение тонкого строения вирусов, в частности их структурных элементов (субъединиц). В 1964 году уже упоминавшийся нами ранее американский вирусолог Гайдузек с сотрудниками доказал инфекционный характер ряда хронических заболеваний центральной нервной системы человека и животных. Он изучал недавно обнаруженные своеобразные вирусы, лишь в некоторых чертах схожие с ранее известными. В то же время американский генетик Барух Бламберг обнаруживает (в процессе генетических исследований белков крови) антиген сывороточного гепатита (австралийский антиген), вещество, идентифицируемое при помощи серологических тестов. Этому антигену суждено было сыграть большую роль в вирусологических исследованиях гепатита. В последние годы одним из крупнейших успехов вирусологии можно считать раскрытие некоторых молекулярно-биологических механизмов превращения нормальных клеток в опухолевые. Не меньшие успехи были достигнуты и в области изучения строения вирусов и их генетики.

Инфекционная единица

Наименьшее количество вируса, способное в данном опыте вызвать инфекцию, называется инфекционной единицей. Для ее определения применяются обычно два метода. Первый основан на определении 50 %-ной летальной дозы, которая обозначается LD 50 (от лат. Letatis - смертельная, dosis - доза). Второй метод устанавливает число инфекционных единиц по числу бляшек, образовавшихся в культуре клеток. Что, в сущности, представляет собой величина LD 50 и как она определяется? Исследуемый вирусный материал разводится в соответствии со снижающимися степенями концентрации, скажем кратными десяти: 1:10; 1:100; 1:1000 и т.д. Каждым из растворов с указанными концентрациями вируса инфицируют группу животных (десять индивидуумов) или культуру клеток в пробирках. Потом наблюдают гибель животных или изменения, происшедшие в культуре под влиянием вируса. Статистическим методом определяется степень концентрации, способная умертвить 50 % животных из числа зараженных исходным материалом. При использовании культуры клеток следует найти такую дозу вируса, которая производит губительное действие на 50 % инфицированных ею культур. В этом случае употребляется сокращение ЦПД 50 (цитопатическая доза). Иначе говоря, речь идет о такой дозе вируса, которая вызывает повреждение или гибель половины инфицированных ею культур. Методом бляшек нельзя получить статистические данные, но можно установить фактическое число единиц вируса в материале, дающем бляшки в культуре клеток. В идеальном случае такая единица отвечает одной функционально полноценной частице.

Титрование

Индуцируемая вирусом реакция может происходить по типу "все или ничего" (то есть наличие или отсутствие инфекции), а может быть выражена количественно, например продолжительностью времени, необходимого проявления инфекции, или числом поражений в слое чувствительных клеток. Количественное определение вирусной активности называется титрованием. Титр исходной вирусной суспензии выражается числом инфекционных единиц, приходящихся на единицу объема. Инфекционные нуклеиновые кислоты, независимо от того выделены ли они из фагов или из вирусов животных или растений, как правило, обладают значительно меньшим инфекционным титром, чем исходный вирус (то есть отношение числа содержащихся в препарате молекул нуклеиновой кислоты к числу инфекционных единиц значительно больше, чем соответствующие величины для вирионов, из которых эти нуклеиновые кислоты были выделены). Однако и при титровании свободной нуклеиновой кислоты и при титровании вирионов вероятность нахождения в пробе среднего числа частиц выражается одной формулой. Отсюда следует, что вирусную инфекцию может вызвать также и одна молекула вирусной нуклеиновой кислоты. Как правило, инфекционными являются только интактные вирусные ДНК и РНК. Исключение наблюдается при множественном заражении клеток молекулами нуклеиновой кислоты, содержащими неполным геном вируса. Резюмируя сказанное, можно прийти к выводу, что титр вирусной суспензии, выраженный числом инфекционных единиц, содержащихся в единице объема, как правило, соответствует числу вирионов (или числу молекул вирусной нуклеиновой кислоты), способных при условиях данного опыта вызвать инфекцию.

Общий химический состав вирусов

Непременным компонентом вирусной частицы является какая-либо одна из двух нуклеиновых кислот, белок и зольные элементы. Эти три компонента являются общими для всех без исключения вирусов, тогда как остальные двалипоиды и углеводы - входят в состав далеко не всех вирусов. Вирусы, состоящие только из белка нуклеиновой кислоты и зольных элементов, чаще всего принадлежат к группе простых, так называемых минимальных, вирусов, лишенных дифференциации, собственных ферментов или каких-либо специализированных структур. К такого рода вирусам принадлежат вирусы растений, некоторые вирусы животных и насекомых. В то же время практически все бактериофаги, которые по химическому составу, безусловно принадлежат к группе минимальных вирусов, на самом деле являются очень сложными и высокодифференцированными структурами. Вирусы, в состав которых наряду с белком и нуклеиновой кислотой входят также липоиды и углеводы, как правило, принадлежат к группе сложно устроенных вирусов. Большая часть вирусов этой группы паразитирует на животных.

Вирусная ДНК

Главной структурной особенностью большинства вирусных молекул ДНК, как и ДНК из других источников, является наличие двух спаренных антипараллельных цепей. ДНК-геном вирусов, однако, невелик и поэтому здесь возникают вопросы, касающиеся концов спирали и общей формы молекулы ДНК, а не монотонной, фактически не имеющей концов "средней" части спирали. Полученные ответы оказались весьма удивительными: молекулы вирусных ДНК могут быть линейными или кольцевыми, двухцепочечными или одноцепочечными по всей своей длине или же одно цепочечными только на концах. Кроме того, выяснилось, что большинство нуклеотидных последовательностей в вирусном геноме встречается лишь по одному разу, однако на концах могут находиться повторяющиеся, или избыточные участки. Из всех описанных до сих пор вирусных ДНК наиболее сложно организована ДНК вируса герпеса. Геном здесь, по-видимому, состоит из двух больших соединенных сегментов, каждый из которых имеет повторяющиеся концевые последовательности. Возможны четыре способа соединения двух таких сегментов конец в конец, и все они как будто бы встречаются в каждом препарате вирионов. Наибольший из известных вирусов - вирус осповакцины имеет геном размером 15-108 дальтон. ДНК, выделенная из свежего препарата вирионов, по-видимому, имеет поперечные сшивки, так как не разделяется по две цепи. Одна из возможных моделей такой молекулы - гигантская, не подверженная денатурации кольцевая структура, образующаяся при замыкании концов линейной двойной спирали. Помимо очень интересных различий в форме молекулы и в структуре концевых участков вирусных ДНК существуют также большие различия в величине генома. Среди наименьших "полных" вирусов (т.е. вирусов, способных размножаться в клетке-хозяине) можно назвать фаг ? X174, парвовирусы, паповирусы, вирусы полиомы и SV40. С другой стороны, у крупных бактериофагов и вирусов человека и животных (паприляр, герпеса и осповакцины) геном значительно больше - от 1 до 1,5.108 дальтон, так что он мог бы кодировать более 100 белков. Действительно, у бактериофага Т4 сейчас идентифицировано больше ста генов. В 1953 г. Уайетт и Коэн сделали неожиданное открытие, весьма существенное для последующих экспериментов: оказалось, что в ДНК Т-четных бактериофагов содержится не цитозин, а 5-гидроксиметилцитозин. Это отличие дало возможность изучать фаговые ДНК независимо от ДНК хозяина. Были открыты кодируемые фагом ферменты, которые изменяют метаболизм инфицированной клетки, и она начинает синтезировать компоненты, необходимые вирусу. Еще одно биохимическое отличие ДНК бактериофага состоит в том, что к ее гидроксиметилцитозину присоединены остатки глюкозы: последние, видимо, препятствуют прерыванию фаговой ДНК некоторыми ферментами хозяина. В противоположность этому у вирусов животных ДНК почти не подвергается модификациям. Например, хотя ДНК клеток-хозяев и содержит много метилированных оснований, у вирусов имеется в лучшем случае лишь несколько метильных групп на геном. Большинство вирусных дезоксинуклеотидов не модифицированы, и поэтому нахождение несомненных модификаций представляло бы большой интерес. ВИРУСНАЯ РНК

Исследования вирусной РНК составили один из самых значительных вкладов вирусологии в молекулярную биологию. Тот факт, что у вирусов растений реплицируемая генетическая система состоит только из РНК, ясно показал, что и РНК способна сохранять генетическую информацию. Была установлена инфекционность РНК вируса табачной мозаики, и выяснилось, что для инфекции необходима вся ее молекула; это означало, что интактность структуры высокомолекулярной РНК существенно для ее активности. Не менее важным результатом ранних исследований на том же вирусе явилась разработка методом выделения высокомолекулярной РНК и изучения ее свойств. Эти методы послужили в дальнейшем основой для изучения различных типов РНК, встречающихся у других вирусов. Размеры вирионов РНК - вирусов сильно варьируют - от 7.106 дальтон у пикорнавирусов до >2.108 дальтон у ретровирусов; однако размеры РНК и, следовательно, объем содержащейся в ней информации различаются в значительно меньшей степени. РНК пикорнавирусов - вероятно, наименьшая из известных - содержит около 7500 нуклеотидов, а РНК парамиксовирусов - едва ли не самая крупная - почти 15000 нуклеотидов. По-видимому, всем независимо реплицирующимся РНК-вирусам нужен какой-то минимум информации для репликационной системы и капсидного белка, но у них отсутствует очень сложная добавочная информация, которой могут обладать крупные ДНК-вирусы.

Матричная РНК (м РНК) - промежуточный носитель генетической информации

Механизм, благодаря которому генетическая информация ДНК "транскрибируется" в матричную РНК, а затем транслируется в белок, выяснился через несколько лет после того, как молекулярные биологи осознали, что нуклеотидные последовательности в ДНК генов прямо ответственны за аминокислотные последовательности белка. Тот факт, что некоторые вирусы растений и животных содержат в качестве генетического материала РНК и что вирусная РНК сама по себе инфекционна, уже говорит о вероятной промежуточной роли РНК в переносе генетической информации. Когда Жакоб и Моно предсказали существование короткоживущего, нестойкого посредника между генами и аппаратом белкового синтеза, поиски молекулы РНК с такими свойствами были уже начаты. Первые указания на наличие фаговой РНК, которая вновь синтезировалась после фаговой инфекции и была ассоциирована с предсуществовавшими бактериальными рибосомами. Окончательное доказательство роли м РНК в синтезе полипептидов было получено в опытах с бесклеточной белок-синтезирующей системой. Экстракты нормальных клеток Е coli могли быть запрограммированы для синтеза специфических белков фага F 2 добавлением РНК из этого фага.

В дальнейшем м РНК была идентифицирована и изучена как в бактериальных, так и в животных клетках. Позже было показано, что многие молекулы м РНК, и вирусные и невирусные, способны программировать синтез специфических белков в самых разных клеточных экстрактах. Это подтверждало, что специфичность синтеза белка в различных системах зависит от м РНК, а не от системы, синтезирующей белок. Во всех клетках первым этапом экспрессии генов оказалась "транскрипция" ДНК с образованием соответствующей м РНК. Углеводы. Четверым компонентом, обнаруживаемым иногда в очищенных вирусных препаратах, являются углеводы (в количестве, превышающем содержание сахара в нуклеиновой кислоте). Глюкоза и гентибиоза, обнаруживаемая в составе Т-четных и некоторых других фагов, - компоненты нуклеиновой кислоты и рассматриваются в разделе, посвященном составу ДНК и РНК. Помимо этих "экстра"-углеводов, в составе бактериофагов могут быть и другие полисахариды. Единственная группа вирусов, в которой наличие углеводов точно доказано, - вирусы животных, хотя различные авторы приводят весьма противоречивые данные как о количественном, так и о качественном составе их углеводного компонента. В составе элементарных телец вируса гриппа и классической чумы птиц находятся до 17 % углеводов.

Происхождение вирусов и происхождение клетки.

Проблема происхождения вирусов - это, по существу проблема независимости генетических элементов в репродуктивном и эволюционном отношении. Основные вопросы здесь касаются того, насколько длинный путь прошли вирусы в своей независимой эволюции и в какой точке разошлись пути эволюционного развития вирусов и тех генетических элементов, которые мы находим в настоящее время в клетках. Вирус, проникнув в клетку, может оставаться в ней либо в течение какой-то доли клеточного цикла, либо на протяжении многих клеточных генераций. У организмов, размножающихся половым путем некоторые вирусы могут передаваться последующим поколениям через гаметы. Вирус, долго сохраняющийся в клетке, практически не отличим от клеточного компонента. Такую частицу мы могли бы счесть вирусом, плазмидой или геном в зависимости от типа воздействия, благодаря которому ее удалось обнаружить.

Таким образом, проблема происхождения вирусов включает : 1) вопрос об отношении между вирусами и клеточными компонентами, 2) вопрос о происхождении клеточных компонентов и 3) вопрос о родстве между различными генами вирусов. Довольно широко распространено представление о "монофилетическом" происхождении клетки - о том, что набор ее генов, то есть геном создавался в результате дифференциации одного исходного самовоспроизводящегося элемента, копии которого иногда не разделялись и благодаря мутациям приобрели различные формы и функции. Из таких групп генов должны были затем образоваться хромосомы, ибо наличие какого-то организованного механизма, обеспечивающего равное распределение генетического материала, дает большое преимущество - помогает сохранять благоприятные комбинации генов. Появление полового процесса в ходе дальнейшей эволюции усложнило эту схему, однако у организмов, у которых еще не было полового процесса, все гены должны были возникнуть в пределах одной клеточной линии. Согласно самой простой гипотезе, цитоплазма целиком является продуктом деятельности генов. Таким образом, все генетические компоненты клеток, относящихся к одной линии, должны иметь единое происхождение. Передача генетического компонента - гена или хромосомы - другой клетке была бы уже слиянием части генетического материала одной линии с геномом другой линии. С другой стороны, не исключена возможность и полифилетического происхождения нормальной клетки. Несколько первичных самореплицирующихся молекул могли, объединившись, создать благоприятную комбинацию и сформировать в дальнейшем клеточный геном. Или же, наконец, какие-то генетические элементы могли проникнуть в уже образовавшуюся клетку. Слияние генетического материала разных линий могло бы произойти на относительно раннем этапе эволюции клетки, и тогда приобретение геном, хромосомой или плазмидой способности переходить из одной клетки в другую было бы возвращением к исходной независимости и повторением исходного процесса слияния.

Таким образом, все теории происхождения вирусов сводятся к рассмотрению различных возможностей слияния двух или большего числа генетических элементов и образования из них функционирующей генетической системы. В случае вирусов, вызывающих быстрое разрушение клетки, такое слияние может не быть очевидным, и фундаментальное значение этого процесса не было замечено ранними вирусологами, для которых вирус, размножающийся в клетке, был подобен бактерии, растущей в культуре. На самом же деле даже клетка, зараженная вирулентным вирусом и обреченная на быструю гибель, представляет собой функциональную систему, чья конечная судьба - полная дезинтеграция - это лишь побочный результат главного события, а именно генетической и биохимической интеграции вирусных и клеточных механизмов. Слияние может приводить к длительной интеграции клетки с вирусом, которая сохраняется в течение нескольких клеточных генераций, иногда даже при половом процессе. В случае профагов, а возможно, и некоторых опухолеродных вирусов интеграция может стать почти постоянной. Некоторые плазмиды и, быть может, даже сегменты хромосом могли сформироваться именно таким путем. С другой стороны, эволюция механизмов, реализующих передачу генетического материала, могла привести к превращению отдельных генов и групп генов в плазмиды и вирусы. Из всех живых существ, быть может именно для вирусов монофилетическое происхождение наименее вероятно, ибо вирусы всегда реплицируются в окружении больших количеств невирусных нуклеиновых кислот, способных включаться в их геном. К какой категории мы отнесем данный генетический элемент - к генам, плазмидам, или вирусам, - в конечном счете будет зависеть от того, насколько длительным был период общности его эволюционной истории с историей других компонентов генома. Способность к возвращению независимости может определяться не только мутабельностью, но длительностью совместного существования, которая может приводить ко все большей взаимозависимости между различными компонентами клетки. Экзогенный элемент внесенный в клеточную линию, вероятно, подвергнется столь же выраженным эволюционным изменениям, как и любой другой генетический компонент клетки, и будет не более похож на своего первичного предка, чем похожи на своих предков эти компоненты. Передаваемые генетические элементы, быстро разрушающие новую для них клеточную систему, должны были бы в большинстве случаев исчезать, так как они могли бы сохраниться только при доступности для них бесчисленного множества клеток - хозяев. Часто, однако, слияние могло быть долговременным. При этом остается важный вопрос, на который пока нельзя ответить : является ли такое слияние новой и необычной особенностью, ведущей в основном к образованию аномальных комплексов, не имеющих значительной эволюционной ценности, то есть больных клеток, или же это один из процессов, который играл и все еще играет существенную роль в эволюции ( а возможно и в онтогенезе)?

Вирус может быть и регрессировавшим паразитом, и фрагментом клеточного генома, ставшим инфекционным, в зависимости от того, какую фазу его эволюционной истории мы наблюдаем. В различное время он может быть и тем и другим. Подобно тому как изучение структуры и размножения вирусов в конце концов всегда приводит нас к клетке как системе, в которой имеют место проявления жизни, так и проблема происхождения вирусов возвращает нас к вопросу о происхождении клеток как интегрированного целого. Вирус - это, по существу, часть клетки. Мы считаем вирусами те компоненты клетки, которые достаточно независимы для того, чтобы передаваться другим клеткам, и сравниваем их с другими клеточными компонентами, более прочно связанными со всей системой. И именно эти свойства вирусов делают их бесценными для биологов, предоставляя им уникальную возможность наблюдать в относительно изолированном виде активные детерминанты биологической специфичности - по истине те кирпичики, из которых построено все живое.

вирус возбудитель клетка

Литература

вирус возбудитель клетка репродукция

1. Агол В.И. Биосинтез вирусных нуклеиновых кислот // Молекулярная биология: Структура и биосинтез нуклеиновых кислот / Под ред. А.С. Спирина. М.: Высш. шк., 1990. С. 260-333.

2. Вирусология: В 3 т. / Под ред. Б. Филдса, Д. Найпа. М.: Мир, 1989.

3. С др. сайта (Вирусы и клетки и т.д.

Размещено на Allbest.ru


Подобные документы

  • Облигатные внутриклеточные паразиты. Морфология, строение вирусов. Сложно устроенные вирусы. Продуктивный тип взаимодействия вируса с клеткой. Представители однонитевых ДНК-вирусов. Культивирование, индикация вирусов. Внутриклеточная репродукция вирусов.

    презентация [2,4 M], добавлен 23.02.2014

  • Эволюционное происхождение. Свойства вирусов. Природа вирусов. Строение и классификация вирусов. Взаимодействие вируса с клеткой. Значение вирусов. Вирусные заболевания. Особенности эволюции вирусо на соременном этапе.

    реферат [299,2 K], добавлен 22.11.2005

  • Характеристика вирусов как очень маленьких живых организмов, вызывающих болезни у растений и животных. Особенности строения вирусных ДНК, РНК, их внешний вид, размеры компонентов, вызываемые заболевания. Размножение и основные стадии репродукции вирусов.

    презентация [1,6 M], добавлен 20.01.2012

  • Свойства вирусов, особенности их строения и классификация. Взаимодействие вируса с клеткой. Процессы, связанные с размножением вируса. Описание основных вирусных заболеваний. Эволюция вирусов на современном этапе. Влияние загрязнения внешней среды.

    реферат [466,4 K], добавлен 24.03.2011

  • Открытие вирусов, их размеры, особенности строения и жизненный цикл. Синтез компонентов вирусной частицы - нуклеиновой кислоты и белков капсида. Вирусы растений, животных и человека как возбудители различных заболеваний. Эволюционное развитие вирусов.

    контрольная работа [433,8 K], добавлен 15.03.2014

  • Классификация, морфология и структура вирусов, типы их взаимодействия с клеткой хозяина. Свойства возбудителя ботулизма, роль пищевых продуктов в инфицировании человека. Симптомы заболевания и профилактика ботулизма. Микробиология кулинарных изделий.

    контрольная работа [18,5 K], добавлен 07.11.2011

  • История открытия вирусов, их детальное исследование после изобретения микроскопа. Характеристика вирусов: свойства, формы существования, строение, химический состав и процесс размножения. Гипотеза о происхождении вирусов из "беглой" нуклеиновой кислоты.

    презентация [553,5 K], добавлен 18.01.2014

  • Схема строения булавовидного бактериофага. Жизненный цикл вируса на примере ортомиксовирусов, к которым относятся вирусы гриппа А, В и С типов. Описание вирусов иммунодефицита человека (ВИЧ), вызывающего СПИД, табачной мозаики, герпеса 8 типа, гриппа.

    презентация [864,8 K], добавлен 07.09.2010

  • Исследование понятия и основных особенностей ДНК-геномных вирусов. Изучение жизненного цикла вируса. Характеристика вируса папилломы человека. Описание болезней, вызываемых вирусом папилломы человека. Лабораторная диагностика папилломавирусной инфекции.

    реферат [94,2 K], добавлен 17.03.2014

  • История открытия вирусов как нового типа возбудителей болезней русским ученым Д.И. Ивановским. Отличительные особенности и классификация вирусов, их строение: сердцевина, белковая оболочка (капсид), липопротеидная оболочка. Циркуляция фагов в биосфере.

    презентация [170,7 K], добавлен 21.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.