Свойства симметрии и законы сохранения

Основные принципы взаимосвязи симметрии и асимметрии. Геометрическая и динамическая формы симметрии. Знакомство с основными законами: сохранение и превращение механической энергии, сохранение момента импульса. Особенности принципа симметрии пространства.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 10.07.2011
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Понятие симметрии

2. Законы сохранения

3. Проявление симметрии в различных формах

Заключение

Список используемой литературы

симметрия закон сохранение

Введение

Понятие симметрии проходит через всю многовековую историю человеческого творчества. Оно встречается уже у истоков человеческого знания. Античные философы считали симметрию, порядок и определенность сущностью прекрасного.

С симметрией мы встречаемся всюду. Архитекторы, художники, даже поэты и музыканты с древнейших времен знали законы симметрии. Строго симметрично строятся геометрические орнаменты; в классической архитектуре господствуют прямые линии, углы, круги, равенство колонн, окон, арок, сводов.

Идею симметрии подсказывает сама природа. Снежинки, кристаллы, листья, ветки, плоды, насекомые, рыбы, птицы, человеческое тело -- все построено по законам, симметрии, вернее, разных симметрии, именно они заставляют нас восхищаться красотой живой и неживой природы.

Понятие симметрии в науке постоянно развивалось и уточнялось. Его широко используют все без исключения направления современной науки.

Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Наука открыла целый мир новых, неизвестных раньше симметрии, поражающий своей сложностью и богатством, -- симметрии пространственные и внутренние, глобальные и локальные; даже такие вопросы, как возможность существования антимиров, поиски новых частиц, связаны с понятием симметрии.

Цель данной работы: дать представление о симметрии в окружающем мире; показать, что законы сохранения являются отражением проявления различного типа симметрии.

Для достижения поставленной цели, необходимо решить задачи:

- дать определение понятию «симметрия» и изучить ее свойства;

- охарактеризовать законы сохранения;

- привести примеры проявления симметрии в различных формах.

Работа состоит из введения, трех глав основной части, заключения и списка используемой литературы.

1. Понятие симметрии

Одним из важных открытий современного естествознания является тот факт, что все многообразие окружающего нас физического мира связано с тем или иным нарушением определенных видов симметрий.

Прошли тысячелетия, прежде чем человечество осознало необходимость четко выразить понятия симметрии и ее нарушения. Идеи симметрии интенсивно возродились в естествознании только к концу XIX века, когда появились первые признаки того, что стройные логические методы приводят к тупику в объяснении явлений природы.

Научное определение симметрии принадлежит немецкому математику Г.Вейлю, который проанализировал переход от простого чувственного восприятия симметрии к ее научному пониманию.

В общем случае симметрия выражает степень упорядоченности какой-либо системы или объекта. Например, круг более упорядочен и, следовательно, симметричен, чем квадрат. В свою очередь, квадрат более симметричен, чем прямоугольник.

Другими словами, симметрия - это неизменность (инвариантность) каких-либо свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Например, окружность симметрична относительно любой прямой (оси симметрии), лежащей в ее плоскости и проходящей через центр, она симметрична и относительно центра. Операциями симметрии в данном случае будут зеркальное отражение относительно оси и вращение относительно центра окружности.

В широком смысле симметрия - это понятие, отображающее существующий в объективной действительности порядок, определенное равновесное состояние, относительную устойчивость, пропорциональность и соразмерность между частями целого.

Противоположным понятием является понятие асимметрии, которое отражает существующее в объективном мире нарушение порядка, равновесия, относительной устойчивости, пропорциональности и соразмерности между отдельными частями целого, связанное с изменением, развитием и организационной перестройкой. Уже отсюда следует, что асимметрия может рассматриваться как источник развития, эволюции, образования нового.

Взаимосвязь симметрии и асимметрии в табл.1

Таблица 1 - Взаимосвязь симметрии и асимметрии

Рис

Различают геометрическую и динамическую формы симметрии.

К геометрической форме симметрии (внешние симметрии) относятся свойства пространства - времени, такие как однородность пространства и времени, изотропность пространства, эквивалентность инерциальных систем отсчета и т.д. К динамической форме относятся симметрии, выражающие свойства физических взаимодействий, например, симметрии электрического заряда, симметрии спина и т.п. (внутренние симметрии). Современная физика, однако, раскрывает возможность сведения всех симметрий к геометрическим симметриям.

Важным понятием в современной физике является понятие калибровочной симметрии. Калибровочные симметрии связаны с инвариантностью относительно масштабных преобразований. Сам термин «калибровка» происходит из жаргона железнодорожников, где он означает переход с узкой колеи на широкую. Под калибровкой, таким образом, первоначально понималось именно изменение уровня или масштаба. Так в СТО физические законы не изменяются относительно переноса (сдвига) системы координат. Траектории движения остаются прямолинейными, пространственный сдвиг остается одинаковым у всех точек пространства. Таким образом, здесь работают глобальные калибровочные преобразования.

Одной из важнейших особенностей симметрий является их связь с законами сохранения, которые мы рассмотрим в следующей главе.

2. Законы сохранения

Значение законов сохранения (законы сохранения импульса, энергии, заряда и др.) для науки трудно переоценить. Дело в том, что понятие симметрии применимо к любому объекту, в том числе и к физическому закону. Вспомним, что согласно принципу относительности Эйнштейна, все физические законы имеют одинаковый вид в любых инерциальных системах отсчета. Это означает, что они симметричны (инвариантны) относительно перехода от одной инерциальной системы к другой.

Наиболее общий подход к взаимосвязи симметрий и законов сохранения содержится в знаменитой теореме Э. Нетер. В 1918 г., работая в составе группы по проблемам теории относительности, доказала теорему, упрощенная формулировка которой гласит: если свойства системы не меняются относительно какого-либо преобразования переменных, то этому соответствует некоторый закон сохранения.

Итак, рассмотрим основные законы сохранения.

Из свойства симметрии пространства - его однородности следует закон сохранения импульса: импульс замкнутой системы, сохраняется, т. е. не изменяется с течением времени. Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц, подчиняющихся законам квантовой механики. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сила равна нулю. Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.

Однородность, времени означает инвариантность физических законов относительно выбора начала отсчета времени. Например, при свободном падении тела в поле силы тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.

Из однородности времени следует закон сохранения механической анергии, в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем. Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; например сила трения.

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать еще и так: в консервативных системах полная механическая энергия сохраняется.

В диссипативных, системах механическая энергия постепенно уменьшается из-за преобразования ее в другие (немеханические) формы энергии. Этот процесс называется диссипацией, или рассеянием энергии. Строго говоря, все реальные системы в природе диссипативные.

В консервативных системах полная механическая энергия остается постоянной, могут происходить лишь превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах.

Закон сохранения и превращения энергии - фундаментальный закон природы; он справедлив как для систем макроскопических тел, так и для микросистем. В системе, в которой действуют консервативные и диссипативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, для такой системы закон сохранения механической энергии не выполняется.

Однако при убывании механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом заключается физическая сущность закона сохранения и превращения энергии - сущность неуничтожения материи и ее движения, поскольку энергия, по определению, - универсальная мера различных форм движения и взаимодействия.

Закон сохранения энергии - результат обобщения многих экспериментальных данных. Идея этого закона принадлежит М.В.Ломоносову, изложившему закон сохранения материи и движения, а количественная его формулировка дана немецкими учеными - врачом Ю.Майером и естество-испытателем Г.Гельмгольцем.

Еще одно свойство симметрии пространства - его изотропность - означает инвариантность физических законов относительно выбора направлений осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол). Из изотропности пространства следует фундаментальный закон природы - закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени.

При рассмотрении действия тех или иных фундаментальных законов не следует забывать, что каждому виду симметрии соответствует своя асимметрия. Асимметричные условия исключают наличие резкой грани между законами и условиями их действия. Поэтому содержание законов всегда должно включать определенные моменты асимметричных условий.

Перечисленные законы сохранения универсальны. Они определяются симметриями пространства-времени мира. Если бы Вселенная оказалась неоднородной в пространстве и времени, то законы природы в ее разных частях были бы разными. В этом случае наблюдатель в комнате мог бы определить, в какой части Вселенной и в какую эпоху он живет.

Закон всемирного тяготения гласит, что сила взаимного притяжения двух тел пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Следовательно, сила притяжения не зависит от положения этой пары в пространстве, а только от расстояния между телами. Это означает, что данный закон инвариантен относительно переноса или вращения этой пары тел. Это не было бы так, если бы пространство не было однородным и изотропным.

Симметрия проявляется в многообразных структурах и явлениях неорганического мира и живой природы. Окружающий нас мир заполнен симметричными природными объектами. В следующей главе мы рассмотрим различные проявления симметрии.

3. Проявление симметрии в различных формах

Симметрия, проявляясь в самых различных объектах материального мира отражает наиболее общие, наиболее фундаментальные свойства.

Симметрия в математике

Центральная симметрия. Две точки А и А1 называются симметричными относительно точки О, если О -середина отрезка АА1. Точка О считается симметричной сомой себе.

Рис

Осевая симметрия. Преобразование фигуры F в фигуру F1, при котором каждая ее точка переходит в точку, симметричную относительно данной прямой, называется преобразованием симметрии относительно прямой а. Прямая а называется осью симметрии.

Рис

Зеркально-поворотная симметрия. Если во внутрь квадрата вписать с поворотом другой квадрат, то это и будет пример зеркально-поворотной симметрии.

Рис

Переносная симметрия. Если при переносе плоской фигуры F вдоль заданной прямой АВ на расстояние а (или кратное этой величине) фигура совмещается сама с собой, то говорят о переносной симметрии. Прямая АВ называется осью переноса, расстояние а элементарным переносом или периодом.

Рис

Симметрия в физике

Принципы симметрии являются в физике инструментом для отыскания новых законов природы. К числу симметрийных принципов относится принцип относительности Галилея и Эйнштейна.

В 1894 г. на свет появилась последняя работа Пьера Кюри, посвящённая симметрии физических явлений. Статья называлась «О симметрии физических явлений: симметрия электрического и магнитного поля». Именно в этой работе и были сформулированы наиболее глубокие идеи учёного, касающиеся универсальной роли симметрии в природе.

Рис

Ещё одним учёным, который пытался объяснить симметрию с точки зрения физики, был Е.С.Фёдоров. Исходя из принципов симметрии, он доказал, что существует конечное число типов кристаллов.

Рис

Симметрия в химии

Симметрия обнаруживается также и на атомном уровне изучения вещества. Она проявляется в недоступных непосредственному наблюдению геометрически упорядоченных атомных структурах молекул. В 1810 году Д.Дальтон, желая показать своим слушателям как атомы, комбинируясь, образуют химические соединения, построил деревянные модели шаров и стержней. Эти модели оказались превосходным наглядным пособием.

Молекула воды имеет плоскость симметрии (прямая вертикальная линия). Ничто не изменится, если поменять местами парные атомы в молекуле; такой обмен эквивалентен операции зеркального отражения.

Исключительно важную роль в мире живой природы играют молекулы ДНК. Это двуцепочечный высокомолекулярный полимер, мономером которого являются нуклеотиды. Молекулы ДНК имеют структуру двойной спирали, построенной по принципу комплементарности.

Рис

Симметрия в биологии

На явления симметрии в живой природе обратили внимание ещё в Древней Греции пифагорейцы в связи с развитием учения о гармонии (5 век до н.э.). В 19 веке появились единичные работы, посвящённые симметрии в растительном и животном мире.

В 20 веке усилиями российских учёных - В Беклемишева, В Вернадского, В Алпатова, Г.Гаузе - было создано новое направление в учении о симметрии - биосимметрика. Исследовав симметрии биоструктур на молекулярном и надмолекулярном уровнях позволяет заранее определить возможные варианты симметрии в биообъектах, строго описывать внешнюю форму и внутреннее строение любых организмов.

Рис

Симметрия у растений

Характерная для растений симметрия конуса хорошо видна на примере любого дерева. Дерево поглощает из почвы влагу и питательные вещества за счёт корневой системы, то есть снизу, а остальные жизненно важные функции выполняются кроной, то есть наверху. Поэтому направления «вверх» и «вниз» для дерева, существенно различны. А направления в плоскости перпендикулярной к вертикали, для дерева фактически неразличимы: по всем этим направлениям к дереву в равной мере поступают воздух, свет, и влага. В результате появляется вертикальная поворотная ось и вертикальная плоскость симметрии.

У цветковых растений в большинстве проявляется радиальная и билатеральная симметрия.

Рис

Цветок считается симметричным, когда каждый околоцветник состоит из равного числа частей. Цветки, имея парные части, считаются цветками с двойной симметрией и т.д. Тройная симметрия обычна для однодольных растений, пятерная - для двудольных.

Симметрия у животных

Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии.

Сферическая симметрия имеет место у радиолярий и солнечников, тело которых сферической формы, а его части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки.

При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Это кишечнополостные, иглокожие, морские звёзды.

При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих.

Рис

Симметрия у человека

Тело человека построено по принципу двусторонней симметрии. Кроме того, большинство из нас рассматривает мозг как единую структуру, в действительности же он разделён на две половины. Эти две части - два полушария - плотно прилегают друг к другу. В полном соответствии с общей симметрией тела человека каждое полушарие представляет собой почти точное зеркальное отображение другого. Управление основными движениями тела человека и его сенсорными функциями равномерно распределено между двумя полушариями мозга. Левое полушарие контролирует правую сторону мозга, а правое - левую сторону.

Рис

Симметрия в архитектуре

В геометрических орнаментах всех веков запечатлены неиссякаемые фантазия и изобразительность художников и мастеров, чьё творчество было ограничено жёсткими рамками, установленными неукоснительным следованием принципам симметрии.

Рис

Трактуемые несравненно шире идеи симметрии нередко можно встретить в живописи, скульптуре, музыке и поэзии. Во многих случаях именно язык симметрии оказывается особенно пригодным для обсуждения произведений искусства, даже если последние отличаются отклонениями от симметрии или их создатели стремились умышленно её избежать.

Таким образом, все симметрии, которые мы до сих пор рассматривали, объединяются в одну, всеобщую -- все явления природы инвариантны.

Заключение

В завершении отметим, что цель данной работы достигнута, поставленные задачи выполнены.

Понятия симметрии и противоположного ей объективного свойства природы асимметрии являются одними из фундаментальных в современном естествознании. Поэтому многие научные исследования в значительной степени основываются на рассмотрении указанных понятий.

Нами раскрыта сущность понятия «симметрия», которая представляет собой неизменность структуры материального объекта относительно его преобразований, то есть изменение ряда физических условий.

Симметрия пространства и времени является следствием принципа инвариантности (т.е. неизменности физических величин или свойств природных объектов при переходе от одной системы отсчета к другой).

Симметрия пространства и времени или однородность пространства и времени заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого, ее физического свойства и законы движения не изменяются, т.е. не зависят от выбора положения начала координат инерциальной системы отсчета.

Принципы симметрии пространства и времени являются весьма важными для раскрытия некоторых законов природы:

однородность времени в пространстве служит основой законов сохранения энергии W;

симметрия относительно вращений определяет выполнение закона сохранения импульса mv;

однородность пространства определяет закон сохранения момента импульса mvr.

Перечисленные законы сохранения универсальны. Они определяются симметриями пространства-времени мира.

Кроме того, в работе рассмотрены различные проявления симметрии. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, а законы природы, управляющие неисчерпаемой в своем многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии.

Список используемой литературы

1. Горбачев В.В. Концепции современного естествознания: Учебное пособие / В.В.Горбачев. - М.: Издательство МГУП, 2000. - 274 с.

2. Горелов А.А. Концепции современного естествознания / А.А.Горелов. - М: Высшее образование, 2006. - 335 с.

3. Дубнищева Т.Я. Концепции современного естествознания / Т.Я.Дубнищева. - М: Академия, 2003. - 608 с.

4. Карпенков С.Х. Концепции современного естествознания : учеб. для вузов / С.Х.Карпенков. - М.: Высш. шк., 2003. - 448 с.

5. Концепции современного естествознания / Под ред. профессора СИ.Самыгина. - Ростов н/Д: Феникс, 2003. - 448 с.

6. Хорошавина С.Г. Концепции современного естествознания: курс лекций / С.Г.Хорошавина. - Ростов н/Д: Феникс, 2005. - 480 с.

Размещено на Allbest.ru


Подобные документы

  • Понятие симметрии - неизменности структуры, свойств, формы материального объекта относительно его преобразований. Симметрии, выражающие свойства пространства и времени, физических взаимодействий. Примеры симметрии в неживой природе, ее обратимость.

    презентация [312,0 K], добавлен 18.10.2015

  • Понятие симметрии как неизменности (инвариантности) свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Значение законов сохранения (импульса, энергии, заряда) для науки. Изотропность пространства-времени.

    курсовая работа [19,5 K], добавлен 04.11.2011

  • Симметрия пространства – времени и законы сохранения, калибровочные симметрии. Связь с инвариантностью относительно масштабных преобразований. Открытие киральной чистоты молекул биогенного происхождения. Связь грани между законами и условиями их действия.

    реферат [15,6 K], добавлен 31.01.2009

  • Определение, сущность и сравнение симметрии и асимметрии. История возникновения категорий симметрии как одного из фундаментальных свойств природы, а также анализ ее места в познании и архитектуре. Общая характеристика асимметрии человеческого мозга.

    контрольная работа [30,6 K], добавлен 22.12.2010

  • Законы симметрии микромира и макромира. Связи законов сохранения и законов симметрии. Классический детерминизм и вероятностно-статистический детерминизм. Отличие живых систем от неживых. Экологические проблемы современности.

    шпаргалка [29,3 K], добавлен 10.09.2007

  • Иерархия естественно научных законов. Законы сохранения. Связь законов сохранения с симметрией системы. Фундаментальные физические законы, согласно которым при определенных условиях некоторые физические величины не изменяются с течением времени.

    реферат [30,5 K], добавлен 17.10.2005

  • Фундаментальные законы сохранения (закон сохранения энергии, закон сохранения импульса, закон сохранения момента импульса). Связь законов сохранения с симметрией пространства и времени. Симметрия как основа описания объектов и процессов в микромире.

    реферат [227,7 K], добавлен 17.11.2014

  • Использование принципов симметрии в математике и физике, химии и биологии, технике и архитектуре, живописи и скульптуре, и даже в поэзии и музыке. Значение симметрии в познании природы. Симметрия на уроках геометрии. Внутренняя симметрия Вселенной.

    презентация [1,8 M], добавлен 07.01.2011

  • История открытия закона сохранения и превращения энергии. Фундаментальные законы природы. Закон сохранения и превращения энергии. Количественное соотношение теплоты и механической работы, механический эквивалент тепла. Смысл закона сохранения энергии.

    контрольная работа [44,0 K], добавлен 03.10.2011

  • Научный метод познания. Принципы симметрии и законы сохранения. Специальная и общая теория относительности. Структурные уровни и системная организация материи. Порядок и беспорядок в природе. Панорама современного естествознания. Биосфера и человек.

    тест [32,4 K], добавлен 17.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.