Явление изотопии. Иммунобиологическая реактивность животных при действии ионизирующего излучения

Понятие стабильных и нестабильных изотопов - разновидностей одного и того же химического элемента, близких по своим физико-химическим свойствам, но имеющих разную атомную массу. Прогнозирование загрязнения сельскохозяйственной продукции радионуклидами.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 09.07.2011
Размер файла 269,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Файл не выбран
Обзор

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Явление изотопии. Стабильные и нестабильные изотопы

Изотопы - разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу. Название «изотопы» было предложено в 1912 английским радиохимиком Фредериком Содди, который образовал его из двух греческих слов: isos - одинаковый и topos - место. Изотопы занимают одно и то же место в клетке периодической системы элементов Менделеева.

Атом любого химического элемента состоит из положительно заряженного ядра и окружающего его облака отрицательно заряженных электронов. Положение химического элемента в периодической системе Менделеева (его порядковый номер) определяется зарядом ядра его атомов. Изотопами называются поэтому разновидности одного и того же химического элемента, атомы которых имеют одинаковый заряд ядра (и, следовательно, практически одинаковые электронные оболочки), но отличаются значениями массы ядра. По образному выражению Ф.Содди, атомы изотопов одинаковы «снаружи», но различны «внутри».

В 1932 Джеймсом Чедвиком был открыт нейтрон - частица, не имеющая заряда, с массой, близкой к массе ядра атома водорода - протона, и создана протонно-нейтронная модель ядра. В результате в науке установилось окончательное современное определение понятия изотопов: изотопы - это вещества, ядра атомов которых состоят из одинакового числа протонов и отличаются лишь числом нейтронов в ядре. Каждый изотоп принято обозначать набором символов AZX, где X - символ химического элемента, Z - заряд ядра атома (число протонов), А - массовое число изотопа (общее число нуклонов - протонов и нейтронов в ядре, A = Z + N). Поскольку заряд ядра оказывается однозначно связанным с символом химического элемента, часто для сокращения используется просто обозначение AX.

Из всех известных нам изотопов только изотопы водорода имеют собственные названия. Так, изотопы 2H и 3H носят названия дейтерия и трития и получили обозначения соответственно D и T (изотоп 1H называют иногда протием).

В природе встречаются как стабильные изотопы, так и нестабильные - радиоактивные, ядра атомов которых подвержены самопроизвольному превращению в другие ядра с испусканием различных частиц (или процессам так называемого радиоактивного распада). Сейчас известно около 270 стабильных изотопов. Число нестабильных изотопов превышает 2000, подавляющее большинство их получено искусственным путем в результате осуществления различных ядерных реакций. Число радиоактивных изотопов у многих элементов очень велико и может превышать два десятка. Число стабильных изотопов существенно меньше, Некоторые химические элементы состоят лишь из одного стабильного изотопа (бериллий, фтор, натрий, алюминий, фосфор, марганец, золото и ряд других элементов). Наибольшее число стабильных изотопов - 10 обнаружено у олова, у железа, например, их - 4, у ртути - 7.

В 1808 английский ученый натуралист Джон Дальтон впервые ввел определение химического элемента как вещества, состоящего из атомов одного вида. В 1869 химиком Д. И. Менделеевым была открыт периодический закон химических элементов. Одна из трудностей в обосновании понятия элемента как вещества, занимающего определенное место в клетке периодической системы, заключалась в наблюдаемом на опыте нецелочисленности атомных весов элементов. В 1866 английский физик и химик - сэр Вильям Крукс выдвинул гипотезу, что каждый природный химический элемент представляет собой некоторую смесь веществ, одинаковых по своим свойствам, но имеющих разные атомные массы, однако в то время такое предположение не имело еще экспериментального подтверждения и поэтому прошло мало замеченным.

Важным шагом на пути к открытию изотопов стало обнаружение явления радиоактивности и сформулированная Эрнстом Резерфордом и Фредериком Содди гипотеза радиоактивного распада: радиоактивность есть не что иное, как распад атома на заряженную частицу и атом другого элемента, по своим химическим свойствам отличающийся от исходного. В результате возникло представление о радиоактивных рядах или радиоактивных семействах, в начале которых есть первый материнский элемент, являющийся радиоактивным, и в конце - последний стабильный элемент. Анализ цепочек превращений показал, что в их ходе в одной клеточке периодической системы могут оказываться одни и те же радиоактивные элементы, отличающиеся лишь атомными массами. Фактически это и означало введение понятия изотопов.

В 1919 Астон сконструировал прибор, названный масс-спектрографом (или масс-спектрометром). В качестве источника ионов по-прежнему использовалась разрядная трубка, однако Астон нашел способ, при котором последовательное отклонение пучка частиц в электрическом и магнитном полях приводило к фокусировке частиц с одинаковым значением отношения заряда к массе (независимо от их скорости) в одной и той же точке на экране. Наряду с Астоном масс-спектрометр несколько другой конструкции в те же годы был создан американцем Демпстером. В результате последующего использования и усовершенствования масс-спектрометров усилиями многих исследователей к 1935 году была составлена почти полная таблица изотопных составов всех известных к тому времени химических элементов.

2. Прогнозирование загрязнения сельскохозяйственнОЙ продукции радионуклидами

Прогноз загрязнения сельскохозяйственной продукции позволяет планировать размещение культур по полям севооборотов с учетом использования получаемой продукции (продовольственные цели, фураж, промышленная переработка и т. д.).

Прогнозирование основывается на коэффициентах перехода радионуклидов в урожай различных культур, результатах радиологического и агрохимического обследования почв в виде карт и агрохимических паспортов полей. Особенно важен прогноз использования пастбищ для дойного стада на почвах, загрязненных стронцием-90 (рис. 1).

Рис. 1. Прогноз возможности получения продукции животноводства с допустимым содержанием стронция-90 в зависимости от плотности загрязнения почв

Так, при выпасе коров на естественных пастбищах цельное молоко для непосредственного употребления в пищу можно получать при плотности загрязнения почв: на суглинках - менее 16 кБк/м2, супесях - 12, песках - 8 и торфяных почвах - менее 4 кБк/м2.

Молоко-сырье для дальнейшей переработки можно получать при плотности загрязнения почв стронцием-90 , соответственно до 70, 60, 40 и 20 кБк/м2. При более высокой плотности загрязнения можно выпасать скот только для откорма на мясо. На культурных пастбищах допустимый уровень плотности загрязнения почв стронцием-90 для выпаса дойного стада существенно повышается.

Прогноз содержания радионуклидов в сельскохозяйственных культурах с учетом особенностей каждого поля и животноводческой фермы сделан для хозяйств одиннадцати наиболее загрязненных районов.

На этой основе подготовлены проекты защитных мер, предусматривающие снижение поступления радионуклидов в пищевую продукцию в 1,8-2,0 раза.

Анализ проектов показал, что производство кормов в зоне загрязнения для дойного стада и получение цельного молока с допустимым содержанием радионуклидов возможно на 86,6 % пахотных земель, 75,4 % улучшенных сенокосов и пастбищ и 36,3 % естественных луговых угодий. На остальной площади сельскохозяйственных угодий в настоящее время возможно производить корма только для производства мяса и получения молока-сырья. Это еще раз подчеркивает ведущую роль окультуренности почв в снижении накопления радионуклидов в продукции.

В случаях, когда скот выпасается на естественных кормовых угодьях, когда невозможно получение молока и мяса с допустимым содержанием цезия-137 из-за высокого содержания в корме, весьма эффективным является введение в рацион животных цезийсвязывающих препаратов на основе берлинской лазури.

Например, применение ферроцианидов совместно с комбикормом в течение 40 суток в дозах от 1,0 до 6,0 г на голову при содержании радиоцезия в суточном рационе 37 кБк позволяет в 4,5-6,8 раз снизить концентрацию радионуклида в мышечной ткани животных при откорме на мясо. Результаты эксперимента показали также высокую эффективность ферроцина в составе соли-лизунца для снижения поступления радиоцезия из корма в молоко (рис. 2).

Рис. 2. Содержание цезия-137 в молоке в результате применения брикетов соли-лизунца с ферроцином, Бк/л

Например, ферроциновые препараты, предназначенные в основном для крупного рогатого скота в частном секторе, где для выпаса скота чаще используются естественные кормовые угодья, позволяют снизить содержание радиоцезия в молоке в 2-5 раз.

3. Иммунобиологическая реактивность животных при действии ионизирующего излучения

изотоп радионуклид загрязнение сельскохозяйственный

Ионизирующее излучение - потоки фотонов или частиц, взаимодействие которых со средой приводит к ионизации ее атомов или молекул.

Ионизирующее излучение действует на организм как из внешних, так и из внутренних источников облучения. В последнем случае радиоактивные вещества поступают в организм с пищей, водой, через кожные покровы. Возможно комбинированное действие внешнего и внутреннего облучения.

Повреждающее действие различных видов ионизирующей радиации зависит от их проникающей активности и, следовательно, от плотности ионизации в тканях. Чем короче путь прохождения луча, тем больше плотность ионизации и сильнее повреждающее действие.

Процессы взаимодействия ионизирующего излучения с веществом в живых организмах приводят к специфическому биологическому действию, завершающемуся повреждением организма. В процессе этого повреждающего действия условно можно выделить три этапа:

- первичное действие ионизирующего излучения;

- влияние радиации на клетки;

- действие радиации на целый организм.

Первичным актом этого действия является возбуждение и ионизация молекул, в результате чего возникают свободные радикалы (прямое действие излучения) или начинается химическое превращение (радиолиз) воды, продукты которого (радикал ОН, перекись водорода -- H2O2 и др.) вступают в химическую реакцию с молекулами биологической системы.

Первичные процессы ионизации не вызывают больших нарушений в живых тканях. Повреждающее действие излучения связано, по-видимому, со вторичными реакциями, при которых происходит разрыв связей внутри сложных органических молекул, например SH-групп в белках, хромофорных групп азотистых оснований в ДНК, ненасыщенных связей в липидах и пр.

Влияние ионизирующего излучения на клетки обусловлено взаимодействием свободных радикалов с молекулами белков, нуклеиновых кислот и липидов, когда вследствие всех этих процессов образуются органические перекиси и возникают быстропреходящие реакции окисления. В результате перекисного Окисления накапливается множество измененных молекул, в результате чего начальный радиационный эффект многократно усиливается. Все это отражается прежде всего на структуре биологических мембран, меняются их сорбционные свойства и повышается проницаемость (в том числе мембран лизосом и митохондрий). Изменения в мембранах лизосом приводят к освобождению и активации ДНК-азы, РНК-азы, катепсинов, фосфатазы, ферментов гидролиза мукополисахаридов и ряда других ферментов.

Высвобождающиеся гидролитические ферменты могут путем простой диффузии достичь любой органеллы клетки, в которую они легко проникают благодаря повышению проницаемости мембран. Под действием этих ферментов происходит дальнейший распад макромолекулярных компонентов клетки, в том числе нуклеиновых кислот, белков. Разобщение окислительного фосфорилирования в результате выхода ряда ферментов из митохондрий в свою очередь приводит к угнетению синтеза АТФ, а отсюда и к нарушению биосинтеза белков.

Таким образом, в основе радиационного поражения клетки лежит нарушение ультраструктур клеточных органелл и связанные с этим изменения обмена веществ. Кроме того, ионизирующая радиация вызывает образование в тканях организма целого комплекса токсических продуктов, усиливающих лучевой эффект -- так называемых радиотоксинов. Среди них наибольшей активностью обладают продукты окисления липидов-- перекиси, эпоксиды, альдегиды и кетоны. Образуясь тотчас после облучения, липидные радиотоксины стимулируют образование других биологически активных веществ -- хинонов, холина, гистамина и вызывают усиленный распад белков. Будучи введенными необлученным животным, липидные радиотоксины оказывают действие, напоминающее лучевое поражение. Ионизирующее излучение оказывает наибольшее воздействие на ядро клетки, угнетая митотическую активность.

Ионизирующее излучение действует на клетки тем сильнее, чем они моложе и чем менее дифференцированны. На основании морфологических признаков поражаемое органы и ткани распределяются в следующем нисходящем порядке: лимфоидные органы (лимфатические узлы, селезенка, зобная железа, лимфоидная ткань других органов), костный мозг, семенники, яичники, слизистая оболочка желудочно-кишечного тракта. Еще меньше поражаются кожа с придатками, хрящи, кости, эндотелий сосудов. Высокой радиоустойчивостью обладают паренхиматозные органы: печень, надпочечники, почки, слюнные железы, легкие.

Повреждающее действие ионизирующего излучения на клетки при достаточно высоких дозах завершается гибелью. Гибель клетки в основном является результатом подавления митотической активности и необратимого нарушения хромосомного аппарата клетки, но возможна и интерфазная гибель (вне периода митоза) из-за нарушения метаболизма клетки и интоксикации упомянутыми выше радиотоксинами. В результате происходит опустошение тканей из-за того, что не восполняется естественная убыль клеток за счет образования новых.

Гибель клеток и опустошение тканей играют важную, роль в развитии общих поражений организма от ионизирующего излучения -- лучевой болезни.

Список литературы

1. Белов А. Д., Киршин В. А., Лысенко Н. П., Пак В. В., Рогожина Л. В. Радиобиология. - М.: Колос, 1999.

2. Василенко И. Я. Токсикология продуктов ядерного деления. - М.: Медицина, 2000.

3. Карташев П.А., Киршин В.А., Ильин В.Г. Лучевая болезнь сельскохозяйственных животных. - М.: Колос, 1978.

4. Киршин В. А., Белов А. Д., Бударков В. А. Ветеринарная радиобиология. - М.: Агропромиздат, 1986.

5. Радиобиологические эффекты у животных. / Под ред. В. А. Киршина. - М., 1999.

6. Сельскохозяйственная радиоэкология. / Р. М. Алексахин, А. В. Васильев, В. Г. Дикарев и др.; Под ред. Р. М. Алексахина, Н. А. Корнеева. - М.: Экология, 1991.

7. Ярмоненко С. П. Радиобиология человека и животных. - М.: Высшая школа, 1988.

Размещено на Allbest.ru


Подобные документы

  • Реагирование организма на изменения жизнедеятельности под воздействием различных факторов окружающей среды. Факторы, характеризующие реактивность. Классификация реактивности. Устойчивость организма против различных внешних болезнетворных воздействий.

    реферат [35,6 K], добавлен 10.05.2012

  • Сущность явления радиолиза и основные стадии его протекания: физическая, физико-химическая и химическая. Влияние свободных радикалов на живые организмы: их ДНК, легкие, жиры, сердечнососудистую систему. Значение данных соединений в развитии диабета.

    реферат [31,3 K], добавлен 10.12.2015

  • Проведение исследований с целью изучения влияния ионизирующего излучения на биологические ткани. Виды радиобиологических повреждений у млекопитающих. Основные источники облучения населения и его последствия. Градация доз радиации, ее воздействие на биоту.

    презентация [7,7 M], добавлен 10.02.2014

  • Понятие, сущность и назначение дозиметрии, а также описание ее основных методов (биологических, физических, химических, ионизационных и люминесцентных). Особенности регистрации радиационно-индуцированных эффектов в детекторе ионизирующего излучения.

    реферат [149,5 K], добавлен 30.11.2010

  • Уровни включения стабильных изотопов дейтерия. Молекулы секретируемых аминокислот L-фенилаланинпродуцирующего штамма Brevibacterium methylicum и L-лейцинпродуцирующего штамма Methylobacillus flagellatum. Аминокислотные остатки суммарных белков.

    статья [1,7 M], добавлен 23.10.2006

  • Понятие, отличительные особенности ионизирующего излучения, оценка негативного воздействия на живые организмы. Теории действия радиации: "мишени" и стохастическая, свободных радикалов. Структурно-метаболическая теория радиационного поражения А.М. Кузина.

    презентация [1,8 M], добавлен 17.12.2014

  • Появление обездвиживания, позволяющего уменьшить вероятность получения травм при отлове диких животных. Основные требования к химическим средствам для дистанционного отлова. Деполяризующие миорелаксанты, механизм их действия. Оружие для обездвиживания.

    реферат [917,1 K], добавлен 12.02.2015

  • История вопроса универсальности феномена ритмичности в природе. Терминология в биоритмологии. Виды биоритмов, их влияние на физиологическую реактивность, взаимосвязь с патологической реактивностью. Хронопатология, ее предпосылки и механизм формирования.

    презентация [3,0 M], добавлен 06.03.2015

  • Характеристика подкласса "Простейшие". Губки как тип преимущественно морских примитивных беспозвоночных. Анализ кишечнополостных как многоклеточных животных, имеющих лучевую симметрию. Плоские, круглые и кольчатые черви. Костистые рыбы, млекопитающие.

    презентация [3,6 M], добавлен 15.05.2015

  • Пауки как первые среди самых ранних животных, которые жили на земле. Эволюция этих животных, история развития с самых древних времен. Классификация пауков, описание некоторых разновидностей, их образа жизни. Опасность яда пауков, специфика борьбы с ними.

    статья [258,4 K], добавлен 07.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.