Белки и пептиды

Изучение состава, структуры и свойств белков как высокомолекулярных органических веществ, состоящих из аминокислот, соединенных в цепь пептидной связью. Анализ биологических функций пептидов как веществ, молекулы которых построены из остатков аминокислот.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 04.06.2011
Размер файла 196,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

Реферат

БЕЛКИ И ПЕПТИДЫ

функция строение пептид белок аминокислота

Белки, или протеины,-- важнейший класс биологически активных веществ. Они играют ключевую роль в клетке, присутствуют в виде главных компонентов в любых формах живой материи, будь то микроорганизмы, животные или растения. Без белков невозможно представить себе жизнедеятельность, жизнь; и именно в этом смысле и сегодня сохраняет свое значение определение Ф. Энгельса: «Жизнь есть способ существования белковых тел». Белки чрезвычайно разнообразны по структуре и выполняют многочисленные биологические функции (схема 1).

В настоящее время трудно оценить общее число белков во всем царстве живой природы, но, учитывая огромное разнообразие организмов, следует признать факт существования, по крайней мере многих миллиардов химически индивидуальных белков.

Лишь в клетке Escherichia coli содержится более 3000 различных белков.

Молекулярная масса белков варьирует от 5 -- 10 тыс. до 1 млн. и более. Сравнительно небольшие молекулы белковой природы (с молекулярной массой условно до 5000) называются пептидами.

К пептидам относятся многие природные вещества с важными биологическими функциями (схема 2), их синтетические аналоги, а также продукты расщепления белков.

Биологические функции белково-пептидных веществ. Главная функция белков-ферментов -- катализ биохимических реакций, и только ее одной было бы достаточно, чтобы считать белки самым важным классом биорегуляторов. Как биологические катализаторы ферменты участвуют в тысячах превращений, происходящих в живой клетке и составляющих основу ее метаболизма.

Особое значение имеют такие универсальные ферментные системы, как ДНК- и РНК-полимеразы, разнообразные аденозинтрифосфатазы (АТФазы), аденилатциклазы. В целом группа белков-ферментов изучена сравнительно хорошо, причем существенно то, что в процессе их исследования были сформулированы общие принципы и разработаны методы структурно-функционального анализа белковых веществ.

Среди гормонов белками являются инсулин, секретируемый поджелудочной железой, паратиреоидный гормон щитовидной железы, а также ряд гормонов гипофиза -- гормон роста, липотропин, пролактин, гонадотропин, лютеинизирующий и фолликулостимулирующий гормоны, тиреотропин; белковую природу имеют и некоторые, пока мало изученные гормоны кишечника.

Значительное число известных гормонов являются пептидами -- окситоцин, вазопрессин, адренокортикотропный гормон, б- и в - меланоцитстимулирующие гормоны (гипофиз), глюкагон (поджелудочная железа), гастрин, секретин и холецистокинин (желудочно-кишечный тракт), кальцитонин (щитовидная железа), тканевые гормоны брадикинин и ангиотензин, вещества гормонального характера глутатион и офтальмовая кислота и др.

К гормонам близко примыкают так называемые рилизинг-факторы гипоталамуса (либерины), а также соответствующие ингибиторы, представляющие собой сравнительно небольшие пептиды; их основная функция заключается в контроле секреции гормонов гипофиза.

Схема 2. Биологические функции пептидов.

Здесь уместно упомянуть и недавно открытые нейропептиды мозга -- энкефалины, эндорфины, пептиды памяти, сна и т. п. Установлено, что эти пептиды образуются из более сложных белковых предшественников путем процессинга. Быстрый рост числа вновь обнаруживаемых соединений такого типа свидетельствует о важности химических механизмов в регуляции поведения и высшей нервной деятельности.

Среди белково-пептидных веществ имеется много антибиотиков. К ним относятся колицины, итурин, актиноксантин, неокарциностатин и ряд других, пока плохо охарактеризованных соединений. Многочисленную группу составляют антибиотики-пептиды: грамицидин S, грамицидины А, В и С, тироцидины, бацитрацины, полимиксины, антибиотики-депсипептиды -- валиномицин, энниатины, актиномицин Б, низин, этамицин, эхиномицин; сюда же могут быть отнесены пенициллины, цефалоспорины, бластолизин и т. п.

Наиболее мощные из известных токсинов являются белками микробного происхождения. По уровню токсичности не имеют себе равных ботулинический, столбнячный и дифтерийный токсины и ряд энтеротоксинов. Среди растительных токсичных белков хорошо изучены рицин (клещевина) и абрин. Белками являются и многочисленные зоотоксины змей, пауков, ракообразных. Среди пептидов необходимо упомянуть токсины пчел, шершней, ос, морских анемон и других морских организмов, ядовитые начала бледной поганки фаллоидин и аманитин, их антагонист антаманид, грибковый метаболит малформин и др.

К группе пептидных алкалоидов принадлежат действующие начала спорыньи -- эрготамин, эргозин, эргокристин, а также фран-гуланин, скутианин, цицифин, пандамин.

Большую группу составляют так называемые транспортные белки, т. е. белки, участвующие в переносе различных веществ, ионов и т. п. К ним обычно относят цитохром с, участвующий в транспорте электронов, гемоглобин, гемоцианин и миоглобин, переносящие кислород, а также сывороточный альбумин (транспорт жирных кислот в крови), в-липопротеин (транспорт липидов), церулоплазмин (транспорт меди в крови), липид-обменивающие белки мембран. В последнее время эта группа пополнилась мембранными белками, выполняющими функции ионных каналов,-- здесь необходимо упомянуть белковые компоненты полосы В-3, ответственные за транспорт анионов через эритроцитарную мембрану, белки Na+, Са2+- и К+-каналов возбудимых мембран. К «транспортным» пептидам резонно отнести канал-образующие соединения типа аламетицина и грамицидинов А, В и С, а также пептидные антибиотики -- ионофоры ряда валиномицина, энниатина и др.

Под понятием защитные белки объединяются вещества белковой природы, которые помогают организму преодолевать патологические состояния или бороться с возбудителями заболеваний (главным образом, в случае высших организмов). Сюда относятся, в частности, иммуноглобулины, антигены главного комплекса тканевой совместимости, антиген-распознающие рецепторы лимфоцитов, лимфокины, монокины, а также белки системы комплемента; вполне логично рассматривать здесь и антивирусные агенты типа интерферона, факторы некроза опухолей и др. В эту же группу могут быть включены и белки, вызывающие свертывание крови (фибриноген, фибрин, тромбин). Среди структурных белков необходимо прежде всего упомянуть макромолекулы, составляющие остов многих тканей и органов и определяющие их механические свойства: коллаген соединительных тканей, костей и суставов, эластин связок, б-кератин кожи, волос, ногтей, рогов и перьев, склеротин наружного скелета насекомых, фиброин шелка. Эта группа может быть дополнена протеогликанами клеточных стенок бактерий, белками оболочек вирусов, некоторыми мембранными и рибосомальными белками. Отметим, что приписываемая многим белкам чисто структурная функция часто связана лишь с недостаточным уровнем знаний об их других, более специфических функциях.

Родственный класс составляют так называемые двигательные белки. Из них наиболее известны белки сократительного аппарата мышц -- актин и миозин. Их разновидностью являются динеин ресничек и жгутиков простейших, спектрин мембран эритроцитов, нейростенин пресинаптических мембран и т. п. Сюда можно отнести и белки бактерий, ответственные за движение в градиенте концентраций различных веществ (хемотаксис), в частности мальтозу - связывающий белок Е.соli.

Из рецепторных белков следует, безусловно, упомянуть родопсин зрительного аппарата животных и родственный ему бактериородопсин галофильных бактерий, которые способны воспринимать и преобразовывать световые сигналы. В настоящее время интенсивно изучаются рецепторы многочисленных гормонов, а также нейропептидов мозга, рецепторы нейромедиаторов (например, ацетилхоли новый рецептор постсинаптических мембран), рецепторы клеточной поверхности эритроцитов, лимфоцитов и других клеток.

Менее определена функция группы регуляторных белков и пептидов, поскольку, в известной степени, эту роль выполняют любые белки. Сюда относят белково-пептидные вещества, не вошедшие в состав вышеупомянутых групп, но весьма важные для функционирования отдельных звеньев клеточного механизма, например гистоны и репрессоры, регулирующие активность генов, «воротные» белки мембранных каналов, рибосомальные белковые факторы инициации и элонгации. К этой группе можно отнести и встречающиеся в мышечной ткани природные пептиды карнозин и ансерин.

Наконец, следует упомянуть группу запасных белков. В ее состав входят овальбумин яичного белка, казеин молока, глиадин пшеницы, зеин ржи, гордеин ячменя, а также ферритин («депо» железа в селезенке) и др.

Белки -- важнейшая составная часть пищи человека и корма животных. Человеку необходимо в день в среднем 70 г белка.

Главным источником пищевого белка являются сельскохозяйственные продукты -- мясо, молоко, пшеница, рожь, кукуруза, рис, соя, горох, фасоль, различные овощи и фрукты; значительные количества белка содержат рыба и продукты моря. Основными характеристиками пищевого или кормового белка принято считать его перевариваемость и сбалансированность по аминокислотному составу; это устанавливается путем сравнения данного белка со стандартным препаратом, например казеином или лактальбумином, в наилучшей степени отвечающим физиологическим потребностям человека и животных.

В то же время известно, что многие белки содержат недостаточное количество некоторых незаменимых аминокислот -- лизина, триптофана, метионина, вследствие чего их питательная ценность резко снижается; примером может служить белок кукурузы, обнаруживающий дефицит по лизину. В этом случае целесообразно для компенсации добавлять к рациону рассчитанные количества недостающего компонента -- в виде свободной аминокислоты либо в виде другого белка, специфически богатого данным компонентом. Таким путем, в частности, готовят искусственные питательные смеси, применяемые для лечебного питания во многих странах.

Незаменимые аминокислоты не синтезируются в организме животных и должны поступать извне -- с пищей. К ним относятся: гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин и аргинин. Организм некоторых животных обладает способностью синтезировать, хотя и недостаточно быстро, аргинин, необходимый для нормального роста.

В настоящее время на земном шаре ощущается острый белковый дефицит, связанный с недостаточным производством и неравномерным распределением продуктов питания, а также быстрым ростом народонаселения. Эта проблема, особенно актуальная в развивающихся странах Азии и Африки, привлекает пристальное внимание многих государств и международных организаций. Лучшим и наиболее естественным путем увеличения производства пищевых продуктов является повышение продуктивности сельскохозяйственного производства во всех регионах нашей планеты на основе внедрения новейших достижений науки. Большое значение приобретает использование нетрадиционных источников белка -- к ним можно отнести огромные биологические ресурсы Мирового океана, в частности криль, планктон и др. В этой связи несомненные перспективы открывает получение белка с помощью микробиологического синтеза: исходным сырьем здесь могут служить углеводороды нефти, чистые парафины, природный газ, отходы деревообрабатывающей и целлюлозно-бумажной промышленности, меласса, синтетические спирты (метанол, этанол), метан и т. п. Мощная микробиологическая промышленность, производящая белково-витаминные концентраты в качестве добавок в корм сельскохозяйственным животным, создана в Советском Союзе.

Белку и его компонентам -- аминокислотам -- отводится центральное место и в проблеме создания искусственной пищи, над решением которой работают многие лаборатории мира.

Исторический очерк. Свое название белки получили от яичного белка, который с незапамятных времен использовался человеком как составная часть пищи. Согласно описаниям Г. Плиния Старшего, уже в Древнем Риме яичный белок применялся и как лечебное средство. Однако подлинная история белковых веществ начинается тогда, когда появляются первые сведения о свойствах белков как химических соединений (свертываемость при нагревании, разложение кислотами и крепкими щелочами и т. п.). Среди белков животного происхождения, вслед за яичным белком, были охарактеризованы белки крови. Образование сгустков крови при ее свертывании описано еще основателем учения о кровообращении У. Гарвеем; позднее на этот факт обратил внимание и Р. Бойль. Среди растительных белков пальма первенства принадлежит нерастворимой в воде клейковине из пшеничной муки, которую впервые получил Я. Беккари. В своих работах, опубликованных в «Комментариях Болонского института наук и искусств» в 1728 г., он отметил сходство клейковины с веществами животной природы, почему и называл ее Gluten vegetabile.

Впервые термин белковый (albumineise) применительно ко всем жидкостям животного организма использовал, по аналогии с яичным белком, французский физиолог ф. Кене в 1747 г., и именно в таком толковании термин вошел в 1751 г. в «Энциклопедию» Д. Дидро и Ж. Д'Аламбера.

С этого периода исследования, связанные с получением белков, приобретают систематический характер. В 1759 г. А. Кессель-Майер, а несколько позднее И. Руэль описали выделение клейковины из различных растений и охарактеризовали ее свойства. В 1762 г. А. Халлер исследовал процесс образования и свертывания казеина, а в 1777 г. А. Тувенель, работавший тогда в Петербурге, называет творог белковой частью молока (partie glutineuse). Важнейший этап в изучении белков связан с работами французского химика А. Фуркруа, который рассматривал белки как индивидуальные вещества и доказал единую природу белковых веществ, выделенных из растительных и животных источников. Для трех главных белковых компонентов крови он предложил названия альбумин, желатин и фибрин В 1780 г. Ф. Вассерберг относит к телам белковой природы хрусталик глаза.

К началу XIX столетия появляются первые работы по химическому изучению белков. Уже в 1803 г. Дж. Дальтон дает первые формулы белков -- альбумина и желатина -- как веществ, содержащих азот. В 1810 г. Ж. Гей-Люссак проводит химические анализы белков -- фибрина крови, казеина и отмечает сходство их элементного состава. Решающее значение для понимания химической природы белков имело выделение при их гидролизе аминокислот. Вероятно, первым это сделал А. Браконно в 1820 г., когда, действуя на белки серной кислотой, при кипячении он получил «клеевой сахар», или гликокол (глицин), при гидролизе фибрина из мяса -- леицин и при разложении шерсти -- также лейцин и смесь других продуктов гидролиза. Первой открытой аминокислотой был, видимо, аспарагин, выделенный Л. Вокленом из сока спаржи Asparagus (1806). В это же время Ж. Пруст получил лейцин при разложении сыра и творога. Затем из продуктов гидролиза белка были выделены многие другие аминокислоты (табл. 1).

Первая концепция строения белков принадлежит голландскому химику Г. Мульдеру (1836). Основываясь на теории радикалов, он сформулировал понятие о минимальной структурной единице, входящей в состав всех белков. Эту единицу, которой приписывался состав 2CeHi2N2 + 50, Г. Мульдер назвал протеином (Pr), а свою концепцию -- теорией протеина.

Позднее состав протеина был уточнен -- C40H62N 10О12; дополнительно к протеинным единицам некоторые белки содержали серу и фосфор. Формула белков, предложенная Мульдером в 1838 г., выглядела так:

белок сыворотки крови 10Рr S2Р

белок куриных яиц 10Рr SР

фибрин 10Рr SР

казеин 10Рr S

клеиковина растений 10Рr S2

кристаллин (из хрусталика глаза) 15Рr

В частности, состав ногтей и лошадиных копыт изображался как

С120Н186К34О36S4 = (С40Н62N10)2О12 + С40Н62N1012S2)2.

Г. Мульдер пользовался структурными формулами и для обозначения ряда физиологических процессов.

В своем учебнике физиологической химии (1844) он рассматривал дыхание как окисление протеина, пищеварение -- как перестройку белка с изменением содержания S, Р, Са и т. п.

Работы Г. Мульдера способствовали широкому распространению взглядов о единстве всех белков, их фундаментальном значении в мире живой природы.

В ходе проверки «теории протеина» были резко расширены химические исследования белков, и в этом приняли участие выдающиеся химики того времени Ю. Либих и Ж. Дюма. Ю. Либих, поддержавшие в принципе идею протеиновой единицы, уточнил формулу протеина С48Н72N2014, Ж. Дюма предложил свой вариант -- С48Н74N12015, однако Г. Мульдер отстаивал правильность составленной им формулы. Его поддерживал Й. Берцелиус, изложивший теорию протеина в качестве единственной теории строения белка в знаменитом учебнике химии (1840), что означало полное признание и торжество концепции Г. Мульдера.

Однако вскоре наступают трудные времена для теории протеина. В 1846 г. Н. Э. Лясковский. работавший в лаборатории Ю. Либиха, доказал неточность многих приведенных Г. Мульдером анализов Свои сомнения в правильности теории публично высказал Ю. Либих, он планировал начать широкие исследования структуры белков и даже изучил продукты распада белковых веществ.

Понимая весомость аргументов оппонентов, Г. Мульдер пытался корректировать формулу протеина (С36Н50N8О10), но в конце концов уступил под натиском новых фактов и открытий.

Теория протеина стала достоянием истории, однако ее значение непреходяще, ибо она стимулировала химические исследования белков, сделала белки одним из главных объектов бурно развивающейся химии природных веществ

Таблица 1 Открытие аминокислот в составе белков

Аминокислота

Год

Источник

Кто впервые выделил

Глицин

1820

Желатина

А. Браконно

Лейцин

1820

Мышечные волокна

А. Браконно

1839

Фибрин шерсти

Г. Мульдер

Тирозин

1848

Казеин

Ф. Бопп

Серии

1865

Шелк

Э. Крамер

Глутаминовая кислота

1866

Растительные белки

Г. Риттхаузен

Аспарагиновая кислота

1868

Конглутин, легумин

(ростки спаржи)

Г. Риттхаузен

Фенилаланин

1881

Ростки люпина

Э. Шульце,

Й. Барбьери

Алании

1888

Фиброин шелка

Т. Вейль

Лизин

1889

Казеин

Э. Дрексель

Аргинин

1895

Вещество рога

С. Гедин

Гистидин

1896

Стурин, гистоны

А. Кессель, С. Гедин

Цистин

1899

Вещество рога

К. Мёрнер

Валин

1901

Казеин

Э. Фишер

Пролин

1901

Казеин

Э. Фишер

Гидроксипролин

1902

Желатина

Э. Фишер

Триптофан

1902

Казеин

Ф. Гопкинс, Д. Кол

Изолейцин

1904

Фибрин

Ф, Эрлих

Метионин

1922

Казеин

Д. Мёллер

Треонин

1925

Белки овса

С. Шрайвер и др.

Гидроксилизин

1925

Белки рыб

С. Шрайвер и др.

Для формирования современных представлений о структуре белка существенное значение имели работы по расщеплению белковых веществ протеолитическими ферментами. Одним из первых их использует Г. Мейснер. В 1850 г. К. Леман предлагает называть пептонами продукты разложения белков пепсином. Изучая этот процесс, Ф. Хоппе-Зайлер и Ш. Вюрц в 70-х годах прошлого столетия пришли к важному выводу, что пептоны образуются в результате гидролиза белков ферментом. Они были весьма близки к правильному толкованию таких экспериментов с позиций структурной химии, но, к сожалению, последнего шага на пути к теории строения белка сделать не сумели. Очень близок к истине был и А. Я. Данилевский, который справедливо утверждал, что белки построены из аминокислот и имеют полимерную природу; главной же структурной единицей он ошибочно считал биуретовую группировку .

Дальнейшие структурные исследования белка, а также основополагающие работы Т. Курциуса по синтезу пептидов привели в конце концов к формулированию (1902) пептидной гипотезы, согласно которой белки построены из аминокислот, соединенных пептидными связями -- СО--NН--. Пептидная теория (Э. Фишер и В. Гофмейстер) получила полное подтверждение в дальнейших исследованиях. Изучение строения белков было поставлено на прочную научную основу.

Размещено на Allbest.ru


Подобные документы

  • Изучение функций белков - высокомолекулярных органических веществ, построенных из остатков аминокислот, которые составляют основу жизнедеятельности всех органов. Значение аминокислот - органических веществ, которые содержат амин- и карбоксильную группы.

    презентация [847,2 K], добавлен 25.01.2011

  • Понятие белков как высокомолекулярных природных соединений (биополимеров), состоящих из остатков аминокислот, которые соединены пептидной связью. Функции и значение белков в организме человека, их превращение и структура: первичная, вторичная, третичная.

    презентация [564,0 K], добавлен 07.04.2014

  • Белки (протеины) – высоко молекулярные, азотосодержащие природные органические вещества, молекулы которых построены из аминокислот. Строение белков. Классификация белков. Физико-химические свойства белков. Биологические функции белков. Фермент.

    реферат [4,0 M], добавлен 15.05.2007

  • Понятие и структура белков, аминокислоты как их мономеры. Классификация и разновидности аминокислот, характер пептидной связи. Уровни организации белковой молекулы. Химические и физические свойства белков, методы их анализа и выполняемые функции.

    презентация [5,0 M], добавлен 14.04.2014

  • Органические соединения аминокислоты, составные части их молекулы. Аминокислоты - вещества, входящие в состав организма человека и животных. Заменимые и незаменимые аминокислоты. Белки – биополимеры из остатков аминокислот. Качественный состав белков.

    презентация [244,1 K], добавлен 21.04.2011

  • Аминокислотный состав белков в организмах, роль генетического кода. Комбинации из 20 стандартных аминокислот. Выделение белков в отдельный класс биологических молекул. Гидрофильные и гидрофобные белки. Принцип построения белков, уровень их организации.

    творческая работа [765,3 K], добавлен 08.11.2009

  • Строение и свойства аминокислот - органических амфотерных соединений, в состав которых входят карбоксильные группы – СООН и аминогруппы - NH2. Последовательность чередования аминокислотных остатков в полипептидной цепи. Характеристика простых белков.

    реферат [340,5 K], добавлен 28.11.2014

  • Уровни включения стабильных изотопов дейтерия. Молекулы секретируемых аминокислот L-фенилаланинпродуцирующего штамма Brevibacterium methylicum и L-лейцинпродуцирующего штамма Methylobacillus flagellatum. Аминокислотные остатки суммарных белков.

    статья [1,7 M], добавлен 23.10.2006

  • Пищевые белки как основной источник аминокислот для человека. Группы аминокислот, которые встречаются в белках организма. Переваривание белков в желудке и кишечнике. Обезвреживание продуктов гниения путем соединения с серной и глюкуроновой кислотами.

    презентация [2,5 M], добавлен 28.12.2013

  • Исследование физиологической роли аминокислот - конечных продуктов гидролиза белков. Классификация аминокислот по числу аминных и карбоксильных групп на: моноаминомонокарбоновые; диаминомонокарбоновые; моноаминодикарбновые новые и диаминодикарбоновые.

    контрольная работа [199,0 K], добавлен 13.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.