Основные признаки живого и уровни организации жизни
Проявления жизни, строение и функции живых существ, а также их сообществ. Открытие клетки как элемента живых структур и представление о системности. Рассмотрение определения жизни, изучение основных свойств, признаков живого, уровней организации жизни.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 08.03.2011 |
Размер файла | 25,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ВВЕДЕНИЕ
Биология -- науки о живой природе и закономерностях, ею управляющих. Биология изучает все проявления жизни, строение и функции живых существ, а также их сообществ. Она выясняет происхождение, распространение и развитие живых организмов, связи их друг с другом и с неживой природой.
Живому миру характерно необычайное разнообразие. В настоящее время обнаружено и описано примерно 500 тыс. видов растений и более 1 млн, видов животных, более 3 тыс. видов бактерий и сине-зеленых водорослей, сотни тысяч грибов. Число еще не описанных видов оценивается по меньшей мере в 1--2 млн. Выявление и объяснение общих явлений и процессов для всего многообразия организмов -- задача общей биологии.
Биология ХХ века углубила понимание существенных черт живого, раскрыла молекулярные основы жизни. В основе современной биологической картины мира лежит представление о том, что мир живого - это грандиозная Система высокоорганизованных систем. Любая система (и в неорганической и в органической природе) состоит из элементов (компонентов) и связей между ними (структуры), которые объединяют данную совокупность элементов в единое целое. Биологическим системам свойственны свои специфические элементы и особенные типы связей между ними.
Открытие клетки как элемента живых структур и представление о системности, цельности этих структур стали основой последующего построения иерархии живого.
Основной целью данной работы является рассмотрение двух основных вопросов биологии: основных признаков живого и уровней организации жизни.
Задачи:
1) изучение литературы по данному вопросу,
2) рассмотрение определения жизни,
3) изучение основных свойств и признаков живого,
4) изучение уровней организации жизни.
Объект исследования - жизнь и ее особенности. Предмет - основные признаки живого, уровни организации жизни.
ОСНОВНЫЕ ПРИЗНАКИ ЖИВОГО
клетка элемент живая структура
Во многих определениях жизни указывается ведущее свойство, которое отличает живое от неживого. Аристотель относит к таким свойствам питание, рост, одрехление. Павлов определяет жизнь, как сложный химический процесс. Апарин - как особую очень сложную форму движения материи. Энгельс - как способ существования белковых молекул. Современное определение жизни звучит так:
«Жизнь - это макромолекулярная открытая система, которой свойственна иерархическая организация, способность к самовозобновлению, обмен веществ и тонко регуляторный процесс».
Каждый организм представляет собой совокупность упорядочение взаимодействующих структур, образующих единое целое, т. е. является системой. Живые организмы обладают признаками, которые отсутствуют у большинства неживых систем. Однако среди этих признаков нет ни одного такого, который был бы присущ только живому. Возможный способ описать жизнь -- это перечислить основные свойства живых организмов.
Свойства живого можно описать по-разному, в зависимости от точки зрения.
В частности, свойствами живого можно назвать:
1. Самовозобновление, которое связано с постоянным обменом вещества и энергии, и в основе которого лежит способность хранить и использовать биологическую информацию в виде уникальных информационных молекул: белков и нуклеиновых кислот.
2. Самовоспроизведение, которое обеспечивает преемственность между поколениями биологических систем.
3. Саморегуляция, которая основана на потоке вещества, энергии и информации.
4. Большинство химических процессов в организме находятся не в динамичном состоянии.
5. Живые организмы способны к росту.
Также основные свойства живого можно разделить следующим образом.
1. Одна из наиболее примечательных особенностей живыхорганизмов -- это их сложность и высокая степень организации.Они характеризуются усложненным внутренним строением и содержат множество различных сложных молекул.
2. Любая составная часть организма имеет специальное назначение и выполняет определенные функции. Это относится нетолько к органам (почки, легкие, сердце и т. д.) и клеткам, нои к внутриклеточным структурам и молекулам.
3. Живые организмы обладают способностью извлекать, преобразовывать и использовать энергию окружающей среды -либо в форме органических питательных веществ, либо в видеэнергии солнечного излучения.
Благодаря этой энергии и веществам, поступающим из окружающей среды, организмы поддерживают свою целостность (упорядоченность) и осуществляют раз личные функции, возвращают же в природу продукты распада и преобразованную энергию в виде тепла, т. е. организмы способны к обмену веществом и энергией.
4. Организмы способны специфически реагировать на изменения окружающей среды. Способность реагировать на внешнеераздражение -- универсальное свойство живого.
5. Живые организмы хорошо приспособлены к среде обитания. Они прекрасно соответствуют своему образу жизни. Достаточно ознакомиться со строением крота, рыбы, паразитическогочервя, чтобы представить в общих чертах, как они живут. Особенности строения, функций и поведения данного организма, отвечающие его образу жизни, называются адаптациями (приспособлениями).
6. Самая поразительная особенность живых организмов -способность к самовоспроизведению, т. е. размножению. Потомство всегда сходно с родителями. Существуют механизмы передачи информации о признаках, свойствах и функциях организмов из поколения в поколение. В этом проявляется наследственность. Как установлено, механизмы хранения и передачи наследственных свойств одинаковы для всех видов.
Однако сходство родителей и потомков никогда не бывает полным: потомки, будучи похожи на родителей, всегда в чем-то отличаются от них. В этом состоит явление изменчивости, основные законы которойтакже общие для всех видов. Таким образом, живым организмам свойственны размножение, наследственность и изменчивость.
7. Для живого характерна способность к историческому развитию и изменению от простого к сложному. Этот процесс называют эволюцией. В результате эволюции возникло все многообразие живых организмов, приспособленных к определенным условиям существования.
Основные признаки живого:
1. Обмен веществом и энергией.
2. Обмен веществ - особый способ взаимодействия живых организмов со средой.
3. Обмен веществ требует постоянного притока некоторых веществ и энергии из вне и выделения некоторых продуктов диссимиляции во внешнюю среду. Организм является открытой системой.
4. Раздражимость - заключается в передаче информации от внешней среды к организму; на основе раздражимости осуществляется Саморегуляция и гомеостаз.
5. Репродукция - воспроизведение себе подобных.
6. Наследственность - поток информации между поколениями в результате чего обеспечивается преемственность.
7. Изменчивость - появление новых признаков в процессе репродукции; основа эволюции.
8. Онтогенез - индивидуальное развитие, реализация индивидуальной программы.
9. Филогенез - историческое развитие, эволюционное развитие осуществляется в результате наследственной изменчивости, естественного отбора и борьбы за существование.
10. Организмы включены в процесс эволюции.
Таким образом, основными признаками живого является то, что они могут развиваться и способны к размножению и созданию собственного вида.
УРОВНИ ОРГАНИЗАЦИИ ЖИЗНИ
Для живой природы характерны разные уровни организации ее структур, между которыми существует сложное соподчинение. Жизнь на каждом уровне изучают соответствующие разделы биологии: молекулярная биология, цитология, генетика, анатомия, физиология, эволюционное учение, экология.
Живая природа является целостной, но неоднородной системой, которой свойственна иерархическая организация. Под системой, в науке понимают единство, или целостность, составленное из множества элементов, которые находятся в закономерных отношениях и связях друг с другом. Главные биологические категории, такие, как геном (генотип), клетка, организм, популяция, биогеоценоз, биосфера, представляют собой системы.
Иерархической называется система, в которой части, или элементы, расположены в порядке от низшего к высшему. Так, в живой природе биосфера слагается из биогеоценозов, представленных популяциями организмов разных видов, а тела организмов имеют клеточное строение.
Иерархический принцип организации позволяет выделить в живой природе отдельные уровни, что удобно с точки зрения изучения жизни как сложного природного явления.
Выделяется несколько классификаций уровней организации жизни, которые не противоречат друг другу, а, наоборот, в чем-то дополняют друг друга.
Все живые организмы в природе состоят из одинаковых уровней организации, это общая для всех живых организмов характерная биологическая закономерность. Выделяют следующие уровни организации живых организмов:
- молекулярный,
- клеточный,
- тканевый,
- органный,
- организменный,
- популяционно-видовой,
- биогеоценотический,
- биосферный.
Молекулярно-генетический уровень.
Это наиболее элементарный характерный для жизни уровень. Как бы сложно или просто ни было строение любого живого организма, они все состоят из одинаковых молекулярных соединений. Примером этого являются нуклеиновые кислоты, белки, углеводы и другие сложные молекулярные комплексы органических и неорганических веществ.
Их называют иногда биологическими макромолекулярными веществами. На молекулярном уровне происходят различные процессы жизнедеятельности живых организмов: обмен веществ, превращение энергии. С помощью молекулярного уровня осуществляется передача наследственной информации, образуются отдельные органоиды и происходят другие процессы.
Клеточный уровень.
Клетка является структурной и функциональной единицей всех живых организмов на Земле. Отдельные органоиды в составе клетки имеют характерное строение и выполняют определенную функцию. Функции отдельных органоидов в клетке взаимосвязаны и выполняют единые процессы жизнедеятельности.
У одноклеточных организмов (одноклеточные водоросли и простейшие) все жизненные процессы проходят в одной клетке, и одна клетка существует как отдельный организм. Вспомните одноклеточные водоросли, хламидомонады, хлореллу и простейших животных -- амебу, инфузорию и др. У многоклеточных организмов одна клетка не может существовать как отдельный организм, но она является элементарной структурной единицей организма.
Тканевый уровень.
Совокупность сходных по происхождению, строению и функциям клеток и межклеточных веществ образует ткань. Тканевый уровень характерен только для многоклеточных организмов. Также отдельные ткани не являются самостоятельным целостным организмом. Например, тела животных и человека состоят из четырех различных тканей (эпителиальная, соединительная, мышечная, нервная). Растительные ткани называются: образовательная, покровная, опорная, проводящая и выделительная. Вспомните строение и функции отдельных тканей.
Органный уровень.
У многоклеточных организмов объединение нескольких одинаковых тканей, сходных по строению, происхождению и функциям, образует органный уровень. В составе каждого органа встречается несколько тканей, но среди них одна наиболее значительная. Отдельный орган не может существовать как целостный организм. Несколько органов, сходных по строению и функциям, объединяясь, составляют систему органов, например пищеварения, дыхания, кровообращения и т. д.
Организменный уровень.
Растения (хламидомонада, хлорелла) и животные (амеба, инфузория и т. д.), тела которых состоят из одной клетки, представляют собой самостоятельный организм. А отдельная особь многоклеточных организмов считается как отдельный организм. В каждом отдельном организме происходят все жизненные процессы, характерные для всех живых организмов, -- питание, дыхание, обмен веществ, раздражимость, размножение и т. д. Каждый самостоятельный организм оставляет после себя потомство.
У многоклеточных организмов клетки, ткани, органы и системы органов не являются отдельным организмом. Только целостная система органов, специализированно выполняющих различные функции, образует отдельный самостоятельный организм. Развитие организма, начиная с оплодотворения и до конца жизни, занимает определенный промежуток времени. Такое индивидуальное развитие каждого организма называется онтогенезом. Организм может существовать в тесной взаимосвязи с окружающей средой.
Популяционно-видовой уровень.
Совокупность особей одного вида пли группы, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида, составляет популяцию. На популяционном уровне осуществляются простейшие эволюционные преобразования, что способствует постепенному появлению нового вида.
Биогеоценотический уровень.
Совокупность организмов разных видов и различной сложности организации, приспособленных к одинаковым условиям природной среды, называется биогеоценозом, или природным сообществом. В состав биогеоценоза входят многочисленные виды живых организмов и условия природной среды. В природных биогеоценозах накапливается энергия и передается от одного организма к другому. Биогеоценоз включает неорганические, органические соединения и живые организмы.
Биосферный уровень.
Совокупность всех живых организмов на нашей планете и общей природной среды их обитания составляет биосферный уровень. На биосферном уровне современная биология решает глобальные проблемы, например определение интенсивности образования свободного кислорода растительным покровом Земли или изменения концентрации углекислого газа в атмосфере, связанные с деятельностью человека.
Главную роль в биосферном уровне выполняют "живые вещества", т. е. совокупность живых организмов, населяющих Землю. Также в биосферном уровне имеют значение "биокосные вещества", образовавшиеся в результате жизнедеятельности живых организмов и "косных" веществ (т. е. условий окружающей среды. На биосферном уровне происходит круговорот веществ и энергии на Земле с участием всех живых организмов биосферы.
Уровни организации жизни можно представить и в следующей последовательности. Особенность данной классификации заключается в том, что отдельные уровни иерархической системы жизни определяются в ней на общей основе выделения для каждого уровня элементарной единицы и элементарного явления.
Элементарная единица - это структура или объект, закономерные изменения которых, обозначаемые как элементарное явление, составляют специфический для соответствующего уровня вклад в процесс сохранения и развития жизни. Соответствие выделяемых уровней узловым моментам эволюционного процесса, вне которого не стоит ни одно живое существо, делает их всеобщими, распространяющимися на всю область жизни, включая человека.
1. Молекулярный уровень. Элементарные структурные единицы - гены - фрагменты молекулы нуклеиновой кислоты, в котором записан определенный в качественном и количественном отношении объем биологической (генетической) информации.
Элементарное явление заключается, прежде всего, в процессе конвариантной редупликации, или самовоспроизведении, с возможностью некоторых изменений в содержании закодированной в гене информации. Путем редупликации ДНК происходит копирование заключенной в генах биологической информации, что обеспечивает преемственность и сохранность (консерватизм) свойств организмов в ряду поколений. Редупликация, таким образом, является основой наследственности.
В силу ограниченной стабильности молекул или ошибок синтеза в ДНК (время от времени, но неизбежно) случаются нарушения, которые изменяют информацию генов. В последующей редупликации ДНК эти изменения воспроизводятся в молекулах-копиях и наследуются организмами дочернего поколения. Указанные изменения возникают и тиражируются закономерно, что и делает редупликацию ДНК конвариантной, т.е. происходящей иногда с некоторыми изменениями. Такие изменения в генетике получили название генных (или истинных) мутаций. Конвариантность редупликации, таким образом, служит основой мутационной изменчивости.
Биологическая информация, заключающаяся в молекулах ДНК, не участвует непосредственно в процессах жизнедеятельности. Она переходит в действующую форму, будучи перенесена в молекулы белков. Отмеченный перенос осуществляется благодаря механизму матричного синтеза, в котором исходная ДНК служит, как и в случае с редупликацией, матрицей (формой), но для образования не дочерней молекулы ДНК, а матричной РНК, контролирующей биосинтез белков. Отмеченное дает основание причислить матричный синтез информационных макромолекул также к элементарному явлению на молекулярно-генетическом уровне организации жизни.
Основные явления этого уровня:
- репликация,
- биосинтез,
- мутации,
- передача информации.
2. Клеточный уровень. Воплощение биологической информации в конкретные процессы жизнедеятельности требует специальных структур, энергии и разнообразных химических веществ (субстратов). Описанные выше условия в живой природе обеспечивает клетка, служащая элементарной структурой клеточного уровня.
Элементарное явление представлено реакциями клеточного метаболизма, составляющими основу потоков энергии, веществ и информации. Благодаря деятельности клетки поступающие извне вещества превращаются в субстраты и энергию, которые используются (в соответствии с имеющейся генетической информацией) в процессе биосинтеза белков и других соединений, необходимых организму.
Таким образом, на клеточном уровне сопрягаются механизмы передачи биологической информации и превращения веществ и энергии. Элементарное явление на этом уровне служит энергетической и вещественной основой жизни на всех других уровнях ее организации.
Основные процессы уровня: способность к самовоспроизведению, регуляторность химических реакций, запасание и расходование энергии.
3. Организменный уровень. Единицей уровня является организм в его развитии от момента зарождения до прекращения существования в качестве живой системы, что позволяет также назвать этот уровень онтогенетическим. Закономерные изменения организма в индивидуальном развитии составляют элементарное явление данного уровня.
Эти изменения обеспечивают рост организма, дифференциацию его частей и одновременно интеграцию развития в единое целое, специализацию клеток, органов и тканей. В ходе онтогенеза в определенных условиях внешней среды происходит воплощение наследственной информации в биологические структуры и процессы, на основе генотипа формируется фенотип организмов данного вида.
Основные процессы уровня:
- возникновение новых организмов,
- взаимодействие организмов между собой.
4. Популяционно-видовой уровень. Единицей уровня являются особи, объединённые в популяции, которые в свою очередь объединены в виды. Объединение особей в популяцию происходит благодаря общности генофонда, используемого в процессе полового размножения для создания генотипов особей следующего поколения. Популяция в силу возможности межпопуляционных скрещиваний представляет собой открытую генетическую систему.
Действие на генофонд популяции элементарных эволюционных факторов, таких, как мутационный процесс, колебания численности особей, естественный отбор, приводит к эволюционно значимым изменениям генофонда, которые представляют элементарные явления на данном уровне.
Основные признаки уровня:
- рождаемость,
- смертность,
- структура популяции (половая и возрастная),
- плотность, численность популяции.
5. Биосферный уровень. Организмы одного вида населяют территорию с известными абиотическими показателями (климат, химизм почв, гидрологические условия) и взаимодействуют с организмами других видов. В процессе совместного исторического развития на определенной территории организмов разных систематических групп образуются динамичные, устойчивые во времени сообщества - биогеоценозы, которые служат элементарной единицей биогеоценотического (экосистемного) уровня.
Элементарное явление на рассматриваемом уровне представлено потоками энергии и круговоротами веществ. Ведущая роль в этих круговоротах и потоках принадлежит живым организмам. Биогеоценоз - это открытая в вещественном и энергетическом плане система. Биогеоценозы, различаясь по видовому составу и характеристикам абиотической своей части, объединены на планете в единый комплекс - область распространения жизни, или биосферу.
Для этого уровня характерно:
- активное взаимодействие живого и неживого вещества,
- биологический круговорот веществ и энергии.
Приведенные выше уровни отражают важнейшие биологические явления, без которых невозможны эволюция и, следовательно, само существование жизни. Хотя элементарные единицы и явления на выделяемых уровнях различны, все они тесно взаимосвязаны, решая свою специфическую задачу в рамках единого эволюционного процесса.
С конвариантной редупликацией на молекулярно-генетическом уровне связаны элементарные основы этого процесса в виде явлений наследственности и истинной мутационной изменчивости.
Особая роль клеточного уровня состоит в энергетическом, вещественном и информационном обеспечении происходящего на всех других уровнях.
На онтогенетическом уровне биологическая информация, находящаяся в генах, преобразуется в комплекс признаков и свойств организма. Возникающий таким образом фенотип становится доступным действию естественного отбора.
На популяционно-видовом уровне определяется эволюционная ценность изменений, относящихся к молекулярно-генетическому, клеточному и онтогенетическому уровням.
Специфическая роль биогеоценотического уровня состоит в образовании сообществ организмов разных видов, приспособленных к совместному проживанию в определенной среде обитания. Важной отличительной чертой таких сообществ является их устойчивость во времени.
Рассмотренные уровни отражают общую структуру эволюционного процесса, закономерным результатом которого является человек. Поэтому типичные для этих уровней элементарные структуры и явления распространяются и на людей, правда, с некоторыми особенностями в силу их социальной сущности.
Также уровни организации жизни можно представить в виде следующего описания.
Самый нижний, наиболее древний уровень жизни -- это уровень молекулярных структур. Здесь проходит граница между живым и неживым. Выше находится клеточный уровень жизни. И клетка, и заключенные в ней молекулярные структуры в главных чертах строения у всех организмов сходны.
Органно-тканепый уровень характерен только для многоклеточных организмов, у которых клетки и образованные из них части организма достигли высокой степени структурной и функциональной специализации.
Следующий уровень -- это уровень целостного организма. Как бы ни различались организмы между собой, их объединяет то, что они все состоят из клеток.
Вид, объединяющий сходные в основных чертах организмы, составляет более сложный уровень организации жизни. Здесь
действуют свои законы -- законы внутривидовых отношений организмов.
Наконец, еще более высоким уровнем является уровень биоценозов, т. е. сообществ всех видов, населяющих ту или иную территорию или акваторию. На этом уровне действуют законы межвидовых отношений.
Совокупность всего живого, населяющего Землю, составляет биосферу. Это высший уровень организации жизни. Законы, характерные для более высоких уровней организации живого мира, не исключают действия законов, присущих более низким уровням.
Общая биология изучает законы, характерные для всех уровней организации жизни.
В медико-биологической науке широко используют классификацию уровней в соответствии с важнейшими частями, структурами и компонентами организма, являющимися для исследователей разных специальностей непосредственными объектами изучения. Такими объектами могут быть организм как таковой, органы, ткани, клетки, внутриклеточные структуры, молекулы.
Выделение уровней рассматриваемой классификации хорошо согласуется с разрешающей способностью методов, которыми пользуются биологи и врачи: изучение объекта невооруженным глазом, с помощью лупы, светооптического микроскопа, электронного микроскопа, современных физико-химических методов. Очевидна связь этих уровней и с типичными размерами изучаемых биологических объектов (табл. 1).
Таблица 1
Уровни организации (изучения), выделяемые в многоклеточном организме (по Э. Дс. Робертсу и др., 1967, с изменениями)
Размеры объекта |
Объект изучения |
Уровень организации (по объекту изучения) |
Уровень организации (по методу изучения) |
|
0,1 мм (100 мкм) и более |
Организм, органы |
Организменный, органный |
Анатомический |
|
100-10 мкм |
Ткани |
Тканевый |
Гистологический (светооптический) |
|
20-0,2 мкм (200 нм) |
Клетки (эукариотические и прокариотические) |
Клеточный |
Цитологический |
|
200-1 нм |
Клеточные компоненты |
Субклеточный |
Ультраструктурный (электронно-микроскопический) |
|
Менее 1 нм |
Молекулы |
Макромолекулярный |
Физико-химический |
Взаимопроникновение идей и методов различных областей естествознания (физики, химии, биологии), возникновение наук на стыке этих областей (биофизика, биохимия, молекулярная биология) повлекли за собой расширение классификации, вплоть до выделения молекулярного и электронно-атомного уровней.
Медико-биологические исследования, проводимые на этих уровнях, уже сейчас дают практический выход в здравоохранение. Так, приборы, основанные на явлениях электронного парамагнитного и ядерного магнитного резонанса, с успехом применяют для диагностики заболеваний и состояний организма.
Возможность исследовать фундаментальные биологические процессы, происходящие в организме, на клеточном, субклеточном и даже молекулярном уровнях является выдающейся, но не единственной отличительной чертой современной биологии. Для нее типичен углубленный интерес к процессам в сообществах организмов, которые определяют планетарную роль жизни.
Таким образом, классификация пополнилась надорганизменными уровнями, такими, как видовой, биогеоценотический, биосферный.
Разобранной выше классификации придерживается большинство конкретных медико-биологических и антропобиологических наук. Это неудивительно, так как она отражает уровни организации живой природы через исторически сложившиеся уровни ее изучения.
Следует отметить, что существует также и единый уровень организации живых организмов.
Структурное и функциональное единство всех живых организмов составляет клетка. Вспомните строение и функции органоидов клетки.
Размножение живых организмов. При размножении живые организмы оставляют потомство, т. е. воспроизводят себе подобных. Через молекулы ДНК передаются характерные признаки данного организма следующему поколению. Из одной молекулы ДНК при ее удвоении образуются две молекулы, полностью повторяющие исходную. Размножение живых организмов тесно связано с явлением наследственности.
Наследственность живых организмов. С помощью наследственности живые организмы передают свои признаки, свойства и особенности из поколения в поколение. Признаки живых организмов определяются через особенности их строения различных уровней организации. Свойства организмов определяются благодаря функциям каждого структурного соединения. Наследственность осуществляется на основе передачи генетического кода, заложенного в специальных веществах (генетический аппарат). Генетический код связан с последовательностью расположения нуклеотидов аминокислот в молекуле ДНК.
В целом в ходе эволюции происходит повышение уровня организации, усложнение живого (от низших организмов к высшим). Формирование каждой следующей ступени иерархии уровней происходит на основе предыдущей, которая структурно в неё входит.
Усложнение живого вещества, как всякий длящийся процесс, тоже развертывается во времени, однако самого времени, оно неявно входит в него как тактовая частота смены поколений и выражается через изменение фазовых состояний поля жизни. Здесь время представлено числом произведенных эволюционных шагов, главным образом, пространственно-ресурсными ограничениями биосферы. Этот фактор - геометрическая и материально-энергетическая ограниченность жизненного пространства Земли - проявляется в эволюции биологических видов как тенденция наилучшего приспособления организма к внешней природной данности, среде жизни.
Стремясь к максимальной адаптации, видовой организм превращается в органический придаток геологической структуры, "автоматизируется" в своем жизнепроявлении и всем существом прочно врастает в биокосный монолит планеты. В конечном счете, внекультурные биологические виды оказываются в хвосте мирового эволюционного процесса, становятся, в космическом масштабе времени, живыми ископаемыми, поскольку неотделимы от физической структуры планеты.
ЗАКЛЮЧЕНИЕ
Биологические знания лежат в основе медицинских и сельскохозяйственных наук. Биология решает важнейшие практические задачи. Одна из них -- производство продовольствия. Для того чтобы обеспечить питанием все увеличивающееся население нашей планеты, необходимо иметь высокопродуктивные сорта сельскохозяйственных растений и породы животных, а также совершенные методы их выращивания. Эти проблемы нельзя решить, не зная законов биологии, прежде всего законов наследственности, и не опираясь на них в агрономии и зоотехнике.
Очень важна задача разработки методов предупреждения и лечения болезней человека, особенно таких тяжелых, как сердечно-сосудистые, рак, СПНД. Решение этой задачи требует глубокого исследования жизненных процессов и механизмов, ими управляющих, как в отдельных клетках, так и в организмах и сообществах.
Важнейшая задача нашего времени, которая встала перед человечеством,-- охрана природы и приумножение ее богатств.
Эта задача продиктована тем, что под влиянием хозяйственной деятельности человека идет процесс загрязнения окружающей среды, вследствие чего происходит сокращение численности и даже гибель видов животных и растений. Загрязнение окружающей среды отрицательно влияет на здоровье человека.
Остановить развитие промышленности и рост городов невозможно. Но совершенно необходимо предотвратить угрозу, которую несет этот процесс природе и самому человеку, что также требует глубокого знания законов общей биологии.
Прогресс биологии в XX в., ее возросшая роль среди других наук и для существования человечества определяют и ее значительно более высокий уровень сравнительно с тем, какой они имела 30--40 лет назад. По уровню биологических исследований можно судить о материально-техническом развитии общества, так как биология становится реальной производительной силой, а также научной основой рациональных отношений между человеком и природой.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ:
1. Биология / Под ред. В.Н. Ярыгина. - М.: Юрайт, 2010. - 456 с.
2. Волкова В.Н. Концепции современного естествознания. - М.: Академия, 2009. - 240 с.
3. Константинов В.М., Резанов А.Г., Фадеева Е.О. Биология. - М.: Академия, 2010. - 320 с.
4. Мамонтов С.Г., Захаров В.Б., Козлова Т.А. Биология. - М.: Академия, 2008. - 584 с.
5. Попов А.П. Биология. - М.: ГЭОТАР-Медиа, 2010. - 656 с.
6. Туминов В.Ф., Туминов Н.В. Концепции современного естествознания. - М.: Дашков и Ко, 2010. - 484 с.
7. Чебышев Н.В., Гринева Г.Г. Биология. - М.: ГЭОТАР-Медиа, 2008. - 416 с.
8. Чипак Ю.А., Борисов Д.А., Попова Н.С., Сарафанова Е.В. Концепции современного естествознания. - М.: Академия, 2009. - 356 с.
Размещено на Allbest.ru
Подобные документы
Электромагнитные взаимодействия как определяющий уровень организации материи. Сущность живого, его основные признаки. Структурные уровни организации живой материи. Предмет биологии, ее структура и этапы развития. Основные гипотезы происхождения жизни.
лекция [28,4 K], добавлен 18.01.2012Объекты биологического познания и структура биологических наук. Гипотезы возникновения жизни и генетического кода. Концепции начала и эволюции жизни. Системная иерархия организации живых организмов и их сообществ. Экология и взаимоотношения живых существ.
реферат [52,9 K], добавлен 07.01.2010Признаки и уровни организации живых организмов. Химическая организация клетки. Неорганические, органические вещества и витамины. Строение и функции липидов, углеводов и белков. Нуклеиновые кислоты и их типы. Молекулы ДНК и РНК, их строение и функции.
реферат [13,5 K], добавлен 06.07.2010Сущность и субстрат жизни - процесс, конечным результатом которого является самообновление, проявляющееся в самовоспроизведении, в основе которого лежит передача генетической информации от поколений к поколениям. Свойства и уровни организации живого.
реферат [27,4 K], добавлен 27.01.2010Необходимые условия возникновения жизни на планете Земля. Организация коацерватной капли, появление живых существ как новой формы существования материи. Строение клетки и сравнение прокариотов и эукариотов. Основные этапы и события геологической истории.
реферат [2,1 M], добавлен 28.04.2015Виды, функции и особенности тканей. Эпителиальная, соединительная и нервная ткань. Понятие и функции клетки. Связь человека и всех живых существ между собой соединительными структурами. Питание и обмен веществ клетки. Кровь как внутренняя среда организма.
конспект урока [549,4 K], добавлен 22.01.2011Цитология как раздел биологии, наука о клетках, структурных единицах всех живых организмов, предмет и методы ее изучения, история становления и развития. Этапы исследований клетки как элементарной единицы живого организма. Роль клетки в эволюции живого.
контрольная работа [378,6 K], добавлен 13.08.2010Концепция структурных уровней живого. Иерархическая соподчиненность структурных уровней, системность и органическая целостность живых организмов. Закономерность функционирования структурных уровней. Обмен веществ, метаболизм клеток. Клеточная теория.
контрольная работа [20,6 K], добавлен 26.01.2009Проблема возникновения жизни. Теория спонтанного зарождения. Самопроизвольное зарождение жизни как обычный способ появления живых существ из неживой материи. Французский ученый-микробиолог Луи Пастером и его опыты. Концепция абиогенеза и биогенеза.
доклад [13,0 K], добавлен 25.06.2009Основа организации и устойчивости биосферы, распределение и классификация живого вещества. Миграция живых организмов, постоянство их биомассы. Фотосинтез - основное звено биохимического круговорота в природе. Функции живого вещества в биосфере Земли.
реферат [23,7 K], добавлен 25.11.2010