Материя, движение и взаимодействие, структурная организация материи

Общая характеристика физического взаимодействия. Теории дальнодействия и близкодействия. Возникновение идеи близкодействия в физике Декарта и Ньютона. Теория Большого объединения и суперобъединения. Принцип Суперпозиции и его роль в механике и физике.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 01.03.2011
Размер файла 26,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Общая характеристика физического взаимодействия

2. Теории дальнодействия и близкодействия

3. Принцип Суперпозиции

4. Теория Большого объединения и суперобъединения

Заключение

Введение

Связь, взаимодействие и движение представляют собой важнейшие атрибуты материи, без которых невозможно ее существование. Взаимодействие обусловливает соединение различных материальных элементов в системы, системную организацию материи. Все свойства тел производны от взаимодействий, являются результатом их структурных связей и внешних взаимодействий между собой.

Взаимодействие представляет собой развертывающийся во времени и пространстве процесс воздействия одних объектов на другие путем обмена материей и движением. Взаимодействие выступает как движение материи, а любое движение включает в себя различные виды взаимодействия. По существу, эти понятия совпадают, хотя часто употребляются в разных контекстах. Когда мы говорим о движении, то имеем в виду не столько внутренние изменения, основанные на структурных взаимодействиях, составляющих систему элементов материи, сколько внешнее пространственное перемещение тел, где взаимодействия как будто не видно.

Но если взглянуть глубже, то и при пространственном перемещении тел обязательно есть их взаимодействие с окружающей средой и материальными полями, в результате чего изменяются свойства тел. Не существует такого движения, в содержании которого не было бы взаимодействия элементов материи, так же, как и всякое взаимодействие выступает как определенное изменение и движение.

1. Общая характеристика физического взаимодействия

взаимодействие движение материя суперпозиция

В основе каждого фундаментального взаимодействия лежит изначально присущее веществу особое свойство, природу которого удастся выяснить лишь в ходе дальнейших, все более глубоких исследований природы вещества и вакуума. Носителем способности частиц к взаимодействиям, а также количественной мерой самого взаимодействия служит понятие заряда. Каждая частица изначально обладает одним или несколькими зарядами, причем между собой взаимодействуют только однотипные заряды, а заряды разных типов друг друга «не замечают». Наименьшее дискретное значение заряда (квант) называют единичным зарядом. Сила взаимодействия во всех случаях пропорциональна произведению зарядов двух взаимодействующих частиц, более сложно она зависит от расстояния между частицами.

По современным представлениям взаимодействие любого вида должно иметь своего физического агента, без посредника оно не протекает. В основе такого требования лежит тот факт, что скорость передачи воздействия ограничена фундаментальным пределом - скоростью света. Поэтому притяжение или отталкивание частиц передается через среду, их разделяющую. Такой средой является вакуум. При создании теории взаимодействия используют определенную модель процесса: заряд фермион создает вокруг частицы поле, порождающее присущие ему частицы-бозоны; по своей природе это поле близко к тому состоянию, которое физики приписывают вакууму. Иначе говоря:

· заряд частицы возмущает вакуум, и это возмущение с затуханием передается на определенное расстояние;

· частицы поля являются виртуальными - существуют очень короткое время и в эксперименте не могут быть обнаружены;

· оказавшись в радиусе действия своих однотипных зарядов, две реальные частицы начинают стабильно обмениваться виртуальными бозонами: одна частица испускает бозон и тут же поглощает идентичный бозон, испущенный частицей-партнером, и наоборот; обмен бозонами создает эффект притяжения или отталкивания частиц-хозяев.

Таким образом, каждой частице, участвующей в одном из фундаментальных взаимодействий, соответствует своя бозонная частица - переносчик взаимодействия. Очень важным фактором является наличие массы у частиц, в том числе и у некоторых переносчиков взаимодействия (вопрос о происхождении массы у частиц до сих пор не решен, предполагается, что она появляется в результате особой формы взаимодействия частиц со структурой вакуума) - от этого зависит радиус действия соответствующих сил http://www.rus-lib.ru/book/27/25/114-124.html.

2. Теории дальнодействия и близкодействия

Для обозначения меры взаимодействия тел Ньютон ввел понятие приложенной силы, которая определяет ускорение тела. Причем среди взаимодействий можно выделить два типа:

· близкодействие - непосредственный контакт или передача взаимодействия с помощью посредника, несущего в себе импульс, например, обмен, когда один человек бросает другому тяжелый предмет, оба ощущают отдачу; скорость изменения импульса и будет силой;

· дальнодействие - передача взаимодействия через разделяющее тела пространство без материальных посредников.

Ньютон был противником концепции дальнодействия, однако наличие в природе таких явлений, как гравитация, электричество и магнетизм, не укладывалось в концепцию близкодействия. Поэтому об их природе Ньютон предпочитал не рассуждать, оставляя эту проблему на долю потомков.

Долгое время считалось, что абсолютное пространство заполнено особого рода средой - эфиром. Именно волны в эфире передают взаимодействие от одних тел к другим, подобно тому, как волны на поверхности воды приводят в движение поплавок. И действительно, например, такое "дальнодействующее" явление, как свет, явно обнаруживает в опытах волновые свойства, аналогичные тем, которые характерны для любых волновых процессов (дифракция и интерференция). Позднее из работ Максвелла стало понятно, что свет является частным случаем проявления электромагнетизма. Он же впервые ввел понятие электромагнитного поля, как особого состояния пространства, которое содержит в себе и окружает тела, находящиеся в электрическом и магнитном состояниях. Впервые прозвучало, что поле - это характеристика самого пространства, которое может оказывать силовое влияние на тела, помещенные в него.

История развития современных представлений об электромагнетизме насчитывает несколько столетий. Cчитается, что существование электричества впервые установил древнегреческий философ Фалес Милетский. Он заметил, что, если кусок янтаря потереть о шелк или мех, янтарь обретает способность притягивать мелкие предметы. Янтарь по-гречески называется электрон.

В средние века открытое Фалесом странное явление тщательно изучал придворный медик английской королевы Елизаветы I Уильям Гильберт, который обнаружил, что способность электризоваться присуща и многим другим веществам. Дальнейшие исследования, проведенные в Англии и других странах Европы, показали, что некоторые вещества ведут себя как изоляторы. Французский ученый Шарль Дюфе установил, что существуют две разновидности электрических зарядов; теперь мы называем их положительными и отрицательными.

В XVIII-XIX вв. природа электричества частично прояснилась после экспериментов Бенджамина Франклина и Майкла Фарадея. Выяснилось, что электрические заряды одного знака отталкиваются, а заряды противоположных знаков притягиваются, и в том и другом случае электрические силы ослабевают с расстоянием в соответствии с законом "обратных квадратов", который Ньютон вывел ранее для гравитации. Но по величине электрические силы намного превосходят гравитационные. В отличие от слабого гравитационного взаимодействия, наличие которого Кавендишу удалось продемонстрировать только с помощью специального прибора, электрические силы, действующие между телами обычных размеров, можно легко наблюдать.

1. Возникновение идеи близкодействия в физике Декарта

Родоначальником одной из них является французский мыслитель Рене Декарт. Декарт и его последователи (картезианцы) пытались объяснить тяготение, не прибегая к понятию силы, и представить его как чисто кинематический эффект, обусловленный движением любого вещества, заполняющего все пространство, невесомого флюида - эфира. Некоторое представление о таком объяснении может дать хотя бы следующая мысль в духе Декарта. В жидкости, которая вращается в сосуде, легкие тела устремляются (как бы тяготеют) к оси вращения и подобно этому в вихре среды, заполняющей мировое пространство, вызванном вращением Солнца, планеты испытывают тяготение к Солнцу. И свет, по Декарту, рассматривался как давление, передающееся частицами Среды от источника к глазу. Электрические и магнитные явления объяснялись вихрями тонкой материи, которая выходит, например, из одного полюса магнита и входит в другой, действуя при этом на железные тела, находящиеся вблизи магнита.

Все объяснения такого рода совершенно искусственны и не вытекают из опытных фактов. Но объяснения Декарта получили широкое распространение, потому что были просты и наглядны. Для нас важны не сами эти объяснения, а лежащая в их основе идея: тяготение, электрическое и магнитное действия передаются от тела к телу через среду.

Принцип, согласно которому действие передается через среду в течение некоторого времени, получил название принципа близкодействия. Этот принцип берет свое начало от Декарта, хотя попытки объяснить передачу действия за счет существования особой среды - эфира можно найти и у древних мыслителей, справедливо полагающих, что “тело не может действовать там, где его нет”. В том же духе объяснял электрические явления и английский ученый Вильям Гильберт.

Однако при всей внешней простоте кинематические представления о тяготении были абсолютно бесплодны - из них не вытекало ничего нового. Поэтому картезианские идеи не смогли долгое время выдерживать конкуренцию с теорией тяготения, выдвинутой Ньютоном.

2. Возникновение идеи дальнодействия в физике Ньютона

Из закона тяготения Ньютона вытекало множество следствий и объяснений различных земных и небесных явлений. Так, например, закон объяснял, почему движение планет подчиняется законам Кеплера. Ньютоновское объяснение тяготения сводилось к утверждению о том, что на каждое тело со стороны других действует сила, вычисляемая по установленному им закону. Почему эта сила действует, как передается тяготение на огромные расстояния, т.е. каков механизм тяготения, Ньютон объяснить не смог, так как не было необходимых фактов, на базе которых можно было бы построить обоснованную гипотезу, а надуманных гипотез он не признавал. Последователи Ньютона (ньютонианцы), восхищенные успехами построенной им теории, довели до абсурда его тезис “Гипотез я не измышляю”- стали вообще отрицать необходимость отыскания причин явлений, считая, что для объяснения всех явлений надо просто вводить соответствующие силы, не задумываясь об их происхождении.

Эта тенденция утвердилась в физике на долгие годы. Ньютон был бесспорно прав, отрицая умозрительные и надуманные гипотезы картезианства и не ставя преждевременного в ту эпоху вопроса “почему?”.

Таким образом, от работ Ньютона берет начало второй принцип, связанный с проблемой взаимодействия, - принцип дальнодействия, согласно которому действие передается от тела к телу без участия какой-либо промежуточной среды, и притом мгновенно.

Таким образом, к XVIII в. оформляются две точки зрения на проблему взаимодействия. Одна основана на принципе дальнодействия, другая - на принципе близкодействия. Влияние взглядов Ньютона на последующее развитие физики было столь велико, что и учение об электричестве и магнетизме строилось в духе ньютоновской концепции дальнодействия, требующей установления математических законов взаимодействия электрических и магнитных сил без выяснения их природы. Так было вплоть до эпохи Фарадея - Максвелла.

Но помимо вопроса о том, как взаимодействуют магнитные и наэлектризованные тела, требовали решения другие вопросы: что такое электричество и магнетизм? Чем магнитные и наэлектризованные тела отличаются от “обычных” тел и друг от друга? И теория электромагнитного поля не могла быть создана до установления взаимосвязи электричества и магнетизма. Обращусь теперь к рассмотрению развития взглядов на природу электричества и магнетизма http://www.sduto.ru/87/102/2302/index1.1.html.

3. Принцип Суперпозиции

Принцип Суперпозиции - допущение, согласно которому если составляющие сложного процесса воздействия взаимно не влияют друг на друга, то результирующий эффект будет представлять собой сумму эффектов, вызываемых каждым воздействием в отдельности. Принцип Суперпозиции строго применим к системам, поведение которых описывается линейными соотношениями (так называемые линейные системы). Например, если среда, в которой распространяется волна 5 линейна, то есть её свойства не меняются под действием возмущений, создаваемых волной, то все эффекты, вызываемые негармонической волной, могут быть определены как сумма эффектов, создаваемых каждой из её гармонических составляющих: S = S1 + + S2 + S3 + ...

Принцип Суперпозиции играет исключительную роль в механике (например, векторное сложение по правилу параллелограмма), в теории колебаний, теории цепей, квантовой механике и других разделах физики и техники.

В теории классических полей и квантовой теории -- положение, согласно которому суперпозиция (то есть результат суммирования, наложения друг на друга) любых допустимых в данных условиях состояний физической системы (или возможных процессов в ней) является также допустимым состоянием (или соответственно возможным процессом). Так, классическое электромагнитное поле в вакууме удовлетворяет С.п.: сумма любого числа физически реализуемых полей есть тоже физически реализуемое электромагнитное поле. В силу С.п. электромагнитное поле, созданное совокупностью электрических зарядов и токов, равно сумме полей, создаваемых этими зарядами и токами по отдельности. Слабое гравитационное поле также с хорошей точностью подчиняется принципу Суперпозиции.

В классической физике Принцип Суперпозиции -- приближённый принцип, вытекающий из линейности уравнений движения соответствующих систем (что обычно является хорошим приближением для описания реальных систем), например Максвелла уравнений для электромагнитного поля. Таким образом, он вытекает из более глубоких динамических принципов и поэтому не является фундаментальным. Он и не универсален. Так, достаточно сильное гравитационное поле не удовлетворяет Суперпозиции принцип, поскольку оно описывается нелинейными уравнениями Эйнштейна (см. Тяготение); макроскопическое электромагнитное поле в веществе, строго говоря, также не подчиняется Принцип Суперпозиции в силу зависимости (иногда существенной) диэлектрической и магнитной проницаемостей от внешнего поля (например, в ферромагнетике) и т. д.

В квантовой механике Принцип Суперпозиции -- фундаментальный принцип, один из основных её постулатов, определяющий вместе с неопределённостей соотношением структуру математического аппарата теории. Из Суперпозиции принцип следует, например, что состояния квантовомеханической системы должны изображаться векторами линейного пространства (см. Квантовая механика), в частности волновыми функциями; что операторы физических величин должны быть линейными и т. д.

Из принципа суперпозиции следует, что любая волновая функция может быть разложена в сумму (вообще говоря, бесконечную) собственных функций оператора любой физической величины; при этом квадраты модулей коэффициентов в разложении имеют смысл вероятностей обнаружить на опыте соответствующие значения этой величины.

Квантовый Принцип суперпозиции лишён наглядности, характерной для Суперпозиции принцип в классической физике, так как в квантовой теории в суперпозиции участвуют (складываются) альтернативные, с классической точки зрения взаимоисключающие друг друга состояния. Суперпозиции принцип отражает волновую природу микрочастиц и выполняется в нерелятивистской квантовой механике без исключений.

В релятивистской квантовой теории, рассматривающей процессы, в которых могут происходить взаимопревращения частиц, принцип суперпозиции должен быть дополнен так называемыми правилами суперотбора. Так, суперпозиции состояний с разными значениями электрического, барионного, лептонного зарядов не предполагаются физически реализуемыми. Реализуемость таких суперпозиций означала бы, например, что физические свойства пучка частиц, в котором в некоторой пропорции присутствуют электроны и позитроны, не определяются однозначно динамическими характеристиками этих частиц, то есть что возможна интерференция состояний с разными значениями зарядов. Однако такая интерференция никогда не наблюдалась на опыте. Поэтому операторы физических величин не должны менять заряды. Это уточнение Суперпозиции принцип в релятивистской квантовой теории накладывает на матричные элементы операторов определённые ограничения, которые и называют правилами суперотбора.

4. Теория Большого объединения и суперобъединения

Заветная мечта всех физиков - выявить универсальность всех фундаментальных сил, объединить все физические взаимодействия в одной теории. Объединение электромагнитного и слабого взаимодействия в единое электрослабое взаимодействие стало первым обнадеживающим успехом на этом пути. Есть попытки создать теорию Большого объединения (так называется теория объединения электромагнитного, слабого и сильного взаимодействий). Еще идея объединения всех четырех фундаментальных взаимодействий, включая гравитацию. Соответствующие теоретические построения называют суперобъединением.

Сегодня физики считают, что они смогут создать эту теорию на основе появившейся недавно теории суперструн. Пионерами в создании этой теории явились М. Грин (Великобритания) и Дж. Шварц (США). Эта теория должна объединить все фундаментальные взаимодействия при сверхвысоких энергиях.

Эта новая теория описывает некие протяженные объекты - струны. Это - пространственно одномерные более грандиозна отрезки с характерным размером планковской длины 10-33см. Предполагается, что на таких малых расстояниях должны проявляться 6 дополнительных пространственных измерений, которые в отличие от обычных четырех измерений компактифицированы, то есть свернуты в точки, замкнуты, ограничены в определенных областях и не распространяются в область макромира.

Эта теория является следствием объединения квантовой теории поля с общей теорией относительности. Понятие струны в ней становится синонимом понятия микрочастицы или вообще локализованного в пространстве объекта. Все частицы, которые мы знаем и, может быть, откроем в будущем, представляют собой определенное возбужденное состояние струны. Такие возбужденные состояния струн можно сравнить с набором звуков, вызываемых колебанием струны, например, скрипки. Более высокие звуки можно сопоставить с новыми частицами, с массой, большей массы предыдущих частиц. Введение понятия струны полностью исключает точечные представления из структуры микромира, и по сути эта теория сводит физику к геометрии очень сложных пространств.

Теория суперструн тесно связана с новыми представлениями о симметрии - с концепцией суперсимметрии, открытой в 60 - 70-х гг., которая связала между собой бозоны и фермионы. Преобразования суперсимметрии переводят их друг в друга, а также связывают физику с геометрией.

Согласно этой теории, фундаментальным объектом современной физики является квантованное супершрунное поле, возбуждениями которого являются суперструны, взаимодействующие друг с другом и с вакуумом (возникающие и поглощающиеся в нем). Струны же в свою очередь порождают элементарные частицы.

Теория суперструн ведет к некоторым нетривиальным следствиям. Так, среди порожденных струнами элементарных частиц должны быть по расчетам гипотетические частицы тахионы - движущиеся со скоростью, большей скорости света. Как следствие этой теории возникает и представление о «теневом» мире - объяснение открытого астрономами факта, что галактики и скопления галактик содержат большую массу невидимого вещества, в десятки раз превосходящую массу самих галактик.

Таковы в кратком изложении те проблемы, решениями которых занимается современная физика.

Заключение

Взаимодействие и движение являются формой существования материи. Для всякого объекта существовать - значит взаимодействовать, как-то проявлять себя по отношению к другим телам, находиться с ними в объективных отношениях. Именно взаимодействие и движение являются объективными критериями существования тел.

Следуя объективной логике развития природы, можно выделить несколько форм движения: в неживой природе, в живой природе и в обществе. Физика занимается исследованием процессов, происходящих в неживой природе и являющихся фундаментом гораздо более сложных процессов, происходящих на более высоких уровнях организации материи.

Несомненные успехи физических наук за последнее столетие привели к необычайному углублению наших знаний в этой области бытия и особенно в теории взаимодействия и движения материи. Долгое время физика понимала движение как простое механическое движение, но затем было осознано, что оно является лишь частным случаем пространственного перемещения -любого изменения положения тела и его элементов в пространстве, связанного и с изменением во времени. Так, механическим является движение по определенной траектории, но существует бестраекторное пространственное перемещение типа сферического распространения фронта электромагнитных волн в полях, а также гравитационных волн в поле тяготения. Движению элементарных частиц тоже нельзя приписать определенную траекторию, как у материальной точки.

Но любые формы движения, изучаемые физикой, есть проявление глубинных свойств материи - так называемых фундаментальных взаимодействий. Это силы гравитационного, электромагнитного, сильного и слабого взаимодействий.

Размещено на Allbest.ru


Подобные документы

  • Возникновение классической науки. Классическая физика и астрономия. Характеристика системы Ньютона. Революция в физике на рубеже XIX и XX столетий. Вклад датского физика Нильса Бора в развитие квантовой теории. Специальная теория относительности.

    курсовая работа [28,5 K], добавлен 05.10.2009

  • Ознакомление с уравнениями Максвелла, ньютоновскими законов и концепциями близкодействия Фарадея как с этапами развития общей теорий относительности Эйнштейна, объединяющей пространство и время. Изучение эволюции и структурной организации Вселенной.

    реферат [845,0 K], добавлен 26.04.2010

  • Весомая материя или составляющие ее элементарные частицы как овеществленная форма полевой материи. Фундаментальные типы взаимодействий в физике. Спектр электромагнитного излучения. Понятие и виды внутренней энергии. Выводы учения Вернадского о биосфере.

    контрольная работа [1,4 M], добавлен 22.01.2010

  • Три уровня строения материи: микро-, макро- и мегамир. Материя как объективная реальность. Две основные формы движущейся материи: в пространстве и во времени. Атомистическая гипотеза строения материи Демокрита. Теория и модель атома Нильса Бора.

    реферат [33,6 K], добавлен 25.03.2009

  • Гравитационное и электромагнитное взаимодействия. Краткая сводка основных формул классической (неквантовой) электродинамики. Уровни организации живой материи и их характеристика. Пример нескольких каталитических реакций. Принцип действия катализатора.

    контрольная работа [34,0 K], добавлен 17.07.2010

  • История развития общих представлений о структуре материи как философского понятия. Материя и движение время и пространство. Концепция атомизма в современной науке. Дискретность и непрерывность материи. Анализ обобщения всех понятий о материальном мире.

    контрольная работа [27,8 K], добавлен 04.10.2011

  • Теория "великого объединения" как четыре качественно различных вида взаимодействий, в которых участвуют элементарные частицы. Что такое слабое ядерное взаимодействие. Электромагнитная карта мира. Макромир и микромир. Понятие материи, что такое ноогенез.

    контрольная работа [865,5 K], добавлен 23.11.2010

  • Развитие неживой и живой природы. Структура и ее роль в организации живых систем. Современный взгляд на структурную организацию материи. Проблемы самоорганизации, изучаемые в синергетике, законы построения организации и возникновения упорядоченности.

    контрольная работа [38,2 K], добавлен 31.01.2010

  • Электромагнитные взаимодействия как определяющий уровень организации материи. Сущность живого, его основные признаки. Структурные уровни организации живой материи. Предмет биологии, ее структура и этапы развития. Основные гипотезы происхождения жизни.

    лекция [28,4 K], добавлен 18.01.2012

  • Отличия между строго научным и ненаучным подходом к естествознанию. Концептуальные формы выражения идеи структурных уровней материи. Основные идеи и принципы неклассического естествознания. Проблемы современной естественной науки (на примере химии).

    контрольная работа [39,9 K], добавлен 21.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.