Основные вопросы естествознания

Отличия химии от алхимии, астрономии от астрологии. Общая теория относительности. Общие свойства элементарных частиц. Формулировка 2 закона термодинамики с помощью понятия энтропия. Отличия микроэволюция от макроэволюции. Гипотезы происхождения человека.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 09.02.2011
Размер файла 46,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. В чем отличие химии от алхимии, астрономии от астрологии Химия - это наука о веществах и их превращениях, или, как вариант, наука о химических элементах и их соединениях. Химия - полноправный представитель семейства точных естественных наук, то есть химическое научное знание сформировано из теорий, законов и закономерностей, формулировки которых исключают множественное толкование и которые многократно подтверждены и проверены на практике. И, как для любой естественной науки, для химии имеют большое значение проверяемость, достоверность и воспроизводимость результатов, доказательность знания, соответствие научных теорий и наблюдаемых фактов. Химия - рациональная наука, даже гипотезы в химии имеют чисто рациональный характер.

Алхимия - все же основной целью алхимии оставалось получение двух веществ - «философского камня», и второго по значимости вещества, которое именовалось «белым львом» или «белой тинктурой». Назначение «философского камня» - облагораживание (трансмутация) серебра, свинца, ртути и некоторых других металлов и превращение их в золото. Кроме того, раствор «философского камня», так называемый «золотой напиток», должен был избавлять людей от всех болезней, предотвращать старение и продлевать жизнь. Назначение второго вещества гораздо скромней. «Белая тинктура» была предназначена для превращения в серебро любых неблагородныфх металлов.

Если сравнить алхимию с другими известными нам науками, то легко обнаружить, что алхимия соотносится с химией примерно так же, как астрология с астрономией. Но если споры об астрологии не утихают до сих пор, алхимия напрочь утратила свое значение и давно забыта.

Алхимию часто рассматривали в качестве предшественницы химии. Однако такая концепция алхимии никоим образом не приведет нас к ее пониманию, так как химия предлагает совершенно иной подход к природным феноменам. Когда речь идет о химии, мы можем говорить о трансформации, изучать изменение внешнего вида объектов и устанавливать классификацию, основанную на принципе идентичности: А есть А и не может быть Б, если они отличаются по форме. Алхимия открывает нам тайну трансмутации, постигаемую при помощи принципа аналогии между наблюдателем и объектом в его становлении. Здесь имеются в виду два взаимодополняющих подхода к пониманию жизни; алхимия включает в себя химию, ибо она в конце концов имеет дело с трансформацией, или изменением, которая является одной из сторон любой трансмутации, или превращения. В самом деле, понятно, что человек легко может измениться, если сменит грубую одежду на изящную и благородную, но ему гораздо труднее так изменить свою глубинную природу, чтобы благородство стало для него внутренне более естественно, чем грубость… Объективная наука предполагает использование точной техники, подобной интерфейсу между наблюдателем и объектом наблюдения. Но если химия основана на наблюдении за феноменами и ее действие направлено от внешнего (наблюдатель) к внутреннему (элементы материи), то алхимия при изучении явлений идет от внутреннего к внешнем, то есть от сути к формальному проявлению.

Астрономия (от греч. astron - звезда, nomos - наука) - наука о движении, строении, возникновении, развитии небесных тел, их систем и Вселенной в целом.

Основной метод получения астрономических знаний - наблюдение, поскольку, за редким исключением, эксперимент при изучении Вселенной невозможен.

Астрология - греч. ??????????, слав. звездословіе - термин, объединяющий ряд разнообразных учений, традиций и верований о связи движения небесных тел с жизнью субъектов и объектов, расположенных на Земле и ходом развития событий. С точки зрения современной науки астрология является типичным лженаучным учением и разновидностью гадательной магии. При этом наука признаёт, что на определённом этапе своего развития астрология объективно стимулировала развитие наблюдательной астрономии, математики, метеорологии и других областей знания.

Астрология - незаконная дочь астрономии. Астрон - обозначает небесные светила. Эти два слова отличаются второй частью: логос - наука, номос - закон. Наука о небесных светилах - астрология, законы небесных светил - астрономия. Первична наука, законы исследуются наукой.

В отличие от астрономии, астрология не занимается исследованиями физического взаимодействия космических и земных процессов (таких, как приливы, космические лучи или падение метеоритов).

происхождение человек астрономия энтропия частица

2. Общая теория относительности

Создание любой фундаментальной теории обычно порождает цикл новых проблем, вызванных необходимостью ее согласования с накопленным ранее (эмпирическим и теоретическим) массивом научного знания. Подобная ситуация сложилась и после возникновения Специальной теории относительности (СТО). Оно привело к необходимости обобщения классической ньютоновской теории гравитации и потребовало нового расширения принципа относительности. Это привело к созданию А. Эйнштейном в 1915-1916 гг. новой (неклассической) теории гравитации - общей теории относительности (ОТО). Здесь в центре внимания оказалось понятие неинерциальных систем отсчета. Согласно общей теории относительности, которая получила завершенную форму в 1915 г. в работах А. Эйнштейна, свойства пространства-времени определяются действующими в ней полями тяготения. И время в разных точках течет по-разному. Поле тяготения является не чем иным, как отклонением свойств реального пространства от свойств идеального (евклидова) пространства. Поле тяготения в каждой точке определяется значением кривизны пространства в этой точке. При этом искривление пространства-времени определяется не только полной массой вещества, из которого слагается тело, но и всеми видами энергии, присутствующими в нем, в том числе энергии всех физических полей. Так, в ОТО обобщается принцип тождества массы и энергии СТО: Е = mс2. Таким образом, важнейшее отличие ОТО от других физических теорий состоит в том, что она описывает тяготение как воздействие материи на свойства пространства-времени, эти свойства пространства-времени, со своей стороны, влияют на движение тел, на физические процессы в них. В ОТО движение материальной точки в поле тяготения рассматривается как свободное «инерциальное» движение, но происходящее не в евклидовом, а в пространстве с изменяющейся кривизной. В результате движение точки уже не является прямолинейным и равномерным, а происходит по геодезической линии искривленного пространства. Отсюда следует, что уравнение движения материальной точки, а также и луча света должно быть записано в виде уравнения геодезической линии искривленного пространства. Для определения кривизны пространства необходимо знать выражение для компонент фундаментального тензора (аналога потенциала в ньютоновской теории тяготения). Задача заключается в том, чтобы, зная распределения тяготеющих масс в пространстве, определить функции координат и времени (компонент фундаментального тензора); тогда можно записать уравнение геодезической линии и решить проблему движения материальной точки, проблему распространения светового луча и т.д. Эйнштейн нашел общее уравнение гравитационного поля (которое в классическом приближении переходило в закон тяготения Ньютона) и таким образом решил проблему тяготения в общем виде. Уравнения гравитационного поля в общей теории относительности представляют собой систему из 10 уравнений. В отличие от теории тяготения Ньютона, где есть один потенциал гравитационного поля, который зависит от единственной величины - плотности массы, в теории Эйнштейна гравитационное поле описывается 10 потенциалами и может создаваться не только плотностью массы, но также потоком массы и потоком импульса. Еще одно кардинальное отличие ОТО от предшествующих ей физических теорий состоит в отказе от ряда старых понятий и формулировке новых. Так, ОТО отказывается от понятий «сила», «потенциальная энергия», «инерциальная система», «евклидов характер пространства-времени» и др. В ОТО используют нежесткие (деформирующиеся) тела отсчета, поскольку в гравитационных полях не существует твердых тел и ход часов зависит от состояния этих полей. Такая система отсчета (ее называют «моллюском отсчета») может двигаться произвольным образом, и ее форма может изменяться, у используемых часов может быть сколь угодно нерегулярный ход. ОТО углубляет понятие поля, связывая воедино понятия инерции, гравитации и метрики пространства-времени, допускает возможность гравитационных волн. Гравитационные волны создаются переменным гравитационным полем, неравномерным движением масс и распространяются в пространстве со скоростью света. Гравитационные волны в земных условиях очень слабы. Есть возможность реальной фиксации гравитационного излучения, возникающего в грандиозных катастрофических процессах во Вселенной - вспышках сверхновых звезд, столкновении пульсаров и др. Но их до сих пор экспериментально обнаружить не удалось.

Экспериментальная проверка общей теории относительности Первый успех ОТО заключался в объяснении открытой еще в 1859 г. (и непонятной с точки зрения классической теории) дополнительной скорости движения перигелия Меркурия (около 43» в столетие) под влиянием гравитационного поля Солнца. Оказалось, что прецессия орбиты Меркурия обусловлена искривлением пространства, вызванного гравитационным воздействием Солнца. В соответствии с ОТО в результате действия поля тяготения движение материальной точки, так же как и светового луча, уже не является равномерным и прямолинейным. Распространение выводов ОТО на оптические явления приводит к ряду необычных следствий - явлению красного смещения спектров звезд и отклонению светового луча под действием этого поля. Так, согласно ОТО, луч света, проходя мимо тела, обладающего сильным полем тяготения, должен искривляться. Этот эффект может быть обнаружен при наблюдении солнечного затмения. Если сравнить положение группы звезд, находящихся на небесной сфере вблизи Солнца во время его затмения, с положением этой же группы звезд ночью, то, согласно ОТО, в первом случае световые лучи от этих звезд, проходя около поверхности Солнца, должны искривляться в его гравитационном поле, следовательно, будут выглядеть смещенными относительно их обычного положения на небесной сфере. Также были сделаны и другие экспериментальные подтверждения этой теории.

3. Какими общими свойствами обладают элементарные частицы

Под элементарными частицами можно понимать такие микрочастицы, внутреннюю структуру которых на современном уровне развития науки нельзя представить как совокупность других частиц.

Элементарные частицы обычно подразделяют на четыре класса. К одному из них относится только одна частица - фотон. Второй класс образуют лептоны, третий - мезоны и, наконец, четвертый класс - барионы. Мезоны и барионы часто объединяют в один класс сильно взаимодействующих частиц, называемых адронами (греческое «адрос» означает крупный, массивный).

Свойства элементарных частиц многообразны. Так, каждой частице соответствует своя античастица, отличающаяся от нее лишь знаком заряда. Для частиц с нулевыми значениями всех зарядов античастица совпадает с частицей (например, фотон). Каждая элементарная частица характеризуется собственным набором значений определенных физических величин. К таким величинам относятся: масса, электрический заряд, спин, время жизни частицы, магнитный момент, пространственная четность, лептонный заряд, барионный заряд и др.

Общие характеристики всех частиц: масса, время жизни, спин. Когда говорят о массе частицы, имеют в виду ее массу покоя, поскольку она не зависит от состояния движения. Частица, имеющая нулевую массу покоя, движется со скоростью света (фотон). Нет двух частиц с одинаковыми массами. Электрон - самая легкая частица с ненулевой массой покоя. Протон и нейтрон тяжелее электрона почти в 2000 раз. А самая тяжелая из полученных в ускорителях элементарных частиц (Z-бозон) обладает массой, в 200 000 раз большей массы электрона.

Наиболее важное квантовое свойство всех Э. ч. - их способность рождаться и уничтожаться (испускаться и поглощаться) при взаимодействии с др. частицами. В этом отношении они полностью аналогичны фотонам. Э. ч. - это специфические кванты материи, более точно - кванты соответствующих физических полей (см. ниже). Все процессы с Э. ч. протекают через последовательность актов их поглощения и испускания. Только на этой основе можно понять, например, процесс рождения p+-мезона при столкновении двух протонов (р + р ® р + n+ p+) или процесс аннигиляции электрона и позитрона, когда взамен исчезнувших частиц возникают, например, два g-кванта (е+ +е - ® g + g). Но и процессы упругого рассеяния частиц, например е - +p ® е- + р, также связаны с поглощением начальных частиц и рождением конечных частиц.

Распад нестабильных Э. ч. на более лёгкие частицы, сопровождаемый выделением энергии, отвечает той же закономерности и является процессом, в котором продукты распада рождаются в момент самого распада и до этого момента не существуют. В этом отношении распад Э. ч. подобен распаду возбуждённого атома на атом в основном состоянии и фотон. Примерами распадов Э. ч. могут служить:; p+ ® m+ + vm; К+ ® p+ + p0 (знаком «тильда» над символом частицы здесь и в дальнейшем помечены соответствующие античастицы).

Различные процессы с Э. ч. заметно отличаются по интенсивности протекания.

В соответствии с этим взаимодействия Э. ч. можно феноменологически разделить на несколько классов: сильные, электромагнитные и слабые взаимодействия. Все Э. ч. обладают, кроме того, гравитационным взаимодействием.

Сильные взаимодействия выделяются как взаимодействия, которые порождают процессы, протекающие с наибольшей интенсивностью среди всех остальных процессов. Они приводят и к самой сильной связи Э. ч. Именно сильные взаимодействия обусловливают связь протонов и нейтронов в ядрах атомов и обеспечивают исключительную прочность этих образований, лежащую в основе стабильности вещества в земных условиях.

Электромагнитные взаимодействия характеризуются как взаимодействия, в основе которых лежит связь с электромагнитным полем. Процессы, обусловленные ими, менее интенсивны, чем процессы сильных взаимодействий, а порождаемая ими связь Э. ч. заметно слабее. Электромагнитные взаимодействия, в частности, ответственны за связь атомных электронов с ядрами и связь атомов в молекулах. Слабые взаимодействия, как показывает само название, вызывают очень медленно протекающие процессы с Э. ч. Иллюстрацией их малой интенсивности может служить тот факт, что нейтрино, обладающие только слабыми взаимодействиями, беспрепятственно пронизывают, например, толщу Земли и Солнца. Слабые взаимодействия обусловливают также медленные распады т. н. квазистабильных Э. ч.

Гравитационные взаимодействия, хорошо известные по своим макроскопическим проявлениям, в случае Э. ч. на характерных расстояниях ~10-13 см дают чрезвычайно малые эффекты из-за малости масс Э. ч.

Силу различных классов взаимодействий можно приближённо охарактеризовать безразмерными параметрами, связанными с квадратами констант соответствующих взаимодействий. Для сильных, электромагнитных, слабых и гравитационных взаимодействий протонов при средней энергии процесса ~1 Гэв эти параметры соотносятся как 1:10-2: l0-10:10-38. Необходимость указания средней энергии процесса связана с тем, что для слабых взаимодействий безразмерный параметр зависит от энергии. Кроме того, сами интенсивности различных процессов по- разному зависят от энергии. Это приводит к тому, что относительная роль различных взаимодействий, вообще говоря, меняется с ростом энергии взаимодействующих частиц, так что разделение взаимодействий на классы, основанное на сравнении интенсивностей процессов, надёжно осуществляется при не слишком высоких энергиях. Разные классы взаимодействий имеют, однако, и другую специфику, связанную с различными свойствами их симметрии (см. Симметрия в физике), которая способствует их разделению и при более высоких энергиях. Сохранится ли такое деление взаимодействий на классы в пределе самых больших энергий, пока остаётся неясным.

4. Как можно сформулировать 2 закон термодинамики с помощью понятия энтропия

История открытия закона сохранения и превращения энергии привела к изучению тепловых явлений в двух направлениях: термодинамическом, изучающем тепловые процессы без учета молекулярного строения вещества, и молекулярно-кинетическом, исследующем тепловые явления как результат совместного действия огромной совокупности движущихся частиц, из которых состоит вещество. Термодинамика возникла из обобщения многочисленных фактов, описывающих явления передачи, распространения В 1865 г. немецкий физик Рудольф Клаузиус для формулировки второго закона термодинамики ввел новое понятие - «энтропия» (от греч. entropia - поворот, превращение). Клаузиус рассчитал, что существует некоторая величина S, которая подобно энергии, давлению, температуре характеризует состояние газа. Когда к газу подводится некоторое количество теплоты, AQ, то энтропия S возрастает на величину, равную AS = AQ/T. В течение длительного времени ученые не делали различий между теплотой и температурой. Однако ряд явлений указывал на то, что эти понятия следует различать. Например, при плавлении кристаллического тела теплота расходуется, а температура тела не изменяется в процессе плавления. После введения Клаузиусом понятия энтропии стало понятно, где пролегает граница четкого различия таких понятий, как теплота и температура. Дело в том, что нельзя говорить о каком-то количестве теплоты, заключенном в теле. Это понятие не имеет смысла. Теплота может передаваться от тела к телу, переходить в работу, возникать при трении, но при этом она не является сохраняющейся величиной. Поэтому теплота определяется в физике не как вид энергии, а как мера изменения энергии. В то же время введенная Клаузиусом энтропия, как и температура, оказалась величиной, сохраняющейся в обратимых процессах; это означает, что энтропия системы может рассматриваться как функция состояния системы, ибо изменение ее не зависит от вида процесса, а определяется только начальным и конечным состоянием системы. Было также показано, что изменение энтропии в случае обратимых процессов не происходит, т.е. AS = 0. Значит, энтропия изолированной системы в случае обратимых процессов постоянна. При необратимых процессах получаем закон возрастания энтропии: S > 0.

Для описания термодинамических процессов первого закона термодинамики оказывается недостаточно, ибо первое начало термодинамики не позволяет определить направление протекания процессов в природе. Тот факт, что энтропия изолированной системы не может убывать, а только возрастает и достигает максимального значения в равновесном состоянии, является отражением того, что в природе возможны процессы, протекающие только в одном направлении - в направлении передачи тепла от более горячих тел менее горячим. Физический смысл энтропии и само понятие энтропии введено в физическую теорию, чтобы отличать в случае изолированных систем обратимые процессы, при которых энтропия максимальна и постоянна от необратимых процессов, когда энтропия возрастает. Больцман первым увидел связь между энтропией и вероятностью и связал их. В 1906 году Макс Планк вывел формулу, выражающую основную мысль Больцмана об интерпретации энтропии как логарифма вероятности состояния системы: S = k In W. Коэффициент пропорциональности к рассчитан Планком и назван им постоянной Больцмана. Формула: «S = к ln W» выгравирована на памятнике Больцману на кладбище в Вене. Таким образом, энтропия изолированной системы при протекании необратимых процессов возрастает, ибо система, предоставленная самой себе, переходит из менее вероятного состояния в более вероятное. Энтропия системы, находящейся в равновесном состоянии, максимальная и постоянная (S = 0). Идея Больцмана о вероятностном поведении отдельных молекул явилась развитием нового подхода при описании систем, состоящих из огромного числа частиц, впервые высказанного Д. Максвеллом. Он ввел для описания случайного характера поведения молекул понятие вероятности, вероятностный (статистический) закон. В дальнейшем Больцман также показал, что второй закон термодинамики также является следствием более глубоких статистических законов поведения большой совокупности частиц. Он же интерпретировал понятие энтропии в терминах изменения порядка в системе. Когда энтропия системы возрастает, то соответственно усиливается беспорядок в системе, т.е. энтропия выражает меру беспорядка системы. В таком случае второй закон термодинамики постулирует: энтропия замкнутой системы, т.е. системы, которая не обменивается с окружением ни энергией, ни веществом, постоянно возрастает. А это означает, что такие системы эволюционируют в сторону увеличения в них беспорядка, хаоса и дезорганизации, пока не достигнут точки термодинамического равновесия, в которой всякое производство работы становится невозможным. Поскольку об изменении системы в классической термодинамике мы можем судить по увеличению их энтропии, то последняя и выступает в качестве своеобразной стрелы времени. Термодинамика впервые ввела в физику понятие времени в весьма своеобразной форме, а именно необратимого процесса возрастания энтропии в системе. Чем выше энтропия системы, тем больший временной промежуток прошла система в своей эволюции. Такое понятие о времени и особенно об эволюции системы в термодинамике коренным образом отличается от понятия времени и эволюции, которое лежало в основе эволюционной теории Дарвина.

5. Чем отличается микроэволюция от макроэволюции

Современный эволюционизм подразделяет эволюционный процесс на микро- и макроэволюцию

Микроэволюция - процесс перестройки внутри вида, ведущий к образованию новых популяций, подвидов и заканчивающийся образованием нового вида. Микроэволюция может происходить в достаточно короткие промежутки времени. В результате мутаций (наследственной изменчивости) происходят случайные изменения генотипа. Мутации чаще всего рецессивны и редко бывают полезными для вида, но все-таки какие-то могут оказаться полезными и тогда особь получает сразу большое преимущество перед остальными особями популяции. Так, жирафы с более длинной шеей получали преимущество питаться листьями с высоких деревьев. Появление нового признака вызывает процесс дивергенции в популяции.

Расхождение признаков (дивергенция) заключается в том, что особи с ярко выраженными вариантами какого-то при знака будут или преимущественно выживать, или вымирать (не оставлять потомства). Наиболее приспособленная группа будет более интенсивно размножаться и передавать полезный признак по наследству, укрепляя его и увеличиваясь в численности. Особи с неявно выраженным признаком будут постепенно вытесняться более приспособленными. Таким образом возникают новые подвиды и виды. Дивергенция всегда имеет характер группового отбора особей с полезными признаками из-за естественного отбора, т.е. из-за мутаций, лежащих в основе отбора.

Изоляция популяций необходима для образования нового вида, она - важнейший фактор микроэволюции. Изоляция как фактор видообразования может достигаться различным образом.

Макроэволюция - процесс формирования более крупных единиц: из видов - новых родов, из родов - новых семейств и т.д. Эти процессы нельзя изучать непосредственно, поскольку они очень длительны. Но в основе макроэволюции лежат те же движущие силы, что и в микроэволюции: наследственная изменчивость и начало дивергенции; естественный отбор и продолжение дивергенции, гибель менее приспособленных и образование новой структурной единицы; репродуктивное разобщение, что доказывается несколькими независимыми путями.

Понятия микро- и макроэволюции различаются не количественно, а качественно. Под понятие «микроэволюция» подпадает, например, происхождение различных пород собак от одного «правида», вероятно, от волка. Происхождение же млекопитающих из рептилий и простейших - явление, относящееся к «макроэволюции». В первом случае изменяются уже имеющиеся структуры (свойства меха, форма морды и так далее), а во втором - создаются совсем новые (молочные железы, органы терморегуляции и все остальное, что присуще млекопитающим и не характерно для рептилий). Другой пример микроэволюции: белые медведи отличаются от своих ближайших родственников, кроме всего прочего, отсутствием пигментации. Понятия «микро-» и «макроэволюция» не всегда различают с должной тщательностью. Части либо вообще не признается принципиальное различие между ними, либо утверждается, что граница между обоими эволюционными процессами расплывчата. Если принять, что новые рода и другие систематические группы могут появляться только путем возникновения новых видов, а новые виды - только благодаря микроэволюционным изменениям, то принципиального решения требует вопрос: могут ли путем суммирования множества малых шагов микроэволюционных процессов действительно возникать истинные макроэволюционные изменения? Отказаться от понятия «макроэволюция», как было предложено, было бы неоправданным риском, поскольку пока точно не ясно, чего можно достичь в ходе микроэволюционных изменений. Возможно, что более точные исследования в области генетики смогут прояснить проблему: возникло ли в результате этих изменений нечто качественно новое.

Огромное различие в масштабах времени между микро- и макроэволюцией в их крайних формах заставляет остерегаться сверхупрощенных экстраполяций от одного уровня к другому. Многие микроэволюционные изменения повторимы и предсказуемы. В отличие от этого макроэволюция - процесс исторический.

Микро и макроэволюция это разные вещи, но они основаны на практически одних и тех же процессах. Микроэволюция - изменение частот аллелей в популяции (то есть, генетическая изменчивость за счет таких процессов как отбор, мутации, дрейф генов или даже миграция). Существование микроэволюции бесспорно (хотя некоторые креационисты, такие как Wallace, отрицают мутации). Макроэволюция - эволюционные изменения на уровне видов или выше, то есть образование новых видов, родов и т.д.

6. Какие гипотезы происхождения человека вам известны

Наиболее ортодоксальные сторонники библейской версии считают, что каждый вид, в том числе и человек, был создан Богом. Область исследований, направленных на поиск научных доказательств этой версии, называется креационизмом. Современные креационисты подтверждают тексты Библии точными расчетами. В частности, они доказывают, что Ноев ковчег мог вместить всех тварей по паре - если учесть, что рыбам и другим водным животным место в ковчеге не нужно, а остальных позвоночных животных - около 20 тыс. видов. Если умножить это количество на два (в ковчег были взяты самец и самка), получится примерно 40 тыс. животных. Средней величины автофургон для перевозки овец вмещает 240 животных. Значит, нужно было бы 146 таких фургонов. А ковчег длиной 300, шириной 50 и высотой 30 локтей вместил бы 522 таких фургона. Значит, место для всех животных нашлось и еще осталось - для корма и людей. Тем более что Бог, как утверждает Томас Хайнц из Института кремационных исследований, наверняка догадался бы взять маленьких и молодых животных, чтоб они и места занимали меньше, и размножались активнее. Чарльз Дарвин не отрицал существования Бога, однако считал, что Бог создал лишь начальные виды, остальные же возникли под действием естественного отбора. Чем дольше ученые изучают палеонтологическую летопись, тем яснее вырисовывается картина превращения обезьяны в человека. Современные представления гораздо сложнее излагавшейся в наших старых учебниках «единственно верной» теории, которую можно резюмировать словами Абрама Терца (Синявского): «Обезьяна встала на задние лапы и пошла прямым путем к коммунизму». По пути гоминизации шли многие виды приматов, и Homo sapiens в момент своего появления был просто представителем одной из нескольких конкурирующих линий. То, что именно он достигнет успеха на арене эволюции, не было предопределено. Сегодня большинство ученых придерживаются теории африканского происхождения человека и считают, что будущий победитель в эволюционной гонке возник на Юго-востоке Африки около 200 тыс. лет назад и расселился оттуда по всей планете. Раз человек вышел из Африки, то, казалось бы, само собой разумеется, что наши дальние африканские прародители были похожи на современных жителей этого континента. Однако некоторые исследователи считают, что первые люди, появившиеся в Африке, были ближе к монголоидам.

В науке выдвинут ряд гипотез, которые пытаются разрешить эту проблему: человек возник благодаря тому, что его древнейшие предки в большей степени были падальщиками, чем охотниками; человек стал человеком благодаря жизни в воде, мутации в клетках мозга гоминид, вызванной жесткими излучениями вспышки Сверхновой звезды, либо инверсиями геомагнитного поля; либо мутансреди гоминид появился в результате теплового стресса. В рамках сформировавшегося в последнее время такого направления научных исследований, как космический катастрофизм?, выдвинута гипотеза о возникновении современного человека (и человеческой цивилизации) в связи со вспышкой близкой Сверхновой звезды. Зафиксировано то весьма удивительное обстоятельство, что вспышка близкой Сверхновой звезды по времени (один раз в 100 млн. лет) приблизительно соответствует возрасту древнейших останков человека разумного (порядка 35-60 тыс. лет назад). К тому же ряд антропологов считает, что появление современного человека обусловлено мутацией. А импульс гамма и рентгеновского излучения от вспышки близкой Сверхновой звезды мог вызвать необратимые изменения в клетках мозга некоторых животных, в том числе гоминид или рост самого мозга, что привело к формированию разумных мутантов вида человека разумного. Во всяком случае, со вспышкой Сверхновой звезды связано: 1) образование Солнечной системы; 2) происхождение жизни и 3) возможно, происхождение современного типа человека с его цивилизацией. Еще одна гипотеза исходит из того, что человек как новый вид возник благодаря основному биологическому отличию гоминид от других млекопитающих высоким уровнем удельного метаболизма и следующего из этого вероятного эколого-демографического следствия. К этому следует добавить то обстоятельство, что у человека и его предков имелись средства коллективного производительного потребления (коллективные орудия), отсутствующие у остальных животных. Именно высокий уровень удельного метаболизма вызвал эколого-демографические проблемы у гоминид, которые оказались эффективно решенными небиологическими средствами демографического самоконтроля гоминидами своих сообществ. Такими средствами и являются средства коллективного производительного потребления, позволяющие контролировать численность сообщества. Иными словами, существует вполне определенная связь между демографией и технологией, выработанной в рамках культуры как небиологического наследования в сообществах древних гоминид. ?В зависимости от биопродуктивности своего местообитания ранние гоминиды могли иметь тот или иной вариант структуры сообщества и донести признаки похожих общественных структур до эпохи цивилизаций?. Другими словами, речь идет об этносах, выстроенных на основе архаичных кровнородственных общественных структур. В целом следует отметить, что проблема происхождения человека весьма сложна и до сих пор не решена.

7. Какие междисциплинарные науки в естествознании вам известны. Постройте логическую схему взаимодействия и иерархии естественный наук

Естествознание - совокупность наук о природе, имеющих предметом своих исследований различные явления и процессы природы, закономерности их эволюции. Кроме того, естествознание является отдельной самостоятельной наукой о природе, как едином целом. Оно позволяет изучить любой объект окружающего нас мира более глубоко, чем это может сделать какая-либо одна из естественных наук. Поэтому естествознание, наряду с науками об обществе и мышлении, - важнейшая часть человеческого знания. Оно включает в себя как деятельность по получению знания, так и ее результаты, т.е. систему научных знаний о природных процессах и явлениях.

Единство объектов исследования приводит к тому, что появляются новые, так называемые междисциплинарные науки, - новые науки стоящие на стыке нескольких традиционных естественных наук. Среди них - биофизика, физическая химия, физико-химическая биология, психофизика и т.д.

Структура естествознания представляет собой сложную разветвленную систему знаний, все части которой находятся в отношении иерархической соподчиненности. Это означает, что систему естественных наук можно представить в виде своеобразной лестницы, каждая ступенька которой является фундаментом для следующей за ней науки, и в свою очередь основывается на данных предшествующей науки.

Так, основа, фундамент всех естественных наук - физика, предметом которой являются тела, их движения, превращения и формы проявления на различных уровнях. Следующая ступень иерархии - химия, изучающая химические элементы, их свойства, превращения и соединения. В свою очередь химия лежит в основе биологии - науки о живом, изучающей клетку и все от нее производное. В основе биологии - знания о веществе, химических элементах. Науки о Земле (геология, география, экология и др.) - следующая степень структуры естествознания. Они рассматривают строение и развитие нашей планеты, представляющей собой сложнейшее сочетание физических, химических и биологических явлений и процессов. Завершает эту грандиозную пирамиду знаний о Природе космология, изучающая Вселенную как целое. Частью этих знаний являются астрономия и космогония, изучающие строение и происхождение планет, звезд, галактик и т.д. На этом уровне происходит новое возвращение к физике. Это позволяет говорить о циклическом, замкнутом характере естествознания, что, очевидно, отражает одно из важнейших свойств самой Природы. В науке идут сложнейшие процессы дифференциации и интеграции научного знания. Дифференциация науки - это выделение внутри какой-либо науки более узких, частных областей исследования, превращение их в самостоятельные науки. Так, внутри физики выделились физика твердого тела, физика плазмы. Интеграция науки - это появление новых наук на стыках старых, проявление процессов объединения научного знания. Примером такого рода наук являются: физическая химия, химическая физика, биофизика, биохимия, геохимия, биогеохимия, астробиология и др.

8. Какие типы химической связи вы знаете?

Типы химических связей: ковалентная, ионная, водородная, металлическая. При образовании химической связи происходит перераспределение в пространстве электронных плотностей, первоначально принадлежавших разным атомам. Количество химических связей, образованных данным атомом в соединении, называют валентностью. Образование химической связи за счет завершения внешних уровней в образующих связь атомах сопровождается выделением большого количества энергии, то есть возникновение химической связи всегда протекает экзотермически, поскольку оно приводит к появлению новых частиц (молекул), обладающих при обычных условиях большей устойчивостью, а следовательно, они меньшей энергией, чем у исходных.

Химическая связь, осуществляемая за счет образования общих (связывающих) электронных пар, называется ковалентной. 1) Разберем пример образования химической связи между атомами с одинаковой электроотрицательностью, например, молекулы водорода Н2 Образование химической связи в молекуле водорода можно представить в виде двух точек: Н- + - Н -> Н: Н или черточкой, которая символизирует пару электронов: H-H Ковалентная связь, образованная атомами с одинаковой электроотрицательностью называется неполярной. Такую связь образуют двухатомные молекулы, состоящие из атомов одного химического элемента: H 2, Cl 2 и др. 2) Образование ковалентной связи между атомами, электроотрицательность которых различается незначительно. Ковалентная связь, образованная атомами с различной электроотрицательностью, называется полярной. При ковалентной полярной связи электронная плотность от общей пары электронов смещена к атому с большей электроотрицательностью. Примерами могут служить молекулы Н2О, NH3, H2S, CH3Cl. Ковалентная (полярная и неполярная) связь в наших примерах образовалась за счет неспаренных электронов связывающихся атомов. Такой механизм образования ковалентной связи называется обменным. Другой механизм образования ковалентной связи - донорно-акцепторный. В этом случае связь возникает за счет двух спаренных электронов одного атома (донора) и свободной орбитали другого атома (акцептор). Хорошо известный пример - образование иона аммония: Н++:NH 3 -> [Н: NH3 | + <=====> NH4+ акцептор донор ион аммония электронов. При образовании иона аммония электронная пара азота становится общей для атомов N и Н, то есть возникает четвертая связь, которая не отличается от остальных трех.

Ионная связь возникает между атомами, электроотрицательность которых резко различается Рассмотрим способ образования на примере хлорида натрия NaCl. Электронную конфигурацию атомов натрия и хлора можно представить: 11 Na ls2 2s2 2p 6 3s1; 17 Cl ls2 2p 6 Зs2 3р5 Как это атомы с незавершенными энергетическими уровнями. Очевидно, для их завершения атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один электрон, чем отдать семь. При химическом взаимодействии атом натрия полностью отдает один электрон, а атом хлора принимает его. Схематично это можно записать так: Na. - l е -> Na+ ион натрия, устойчивая восьмиэлектронная 1s2 2s2 2p6 оболочка за счет второго энергетического уровня.:Cl + 1е ->.Cl - ион хлора, устойчивая восьмиэлектронная оболочка. Между ионами Na+ и Cl - возникают силы электростатического притяжения, в результате чего образуется соединение.
Химическая связь, осуществляемая за счет электростатического притяжения между ионами, называется ионной связью. Соединения, образованные путем притяжения ионов называются ионными. Ионные соединения состоят из отдельных молекул только в парообразном состоянии. В твердом (кристаллическом) состоянии ионные соединения состоят из закономерно расположенных положительных и отрицательных ионов. Молекулы в этом случае отсутствуют. Ионные соединения образуют резко различные по величине электроотрицательности элементы главных подгрупп I и II групп и главных подгрупп VI и VII групп. Ионных соединений сравнительно немного. Например неорганические соли: NH4Cl (ион аммония NH4 + и ион хлора Cl-), а также солеобразные органические соединения: алкоголяты соли карбоновых кислот, соли аминов Неполярная ковалентная связь и ионная связь - два предельных случая распределения электронной плотности. Неполярной связи отвечает равномерное распределение связующего двух электронного облака между одинаковыми атомами. Наоборот, при ионной связи связующие электронное облако практически полностью принадлежит одному из атомов. В большинстве же соединений химические связи оказывают промежуточными между этими видами связи, то есть в них осуществляется полярная ковалентная связь.

Металлическая связь существует в металлах в твердом в жидком состоянии. В соответствии с положением в периодической системе атомы металлов имеют небольшое число валентных электронов (1-3 электрона) и низкую энергию ионизации (отрыва электрона). Поэтому валентные электроны слабо удерживаются в атоме, легко отрываются и имеют возможность перемещаться по всему кристаллу. В узлах кристаллической решетки металлов находятся свободные атомы, положительно заряженные коны, а часть валентных электронов, свободно перемещаясь в объеме кристаллической решетки, образует «электронный газ», обеспечивающий связь между атомами металла. Связь, которую осуществляют относительно свободные электроны между ионами металлов в кристаллической решетке, называется металлической связью. Металлическая связь возникает за счет обобществления атомами валентных электронов. Однако между этими видами связи есть существенное различие. Электроны, осуществляющие ковалентную связь, в основном пребывают в непосредственной близости от двух соединенных атомов. В случае металлической связи электроны, осуществляющие связь, перемещаются по всему куску металла. Этим определяются общие признаки металлов: металлический блеск, хорошая проводимость теплоты и электричества, ковкость, пластичность и т.д. Общим химическим свойством металлов является их относительно высокая восстановительная способность.

Водородные связи могут образовываться между атомом водорода, связанным с атомом электроотрицательного элемента, и электроотрицательным элементом, имеющим свободную пару электронов (О, F, N). Водородная связь обусловлена электростатическим притяжением, которому способствуют малые размеры атома водорода, и отчасти, донорно-акцепторным взаимодействием. Водородная связь может быть межмолекулярной и внутримолекулярной. Связи 0-Н имеют выраженный полярный характер: Водородная связь гораздо более слабая, чем ионная или ковалентная, но более сильная, чем межмолекулярное взаимодействие. Водородные связи обуславливают некоторые физические свойства веществ (например, высокие температуры кипения). Особенно распространены водородные связи в молекулах белков, нуклеиновых кислот и других биологически важных соединений, обеспечивая им определенную пространственную структуру (организацию).

9. Назовите ближайшие к нам другие галактики

Какую форму имеет большинство галактик во Вселенной.

Наша Галактика - это гигантский звездный остров, в состав которого входит Солнечная система. Галактика имеет спиральную структуру и состоит из ядра и нескольких спиральных ветвей.

Наша Галактика - Млечный Путь - также достаточно велика (в ней более 200 млрд. звезд). Самые маленькие галактики содержат звезд в миллион раз меньше. Помимо обычных звезд галактики включают в себя межзвездный газ, пыль, а также различные экзотические объекты: белые карлики, нейтронные звезды, черные дыры. Мир галактик поражает своим разнообразием. Галактики резко отличаются размерами, числом входящих в них звезд, светимостям, внешним видом. По внешнему виду галактики условно разделены на три основных типа: эллиптические, спиральные и неправильной формы. Первоначальной стадией являются галактики неправильной формы. Из них возникают спиральные галактики, имеющие ясно выраженную форму вращения. И, наконец, третьей стадией являются эллиптические галактики, имеющие сфероидальную форму.

Неправильные галактики состоят из значительных масс газопылевой материи и из «молодых» звезд, излучающих большое количество энергии, где отсутствуют ядра. Два больших звездных облака, которые получили название Большое и Малое Магеллановы Облака, относятся к типу неправильных галактик. Они являются спутниками нашей Галактики. Неправильные галактики значительно меньше спиральных и встречаются редко.

Спиральные галактики состоят как из звезд «населения I», так и из звезд «населения II». Здесь имеются четко выраженные сферические подсистемы, составляющие ядро, и плоские подсистемы, образующие спиральные ветви Галактики. Наша Галактика принадлежит к числу спиральных. Ветви спиральных галактик, как и у нашей Галактики, состоят из горячих звезд, цефеид, сверхгигантов, рассеянных звездных скоплений и газовых туманностей. Галактики излучают различные электромагнитные волны. По виду эллиптические галактики похожи на шаровые звездные скопления. Они не содержат ни звезд-сверхгигантов, ни диффузных туманностей.

Итак, развитие галактик, по-видимому, начинается с огромного, медленно вращающегося протооблака газа и пыли, которое по мере сжатия начинает вращаться с увеличивающейся скоростью. В процессе сжатия происходит образование звезд различных масс и светимостей. Постепенно в неправильной галактике возникают ядро и звездные спиральные ветви, имеющие центральную перемычку из темного диффузного вещества. В начале ядро Галактики относительно невелико по своей массе, но с развитием системы оно увеличивается, так что постепенно спиральная галактика переходит в эллиптическую. В эллипти ческой галактике темное диффузное вещество присутствует уже в относительно небольшом количестве, так как оно уже пошло на образование звезд.

Поблизости от нас есть только одна крупная звездная система - Туманность Андромеды. Как уже говорилось, это тоже спиральная галактика. Ее плоскость наклонена к лучу зрения всего на 13°, поэтому рассмотреть структуру ее спиральных рукавов хорошо не удается. Это очень большая галактика. Она вдвое массивнее нашей. Ее можно увидеть без затруднений даже в городских условиях невооруженным глазом. Это - самый далекий предмет (если галактику можно назвать предметом), который Вы можете увидеть, пользуясь только своими глазами (ну и некоторыми знаниями о направлении столь далеко устремленного взора). В небольшие телескопы в Туманности Андромеды можно разглядеть только ядро и близкие к нему области, хотя ее спиральные рукава простираются на целых 3°, шесть диаметров Луны. Галактика удалена от нас на 2,3 млн. световых лет, ее масса составляет 300 млрд. масс Солнца. Третьей по значимости (а значит и по массе) галактикой в наших окрестностях является средняя по величине спиральная галактика в созвездии Треугольника. Она занесена в каталог Месье под номером 33. Галактика располагается гораздо ближе к Туманности Андромеды, а от нас удалена на 2,2 - 2,7 млн. световых лет (по разным оценкам). Ее яркость превышает шестую звездную величину, считающуюся примерным порогом для глаза. Однако свет от галактики распределен по площадке диаметром, превышающим градус (две Луны), так что М33 Вам не увидеть в городе без оптики. Хотя некоторые утверждают, что подобное им удавалось. Дерзните! Кое-кто даже галактику М81, удаленную на 12 млн. световых лет от Млечного Пути, (а это уже вне наших окрестностей) умудрялся засечь без помощи телескопов и биноклей. Яркость М81 составляет около 7 звездной величины. Ее наблюдения проходили при идеальнейших погодных условиях на претемном южном небе. Исходя из сказанного, для простых смертных оставим пределом Туманность Андромеды. Все остальные галактики ближайшего окружения - карликовые эллиптические и неправильные, которые, как мы помним, тоже редко бывают большими. Но две ближайших к нам неправильных галактики можно назвать крупными представителями рода неправильных галактик. Магеллановы Облака являются спутниками нашей Галактики Млечный Путь - это еще два внегалактических объекта, видимые невооруженным глазом, правда, в южном полушарии. Большое Магелланово облако расположено в созвездии Золотой Рыбы, его звездная величина чуть превосходит 0. Удаленная от нас на 170 000 световых лет, эта галактика является прекрасным объектом для наблюдения звезд вне нашей звездной системы. Размер ее 40 тысяч световых лет, а масса в 15 раз меньше массы нашей Галактики. В этой галактике находилась самая яркая по светимости из известных звезд - S Золотой Рыбы. Эта звездочка, видимая у нас как звезда 6 звездной величины, в миллион раз ярче Солнца. А первенство просто перешло в 1997-м году к звезде Пистолет в созвездии Стрельца. Та еще в 10 раз ярче. Возгордимся: звезда принадлежит Млечному Пути. Приглядитесь к снимку. Не смотря на отношение к неправильным галактикам, Большое Магелланово Облако имеет структуру, близкую к пересеченным спиральным галактикам (см. предыдущую страницу). В галактике есть все те типы звезд, которые известны в Млечном Пути. Здесь есть один из ярчайших среди известных газопылевой комплекс - Туманность Тарантул, район бурного звездообразования. Если поместить ее на место Туманности Ориона, нашего галактического чемпиона, то безлунной зимней ночью предметы отбрасывали бы тень. Кроме того, Большое Магелланово Облако прославилось в конце восьмидесятых. Здесь произошла ярчайшая из наблюдавшихся в новой истории вспышка сверхновой (простите за каламбур) - SN 1987а. Несмотря на удаленность, в максимуме сверхновая достигла блеска 2,8. Малое Магелланово Облако в 3 раза меньше Большого и тоже напоминает собою пересеченную спиральную галактику. Впрочем, некоторые астрономы прямо к таковым и относят оба Магелланова Облака. Видимая звездная величина Малого Облака составляет 2,3. Оно расположено в созвездии Тукана, что по соседству с Золотой Рыбой. До этой галактики 210 000 световых лет. Судя по тому, что Магеллановы Облака погружены в общую газовую оболочку, они находятся в тесном гравитационном взаимодействии. Упомянутая газовая среда перерастает в весьма плотную перемычку между галактиками. Видимо, обеим звездным системам приходится «выносить» еще большее гравитационное воздействие со стороны гиганта Млечного Пути. Наверное, именно поэтому они не смогли быть «более спиральными». Повторимся: если говорить о неправильных галактиках, то Магеллановы Облака являются большими их представителями. Почти все остальные галактики, близкие к нашей, являются маленькими, как говорят, карликовыми эллиптическими галактиками. Самые массивные из этих карликов (NGC205 и NGC221) являются спутниками Туманности Андромеды. Из неправильных назовем NGC6882 и IC1613.

10. В чем суть восстановительного и окислительного периодов в жизни биосферы

Под биосферой понимают тонкую оболочку Земли, в которой все процессы протекают под прямым воздействием живых организмов. Биосфера находится на стыке литосферы, гидросферы и атмосферы, располагаясь в диапазоне от 11 км в глубь Земли до 33 км над Землей. Живые организмы, включающие в себя все известные химические элементы, в процессе жизнедеятельности осуществляют превращение энергии. Все живое разделено на пять царств: бактерии, водоросли, грибы, растения и животные.

1. Восстановительный этап развития биосферы. Как считают многие ученые, этот этап начался еще в космических условиях и завершился появлением на Земле гетеротрофной биосферы. В данный период появились малые сферические анаэробы и прокариоты. Физиологические процессы этих организмов основывались не на кислородном окислении, а на дрожжевом брожении. Изначально в атмосфере Земли присутствовали лишь следы свободного кислорода. Производство свободного кислорода было начато первыми организмами. Но произведенный кислород пока приводил лишь к окислительным процессам на земной поверхности и в океане.


Подобные документы

  • Основные черты и отличия науки от других отраслей культуры. Проблемы, решаемые отдельными естественными науками. Свойства пространства и времени. Главные выводы специальной и общей теории относительности. Естественнонаучные модели происхождения жизни.

    контрольная работа [40,6 K], добавлен 18.11.2009

  • Теория Чарльза Дарвина. Место человека в структуре живого. Сходства и отличия человека и животных. Современная теория эволюции. Человек умелый и человек прямоходящий. Неандерталец: две ветви эволюции. Человек разумный. Макроэволюция и микроэволюция.

    реферат [42,4 K], добавлен 11.04.2017

  • Этапы развития химии. Сущность второго начала термодинамики. Реакции, лежащие в основе энергии звезд. Волновые свойства света. Модели развития Вселенной. Типов фазовых переходы. Состав и молекулярное живой клетки. Представления о происхождения жизни.

    контрольная работа [45,2 K], добавлен 15.10.2010

  • Энтропия или теория хаоса. Показатель неопределенности состояния любой упорядоченной физической системы, или поведения любой системы, включая живые и неживые объекты и их функции. Энтропия мироздания, информации и мышления, термодинамики, информатики.

    реферат [18,0 K], добавлен 04.02.2010

  • Сущность научного метода познания мира. Возникновение эксперементально-математического естествознания, эмпирической и рациональной философии. Теическая, мутационная, эволюционная концепция происхождения человека. Теория пассионарности Л.Н. Гумилева.

    контрольная работа [112,2 K], добавлен 19.05.2012

  • Теплота и энтропия. Сложность понимания физического смысла энтропии. Энтропия Вселенной, теория тепловой смерти. Сфера применения законов термодинамики. Энтропия как функция состояния термодинамической системы для описания эволюции реальных систем.

    реферат [72,5 K], добавлен 18.11.2009

  • Предмет изучения химии и алхимии, история их зарождения и развития, современные знания и значение. Классификация химии на органическую и неорганическую, их отличия. Важнейшие химические связи и методы исследования веществ. Молекулярные основы эволюции.

    контрольная работа [803,5 K], добавлен 09.05.2009

  • Закон тяготения Ньютона. Специальная теория относительности. Второе начало термодинамики. Представления о строении атомов. Методы химической кинетики. Понятия равновесия, равновесного излучения. Реакции синтеза ядер. Особенности биотического круговорота.

    контрольная работа [54,4 K], добавлен 16.04.2011

  • Человек - это сложная целостная система, компонент более сложных систем - биологической и социальной. Человек с точки зрения естествознания: концепции происхождения человека; сходства и отличия человека и животных; биологическое и социальное в человеке.

    реферат [27,3 K], добавлен 26.04.2009

  • Характеристика основных концепций происхождения человека: концепция креационизма, эволюции, мутагенеза, панспермии. Анализ сходства и отличия человека и животных, стадий эволюции человека. Изучение соотношения биологического и социального в человеке.

    реферат [51,3 K], добавлен 21.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.