Общая теория относительности А. Эйнштейна

Принцип относительности Эйнштейна. Специальная теория относительности. Одновременность, относительность расстояния и массы. Общая теория относительности: четыре измерения. Черные дыры и гравитационные волны. Принцип эквивалентности инерции и тяготения.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 22.01.2011
Размер файла 57,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки РФ

Российская академия предпринимательства

Новосибирский филиал

Реферат

По курсу: Концепции современного естествознания.

На тему: Теория относительности А. Эйнштейна.

Выполнил:

Студент гр. М29-З

Фильковский А. В.

Проверила:

Ледовских А. Ю.

Новосибирск 2010 г.

Содержание

  • Введение
  • 1. Принцип относительности Эйнштейна
  • 2. Специальная теория относительности
  • 2.1 Понятие одновременности
  • 2.2 Относительность расстояний
  • 2.3 Относительность массы
  • 3. Общая теория относительности
  • 3.1 Черные дыры
  • 3.2 Гравитационные волны и Пульсар PSR 1913+16
  • Заключение
  • Список литературы

Введение

Общая теория относительности (ОТО) - современная теория тяготения, связывающая его с кривизной четырехмерного пространства-времени.

В своем, так сказать, классическом варианте теория тяготения была создана Ньютоном еще в XVII веке и до сих пор верно служит человечеству. Она вполне достаточна для многих, если не для большинства, задач современной астрономии, астрофизики, космонавтики. Между тем ее принципиальный внутренний недостаток был ясен еще самому Ньютону. Это теория с дальнодействием: в ней гравитационное действие одного тела на другое передается мгновенно, без запаздывания. Ньютоновская гравитация так же соотносится с общей теорией относительности, как закон Кулона с максвелловской электродинамикой. Максвеллу удалось изгнать дальнодействие из электродинамики. В гравитации это сделал Эйнштейн.

У этой работы несомненно были предшественники, среди которых нельзя не упомянуть работы Лоренца и Пуанкаре. В их статьях уже содержались многие элементы специальной теории относительности. Однако ясное понимание, цельная картина физики больших скоростей появились лишь в упомянутой работе Эйнштейна. Не случайно, несмотря на наличие прекрасных современных учебников, ее до сих нор можно рекомендовать для первого знакомства с предметом не только студентам, но и старшеклассникам.

В последнем этапе создания ОТО принял участие Гильберт. Вообще значение математики (и математиков) для ОТО очень велико. Ее аппарат, тензорный анализ, или абсолютное дифференциальное исчисление, был развит Риччи и Леви-Чивита. Друг Эйнштейна, математик Гроссман познакомил его с этой техникой.

И все же ОТО - это физическая теория, в основе которой лежит ясный физический принцип, твердо установленный экспериментальный факт.

теория относительность эйнштейн

Явления, описываемые теорией относительности, называются релятивистскими (от лат. "относительный") и проявляются при скоростях, близких к скорости света в вакууме (эти скорости тоже принято называть релятивистскими).

Обе теории СТО и ОТО сосредотачиваются на новых подходах к пространства-времени, подходах, которые отличаются глубоко от тех, которые используются в каждодневной жизни; но релятивистские понятия пространства-времени неразрывно вплетаются в любую современную интерпретацию физических явлений в пределах от атома до вселенной в целом.

1. Принцип относительности Эйнштейна

Говорят, что прозрение пришло к Альберту Эйнштейну в одно мгновение. Ученый якобы ехал на трамвае по Берну (Швейцария), взглянул на уличные часы и внезапно осознал, что если бы трамвай сейчас разогнался до скорости света, то в его восприятии эти часы остановились бы - и времени бы вокруг не стало. Это и привело его к формулировке одного из центральных постулатов относительности - что различные наблюдатели по-разному воспринимают действительность, включая столь фундаментальные величины, как расстояние и время.

Говоря научным языком, в тот день Эйнштейн осознал, что описание любого физического события или явления зависит от системы отсчета, в которой находится наблюдатель. Если пассажирка трамвая, например, уронит очки, то для нее они упадут вертикально вниз, а для пешехода, стоящего на улице, очки будут падать по параболе, поскольку трамвай движется, в то время как очки падают. У каждого своя система отсчета.

Но хотя описания событий при переходе из одной системы отсчета в другую меняются, есть и универсальные вещи, остающиеся неизменными. Если вместо описания падения очков задаться вопросом о законе природы, вызывающем их падение, то ответ на него будет один и тот же и для наблюдателя в неподвижной системе координат, и для наблюдателя в движущейся системе координат. Закон распределенного движения в равной мере действует и на улице, и в трамвае. Иными словами, в то время как описание событий зависит от наблюдателя, законы природы от него не зависят, то есть, как принято говорить на научном языке, являются инвариантными. В этом и заключается принцип относительности.

Как любую гипотезу, принцип относительности нужно было проверить путем соотнесения его с реальными природными явлениями. Из принципа относительности Эйнштейн вывел две отдельные (хотя и родственные) теории. Специальная, или частная, теория относительности, революционизировавшая все области физики, исходит из положения, что законы природы одни и те же для всех систем отсчета, движущихся с постоянной скоростью. Предложенные Эйнштейном идеи требовали отказа от прежних представлений, что пространство (x, y, z) и время (t) - различные и не связанные друг с другом параметры движения. Согласно представлениям СТО, мы живем не в трехмерном пространстве, к которому присоединяется понятие времени, а напротив - пространственные и временная координата неразрывно связаны друг с другом, образуя четырехмерное пространство - время. Эти понятия СТО кажутся несколько странными и искусственными, но нужно помнить, что явления, предсказываемые этой теорией, справедливы лишь при скоростях, близких к скорости света v ~ c, тогда как наше мышление основывается на повседневном опыте, в котором столь высокие скорости не проявляются. Если бы мы жили в мире больших скоростей, то все идеи СТО казались бы естественными и легко воспринимались. В сущности эти воззрения есть проявление того же "здравого смысла", который когда-то поддерживал представление о том, что Земля плоская. Однако, как сказал Эйнштейн: "Здравый смысл - это наслоение предрассудков, которые человек накапливает до 18-летнего возраста".

Общая теория относительности распространяет этот принцип на любые системы отсчета, включая те, что движутся с ускорением. Эйнштейн обобщил принцип относительности Галилея, сформулированный для механических явлений, на все явления природы. Принцип относительности Эйнштейна гласит: "Никакими физическими опытами (механическими, электрическими, оптическими), произведенными в какой-либо инерциальной системе отсчета, невозможно определить, движется ли эта система равномерно и прямолинейно, или находится в покое". Не только механические, но и все физические законы одинаковы во всех инерциальных системах отсчета.

Таким образом, принцип относительности Эйнштейна устанавливает полную равноправность всех инерциальных систем отсчета и отвергает идею абсолютного пространства Ньютона. Специальная теория относительности была опубликована в 1905 году, а более сложная с точки зрения математического аппарата общая теория относительности была завершена Эйнштейном к 1916 году.

2. Специальная теория относительности

Большинство парадоксальных и противоречащих интуитивным представлениям о мире эффектов, возникающих при движении со скоростью, близкой к скорости света, предсказывается именно специальной теорией относительности. Самый известный из них - эффект замедления хода часов, или эффект замедления времени. Часы, движущиеся относительно наблюдателя, идут для него медленнее, чем точно такие же часы у него в руках.

Время в системе координат, движущейся со скоростями, близкими к скорости света, относительно наблюдателя растягивается, а пространственная протяженность (длина) объектов вдоль оси направления движения - напротив, сжимается. Этот эффект, известный как сокращение Лоренца-Фицджеральда, был описан в 1889 году ирландским физиком Джорджем Фицджеральдом (George Fitzgerald, 1851-1901) и дополнен в 1892 году нидерландцем Хендриком Лоренцем (Hendrick Lorentz, 1853-1928). Сокращение Лоренца-Фицджеральда объясняет, почему опыт Майкельсона-Морли по определению скорости движения Земли в космическом пространстве посредством замеров "эфирного ветра" дал отрицательный результат. Позже Эйнштейн включил эти уравнения в специальную теорию относительности и дополнил их аналогичной формулой преобразования для массы, согласно которой масса тела также увеличивается по мере приближения скорости тела к скорости света. Так, при скорости 260 000 км/с (87% от скорости света) масса объекта с точки зрения наблюдателя, находящегося в покоящейся системе отсчета, удвоится.

Со времени Эйнштейна все эти предсказания, сколь бы противоречащими здравому смыслу они ни казались, находят полное и прямое экспериментальное подтверждение.

В одном из самых показательных опытов ученые Мичиганского университета поместили сверхточные атомные часы на борт авиалайнера, совершавшего регулярные трансатлантические рейсы, и после каждого его возвращения в аэропорт приписки сверяли их показания с контрольными часами. Выяснилось, что часы на самолете постепенно отставали от контрольных все больше и больше (если так можно выразиться, когда речь идет о долях секунды). Последние полвека ученые исследуют элементарные частицы на огромных аппаратных комплексах, которые называются ускорителями. В них пучки заряженных субатомных частиц (таких как протоны и электроны) разгоняются до скоростей, близких к скорости света, затем ими обстреливаются различные ядерные мишени. В таких опытах на ускорителях приходится учитывать увеличение массы разгоняемых частиц - иначе результаты эксперимента попросту не будут поддаваться разумной интерпретации. И в этом смысле специальная теория относительности давно перешла из разряда гипотетических теорий в область инструментов прикладной инженерии, где используется наравне с законами механики Ньютона.

Возвращаясь к законам Ньютона, я хотел бы особо отметить, что специальная теория относительности, хотя она внешне и противоречит законам классической ньютоновской механики, на самом деле практически в точности воспроизводит все обычные уравнения законов Ньютона, если ее применить для описания тел, движущихся со скоростью значительно меньше, чем скорость света. То есть, специальная теория относительности не отменяет ньютоновской физики, а расширяет и дополняет её. Принцип относительности помогает также понять, почему именно скорость света, а не какая-нибудь другая, играет столь важную роль в этой модели строения мира - этот вопрос задают многие из тех, кто впервые столкнулся с теорией относительности.

Скорость света выделяется и играет особую роль универсальной константы, потому что она определена естественнонаучным законом.

В силу принципа относительности скорость света в вакууме c одинакова в любой системе отсчета. Это, казалось бы, противоречит здравому смыслу, поскольку получается, что свет от движущегося источника (с какой бы скоростью он ни двигался) и от неподвижного доходит до наблюдателя одновременно. Однако это так.

Главное своеобразие физики Эйнштейна заключается в том, что движение вещества она сопоставляет с поведением света.

Фундаментом СТО служат два постулата, объединяющие основные свойства движения вещества и света.

Первый постулат: равномерные прямолинейные движения невозможно отличить от покоя. То и другое физически равноценно.

Второй постулат: скорость света не зависит от движения светового источника.

По отдельности постулаты ничуть не странны. В закрытой каюте невозможно узнать, движется корабль (плавно, без толчков и тряски) или стоит возле пристани. Вместе с тем можно поверить, что световые волны распространяются одинаково быстро от движущегося и неподвижного фонаря. Ведь именно так ведут себя звуковые волны, волны на воде и т.д.

Каждый постулат сам по себе понятен и логичен. Однако соединенные вместе, они выглядят несовместимыми. Вторым, казалось бы, опровергается первый. В самом деле: резонно думать, что равномерное прямолинейное движение возможно обнаружить относительно световых волн и, значит, отличить его от покоя, что противоречит первому постулату.

Когда пилот быстроходного самолета перестает слышать рев собственных двигателей, он знает, что обогнал звук и мчится быстрее звуковых волн.

Со светом подобное невозможно (в 1881 г. американский физик Майкельсон доказал это экспериментом). Как бы быстро ни мчалась ракета, свет ее прожектора всегда бьет вперед с неизменной скоростью - 300000 км/сек. Изменить свою скорость относительно световых волн невозможно. Поэтому, воспользовавшись светом, невозможно отличить равномерное прямолинейное движение ракеты от покоя, несмотря на то, что скорость света не зависит от движения источника.

Из постулатов Эйнштейна вытекают очень важные следствия.

2.1 Понятие одновременности

Рассмотрим теперь вопрос о сверке часов и об одновременности событий в разных системах отсчета с учетом постулатов Эйнштейна.

В механике Ньютона "истинный, или стандартный, процесс течения абсолютного времени не подвержен никаким изменениям" и не зависит " от того, быстры движения или медленны или их нет вообще". Считалось, что такие понятия, как "момент времени", "раньше", "позже", "одновременность", имеют сами по себе смысл, правомерный для всей Вселенной, и два каких-нибудь события, одновременные для одной системы, одновременны и во всех других системах. С точки зрения же теории относительности Эйнштейна нет такого понятия, как абсолютная одновременность, как нет абсолютного времени.

Чтобы решить, одновременно ли произошли в различных точках два события, необходимо иметь в каждой из этих точек точные часы, относительно которых можно быть уверенным, что они идут синхронно. Для этого можно перенести эти часы в одну точку, отрегулировать их так, чтобы они шли синхронно, и затем снова разнести их по разным помещениям. Можно также использовать сигналы времени. Позволяющие сравнивать показания часов в различных точках. На практике используют оба способа. На корабле, например, есть хронометр, который идет очень точно и отрегулирован по контрольным часам в порту отправления. Кроме того, для его проверки во время плавания используются сигналы точного времени по радио.

Так всеобщая абсолютная одновременность, возможность которой подразумевалась в классической физике, пропадает. Вместо нее выходит на сцену относительная одновременность событий, существующая лишь для какого-то конкретного, определенным образом движущегося наблюдателя.

Разные наблюдатели могут устанавливать даже неодинаковую очередность одних и тех же событий. Но все это чрезвычайно тонко и возможно отметить лишь при движении с гигантскими относительными скоростями, сравнимыми со скоростью света. Важно, чтобы наблюдатели успевали заметно сместиться за то крохотное время, пока световые вспышки пробегают расстояние между событиями.

Таким образом, согласно теории относительности в каждой из инерциальных систем, находящихся в относительном движении, существует собственное время системы, которое показывают часы, покоящиеся в этой системе. Следовательно, при определении времени событий в различных инерциальных системах события, одновременные в одной системе, могут оказаться неодновременными в другой системе отсчета. Другими словами, не существует абсолютной одновременности.

2.2 Относительность расстояний

Рассмотрим пример: сверхбыстрый пароход движется мимо ленты, которую разложил на берегу бакенщик.

По измерениям бакенщика, длина ленты, допусти, 100 м. Но капитан с этим не согласен. Для капитана лента короче.

Чтобы измерить длину ленты с мчащегося корабля, капитан одновременно (для себя) засекает на палубе точки, совпадающие с ее концами, и потом спокойно отмеряет расстояние между засечками. Но для бакенщика засечки сделаны неодновременно. Сначала, по его мнению, засечено начало ленты (где-то против кормы проносящегося парохода), потом - конец. Между моментами засечек корабль успел сместиться вперед - вот и вышло, что на пароходе засечки ближе друг к другу, чем следовало бы по отсчетам бакенщика.

Однако ошибки в измерении капитана не было. Его отсчет исполнен точно. Разница же итогов измерений - результат относительности одновременности.

В свою очередь бакенщик, измеряя таким же способом длину парохода, найдет его более коротким, чем капитан.

По отсчетам любых наблюдателей, длины предметов, проносящихся мимо, сокращаются. Для каждого путешественника сокращается длина всего проходимого им расстояния. И тем заметнее, чем ближе его скорость к скорости света.

2.3 Относительность массы

Согласно теории Эйнштейна, масса одного и того же тела есть величина относительная. Она имеет различные значения в зависимости от выбора системы отсчета, в которой проводится ее измерение. Или при измерении в одной и той же системе отсчета - в зависимости от скорости движущегося тела. При этом масса зависит только от величины скорости относительно этой системы и не зависит от направления скорости. Пока скорости движения малы по сравнению со скоростью света, массу тела можно считать постоянной и независящей от скорости движения, как это и делается в классической механике. По мере того. Как скорость движения тела приближается к скорости света, величина массы становится все больше и для одного и того же приращения скорости нужна все большая и большая сила. Чем ближе скорость тела к скорости света, тем труднее ее увеличить. Когда скорость тела достигает скорости света, его масса становится бесконечно большой. Отсюда следует, что невозможно заставить тело двигаться со скоростью света. Ничто вещественное не может даже догнать свет. Со скоростью света могут двигаться только частицы, масса покоя которых равна нолю.

Отсюда можно сделать вывод, что при сообщении телу кинетической энергии его масса увеличивается. Получается, что кинетической энергии соответствует определенная масса. Рассмотрим, справедливо ли это утверждение в отношении других видов энергии?

С возрастанием скорости растет и энергия тела, его способность совершить работу. Значит, масса и энергия растут вместе. Вблизи скорости света то и другое стремительно увеличивается. Инерция становится непреодолимо огромной, энергия - сколь угодно большой.

Отсюда делается вывод об эквивалентности массы и энергии. Масса и энергия - две эквивалентные характеристики движущегося тела. Так, при нагревании тела его масса несколько увеличивается. Излучение, испускаемое Солнцем, содержит энергию и поэтому имеет массу; Солнце и звезды при излучении теряют массу. Камень, лежащий на ладони, лишь внешне спокоен. Он неподвижен лишь как целое тело. Внутри, в своем микромире, он насыщен незаметными для глаза движениями. Это внутреннее движение обусловливает существование внутренней энергии камня, которая тоже подчинена закономерностям СТО. Значит, и внутренняя энергия эквивалентна некоторой массе. Это и есть масса покоя.

Зная массу покоя тела, легко вычислить запас его внутренней энергии. Подсчет делается по знаменитой формуле Эйнштейна: Е=mc. Из этого соотношения следует, что полная энергия тела пропорциональна его массе. У всех тел с потерей энергии уменьшается масса и, наоборот, с увеличением энергии увеличивается масса.

3. Общая теория относительности

Общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимися с постоянной скоростью друг относительно друга) и выглядит математически гораздо сложнее, чем специальная (чем и объясняется разрыв в одиннадцать лет между их публикацией). Она включает в себя как частный случай специальную теорию относительности (и, следовательно, законы Ньютона). При этом общая теория относительности идёт значительно дальше всех своих предшественниц. В частности, она дает новую интерпретацию гравитации.

Общая теория относительности делает мир четырехмерным: к трем пространственным измерениям добавляется время. Все четыре измерения неразрывны, поэтому речь идет уже не о пространственном расстоянии между двумя объектами, как это имеет место в трехмерном мире, а о пространственно-временных интервалах между событиями, которые объединяют их удаленность друг от друга - как по времени, так и в пространстве. То есть пространство и время рассматриваются как четырехмерный пространственно-временной континуум или, попросту, пространство-время. В этом континууме наблюдатели, движущиеся друг относительно друга, могут расходиться даже во мнении о том, произошли ли два события одновременно - или одно предшествовало другому. К счастью для нашего бедного разума, до нарушения причинно-следственных связей дело не доходит - то есть существования систем координат, в которых два события происходят не одновременно и в разной последовательности, даже общая теория относительности не допускает.

Классическая физика считала тяготение рядовой силой среди множества природных сил (электрических, магнитных и т.д.). Тяготению было предписано "дальнодействие" (проникновение "сквозь пустоту") и удивительная способность придавать равное ускорение телам разных масс.

Закон всемирного тяготения Ньютона говорит нам, что между любыми двумя телами во Вселенной существует сила взаимного притяжения. С этой точки зрения Земля вращается вокруг Солнца, поскольку между ними действуют силы взаимного притяжения.

Общая теория относительности, однако, заставляет нас взглянуть на это явление иначе. Согласно этой теории, гравитация - это следствие деформации ("искривления") упругой ткани пространства-времени под воздействием массы (при этом чем тяжелее тело, например Солнце, тем сильнее пространство-время "прогибается" под ним и тем, соответственно, сильнее его гравитационное поле). Представьте себе туго натянутое полотно (своего рода батут), на которое помещен массивный шар. Полотно деформируется под тяжестью шара, и вокруг него образуется впадина в форме воронки. Согласно общей теории относительности, Земля обращается вокруг Солнца подобно маленькому шарику, пущенному кататься вокруг конуса воронки, образованной в результате "продавливания" пространства-времени тяжелым шаром - Солнцем. А то, что нам кажется силой тяжести, на самом деле является, по сути чисто внешнем проявлением искривления пространства-времени, а вовсе не силой в ньютоновском понимании. На сегодняшний день лучшего объяснения природы гравитации, чем дает нам общая теория относительности, не найдено.

Вначале обсуждается равенство ускорений свободного падения для тел разных масс (то, что массивный ключ и легонькая спичка одинаково быстро падают со стола на пол). Как подметил Эйнштейн, это уникальное свойство делает тяжесть очень похожей на инерцию.

В самом деле, ключ и спичка ведут себя так, как если бы они двигались в невесомости по инерции, а пол, комнаты с ускорением придвигался к ним. Достигнув ключа и спички, пол испытал бы их удар, а затем давление, т.к. инерция ключа и спички сказалась бы при дальнейшем ускорении пола.

Это давление (космонавты говорят - "перегрузка") называется силой инерции. Подобная сила всегда приложена к телам в ускоренных системах отсчета.

Если ракета летит с ускорением, равным ускорению свободного падения на земной поверхности (9,81 м/сек), то сила инерции будет играть роль веса ключа и спички. Их "искусственная" тяжесть будет точно такой же, как естественная на поверхности Земли. Значит, ускорение системы отсчета - это явление, вполне подобное гравитации.

Наоборот, в свободно падающем лифте естественная тяжесть устраняется ускоренным движением системы отсчета кабины "вдогонку" за ключом и спичкой. Разумеется, классическая физика не видит в этих примерах истинного возникновения и исчезновения тяжести. Тяготение лишь имитируется или компенсируется ускорением. Но в ОТО сходство инерции и тяжести признается гораздо более глубоким.

Эйнштейн выдвинул локальный принцип эквивалентности инерции и тяготения, заявив, что в достаточно малых масштабах расстояний и длительностей одно явление невозможно отличить от другого никаким экспериментом. Таким образом, ОТО еще глубже изменила научные представления о мире. Потерял универсальность первый закон ньютоновской динамики - оказалось, что движение по инерции может быть криволинейным и ускоренным. Отпала надобность в понятии тяжелой массы. Изменилась геометрия Вселенной: вместо прямого евклидовского пространства и равномерного времени появилось искривленное пространство-время, искривленный мир. Столь резкой перестройки воззрений на физические первоосновы мироздания не знала история науки.

Проверить общую теорию относительности трудно, поскольку в обычных лабораторных условиях ее результаты практически полностью совпадают с тем, что предсказывает закон всемирного тяготения Ньютона. Тем не менее несколько важных экспериментов были произведены, и их результаты позволяют считать теорию подтвержденной. Кроме того, общая теория относительности помогает объяснить явления, которые мы наблюдаем в космосе, один из примеров - луч света, проходящий около Солнца. И ньютоновская механика, и ОТО признают, что он должен отклониться к Солнцу (падать). Однако ОТО предсказывает вдвое большее смещение луча. Наблюдения во время солнечных затмений доказали правоту предсказания Эйнштейна. Другой пример. У ближайшей к Солнцу планеты Меркурий незначительные отклонения от стационарной орбиты, необъяснимые с точки зрения классической механики Ньютона. Но именно такую орбиту дает вычисление по формулам ОТО. Замедлением времени в сильном гравитационном поле объясняют уменьшение частоты световых колебаний в излучении белых карликов - звезд очень большой плотности. А в последние годы этот эффект удалось зарегистрировать и в лабораторных условиях. Наконец, очень велика роль ОТО в современной космологии - науке о строении и истории всей Вселенной. В этой области знания также найдено много доказательств эйнштейновской теории тяготения. На самом деле результаты, которые предсказывает общая теория относительности, заметно отличаются от результатов, предсказанных законами Ньютона, только при наличии сверхсильных гравитационных полей. Это значит, что для полноценной проверки общей теории относительности нужны либо сверхточные измерения очень массивных объектов, либо черные дыры, к которым никакие наши привычные интуитивные представления неприменимы. Так что разработка новых экспериментальных методов проверки теории относительности остается одной из важнейших задач экспериментальной физики.

3.1 Черные дыры

Однако роль ОТО отнюдь не сводится к исследованию малых поправок к обычной ньютоновской гравитации. Существуют объекты, в которых эффекты ОТО играют ключевую роль, важны стопроцентно. Это так называемые черные дыры.

Еще в XVIII веке Митчел и Лаплас независимо заметили, что могут существовать звезды, обладающие совершенно необычным свойством: свет не может покинуть их поверхность. Рассуждение выглядело примерно так. Тело, обладающее радиальной скоростью v, может покинуть поверхность звезды радиусом R и массой M при условии, что кинетическая энергия этого тела mv2/2 превышает энергию притяжения GMm/R, т.е. при v2 > 2GM/R. Применение последнего неравенства к свету (как мы теперь понимаем, совершенно не обоснованное) приводит к выводу: если радиус звезды меньше чем то свет не может покинуть ее поверхность, такая звезда не светит! Последовательное применение ОТО приводит к такому же выводу, причем, поразительно, правильный критерий количественно совпадает с наивным, необоснованным. Величина rg, гравитационный радиус.

Черная дыра - вполне естественное название для такого объекта. Свойства его весьма необычны. Черная дыра возникает, когда звезда сжимается настолько сильно, что усиливающееся гравитационное поле не выпускает во внешнее пространство ничего, даже свет. Поэтому из черной дыры не выходит никакая информация.

Занятно выглядит падение пробного тела на черную дыру. По часам бесконечно удаленного наблюдателя это тело достигает гравитационного радиуса лишь за бесконечное время. С другой стороны, по часам, установленным на самом пробном теле, время этого путешествия вполне конечно.

Многочисленные результаты астрономических наблюдений дают серьезные основания полагать, что черные дыры - это не просто игра ума физиков-теоретиков, а реальные объекты, существующие по крайней мере в ядрах галактик.

3.2 Гравитационные волны и Пульсар PSR 1913+16

Еще в 1918 году Эйнштейн предсказал на основе ОТО существование гравитационного излучения. Хорошо известно, что электрически заряженные частицы, будучи ускоренными, излучают электромагнитные волны. Аналогично, массивные тела, двигаясь с ускорением, излучают гравитационные волны - рябь геометрии пространства, распространяющуюся тоже со скоростью света.

Следует заметить, что аналогия эта неполна (впрочем, как практически и всякая иная). Одно из отличий между электромагнитными и гравитационными волнами, имеющее довольно существенный характер, состоит в следующем. В отличие от случая электромагнитного поля плотность энергии гравитационного поля, гравитационной волны локально, в данной точке, можно всегда обратить в ноль подходящим выбором системы координат. В свое время, лет 60 - 70 назад, это обстоятельство рассматривалось как серьезная трудность теории. Затем, однако, смысл его был прояснен, и проблема была снята. Тем не менее, стоит остановиться на этом вопросе по следующей причине. В последние годы в нашей стране в некоторых публикациях, претендующих на серьезный научный характер, а также в научно-популярной литературе появились утверждения о том, что возможность обращения в ноль локальной плотности энергии гравитационного поля является коренным, принципиальным дефектом ОТО.

На самом же деле ничего страшного в этом факте нет. Он - прямое следствие принципа эквивалентности. Действительно, переходя в систему, связанную со свободно падающим лифтом, мы обращаем в ноль напряженность гравитационного поля. Вполне естественно, что в этой системе равна нулю и плотность энергии гравитационного поля. Отсюда, однако, вовсе не следует, что гравитационные волны - всего лишь игра ума, математическая абстракция.

Это в принципе наблюдаемое физическое явление. Так, например, стержень, находящийся в поле гравитационной волны, испытывает деформации, меняющиеся с ее частотой. Увы, оговорка "в принципе" отнюдь не случайна: масса любого объекта на Земле настолько мала, а движение его столь медленно, что генерация гравитационного излучения в земных условиях совершенно ничтожна, не видно сколько-нибудь реального способа зарегистрировать такое излучение. Существует ряд проектов создания детекторов гравитационного излучения от космических объектов. Однако и здесь реальных результатов до сих пор нет. Следует также сказать, что, хотя плотность энергии гравитационного поля в любой точке можно по своему желанию обратить в ноль выбором подходящей системы координат, полная энергия этого поля во всем объеме, полный его импульс имеют совершенно реальный физический смысл (конечно, если поле достаточно быстро убывает на бесконечности). Столь же наблюдаемой, хорошо определенной величиной является и потеря энергии системой за счет гравитационного излучения.

Однако энергия гравитационных волн может черпаться только из энергии орбитального движения звезд. Падение последней приводит к уменьшению расстояния между звездами.

Нобелевская премия по физике за 1993 год была присуждена Халсу и Тейлору за исследование пульсара PSR 1913+16 (буквы PSR означают пульсар, а цифры относятся к координатам на небесной сфере: прямое восхождение 19h13h, склонение +16o). Исследование свойств излучения этого пульсара показало, что он является компонентом двойной звезды. Иными словами, у него есть компаньон, и обе звезды вращаются вокруг общего центра масс. Расстояние между этим пульсаром и его компаньоном составляет всего 1,8.106 км. Если бы невидимый компаньон был обычной звездой с характерным радиусом ~106 км, то наблюдались бы, очевидно, затмения пульсара. Однако ничего подобного не происходит.

Подробный анализ наблюдений показал, что невидимый компонент - это не что иное, как нейтронная звезда.

Существование нейтронных звезд было предсказано теоретически еще в 30-е годы. Они образуются в результате бурного гравитационного сжатия массивных звезд, сопровождающегося взрывом сверхновых.

Так вот, тщательные измерения импульсов радиоизлучения от пульсара PSR 1913+16 показали, что расстояние между компонентами этой двойной звезды уменьшается на несколько метров в год в полном согласии с предсказанием ОТО. Любопытно, что потеря энергии двойной звездой за счет гравитационного излучения была впервые рассчитана Ландау и Лифшицем, они поместили этот расчет в качестве учебной задачи в первое издание своей книги - Теория поля", которое вышло в 1941 году.

Заключение

Ряд выводов общей теории относительности качественно отличаются от выводов ньютоновской теории тяготения. Важнейшие среди них связаны с возникновением черных дыр, сингулярностей пространства-времени, существованием гравитационных волн (гравитационного излучения).

Представления о пространстве и времени составляют основу физического миропонимания, что уже само по себе определяет значение теории относительности. Особенно велика ее роль в физике ядра и элементарных частиц, в том числе и для расчетов гигантских установок, которые предназначены для потоков очень быстрых частиц, необходимых для экспериментов, позволяющих продвинуться в изучении строения материи.

ОТО - завершенная физическая теория. Она завершена в том же смысле, что и классическая механика, классическая электродинамика, квантовая механика. Подобно им, она дает однозначные ответы на физически осмысленные вопросы, дает четкие предсказания для реально осуществимых наблюдений и экспериментов. Однако, как и всякая иная физическая теория, ОТО имеет свою область применимости. Так, вне этой области лежат сверхсильные гравитационные поля, где важны квантовые эффекты. Законченной квантовой теории гравитации не существует.

ОТО - удивительная физическая теория. Она удивительна тем, что в ее основе лежит, по существу, всего один экспериментальный факт, к тому же известный задолго до создания ОТО (все тела падают в поле тяжести с одним и тем же ускорением). Удивительна тем, что она создана в большой степени одним человеком. Но прежде всего ОТО удивительна своей необычайной внутренней стройностью, красотой.

Не случайно Ландау говорил, что истинного физика-теоретика можно распознать по тому, испытал ли человек восхищение при первом же знакомстве с ОТО.

Примерно до середины 60-х годов ОТО находилась в значительной мере вне основной линии развития физики. Да и развитие самой ОТО отнюдь не было весьма активным, оно сводилось в большой степени к выяснению определенных тонких мест, деталей теории, к решению пусть важных, но достаточно частных задач. Вероятно, ОТО возникла в некотором смысле слишком рано, Эйнштейн обогнал время. С другой стороны, уже в его работе 1915 года теория была сформулирована в достаточно завершенном виде. Не менее важно и то обстоятельство, что наблюдательная база ОТО оставалась очень узкой.

Соответствующие эксперименты чрезвычайно трудны. Достаточно напомнить, что красное смещение удалось измерить лишь спустя почти 40 лет после того, как было обнаружено отклонение света в поле Солнца.

Однако в настоящее время ОТО - бурно развивающаяся область современной физики. Это результат огромного прогресса наблюдательной астрономии, развития экспериментальной техники, впечатляющего продвижения в теории.

Список литературы

1. Нарликар Дж. Гравитация без формул: Пер. с англ.С.И. Блинникова. - Мир, 1985.

2. Новиков И.Д. Энергетика черных дыр. - Знание, 1986.

3. Берков А.В., Кобзарев И.Ю. Теория тяготения Эйнштейна. Общие принципы и экспериментальные следствия. МИФИ, 1989;

Берков А.В., Кобзарев И.Ю. Приложения теории тяготения Эйнштейна к астрофизике и космологии. - МИФИ, 1990.

4. С.Г. Хорошавина "Концепции современного естествознания"

5. Г.А. Зисман, О.М. Тодес "Курс общей физики"

6. Б.Н. Иванов "Законы физики"

7. Л.С. Жданов, Г.Л. Жданов "Физика"

8. "Познание продолжается" - изд. "Просвещение" 1970 г.

Размещено на Allbest.ru


Подобные документы

  • Истоки теории относительности, порядок ее формирования и значение. Принцип относительности Галилея. Сущность преобразования Галилея и Лоренца. Теория относительности А. Эйнштейна, особенности и отличительные признаки ее общей и специальной формы.

    реферат [2,4 M], добавлен 09.11.2010

  • Категории пространства и времени, анализ концепции их относительности. Инвариантность пространственных и временных интервалов как отражение свойств симметрии физического мира. Эволюционная теория относительности. Теория относительности А. Эйнштейна.

    реферат [35,2 K], добавлен 11.07.2013

  • Инертная, гравитационная массы и принцип эквивалентности. Ускоренное движение и сила тяжести. Время в разных системах отсчета, одновременность событий и собственное время. Принцип эквивалентности и теория относительности. Взаимосвязь массы и энергии.

    контрольная работа [17,9 K], добавлен 24.05.2009

  • Понятие общей теории относительности - общепринятой официальной наукой теории о том, как устроен мир, объединяющей механику, электродинамику и гравитацию. Принцип равенства гравитационной и инертной масс. Теория относительности и квантовая механика.

    курсовая работа [111,1 K], добавлен 17.01.2011

  • Концепции времени и пространства, этапы их зарождения и развития, направления исследования на сегодня. Эксперимент Майкельсона-Морли. Принцип относительности Галилея. Относительность одновременности событий. Общая и специальная теория Эйнштейна.

    контрольная работа [27,7 K], добавлен 10.03.2013

  • Изучение принципа относительности Галилея. История возникновения и содержание концепции наименьшего действия. Ознакомление с основными постулатами специальной теории относительности Эйнштейна. Экспериментальные подтверждения общей теории относительности.

    реферат [30,5 K], добавлен 30.07.2010

  • Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения. Идея построения материального мира из элементарных, фундаментальных "кирпичиков".

    реферат [888,7 K], добавлен 07.01.2010

  • Закон сохранения массы как один из фундаментальных законов естествознания. Соотношение между энергией покоя и массой тела Эйнштейна, теория относительности. Взаимное преобразование массы и энергии в ядерной энергетике. Физическая суть огня, природа массы.

    реферат [24,4 K], добавлен 23.04.2010

  • Ознакомление с уравнениями Максвелла, ньютоновскими законов и концепциями близкодействия Фарадея как с этапами развития общей теорий относительности Эйнштейна, объединяющей пространство и время. Изучение эволюции и структурной организации Вселенной.

    реферат [845,0 K], добавлен 26.04.2010

  • Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна. Основные закономерности развития биогеоценоза. Взаимодействие между компонентами как важнейший механизм поддержания целостности и устойчивости биогеоценозов.

    контрольная работа [150,8 K], добавлен 13.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.