Концепции современного естествознания

Предмет и социальные функции курса "Концепции современного естествознания". Эмпирический и теоретический уровни естествознания, их специфика, роль в научном познании и взаимосвязь. Структурные уровни материи, пространство и время, порядок и хаос.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 19.01.2011
Размер файла 65,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ПЛАН

1. Предмет и социальные функции курса «Концепции современного естествознания».

2. Наука, религия и философия. Классификация наук.

3. Эмпирический и теоретический уровни естествознания, их специфика, роль в научном познании и взаимосвязь.

4. История естествознания. Античная картина мира. Три научные программы античного мира.

5. Геоцентрическая и гелио центрическая системы мира.

6. Панорама современного естествознания.

7. Понятие материи. Виды материи.

8. Структурные уровни материи. Микро , мезо , макро , супермир.

9. Начало термодинамики. Энтропия. Проблема тепловой смерти Вселенной.

10. Пространство и время.

11. Порядок и хаос (беспорядок) в материальном мире. Виды взаимодействий.

12. Специальная и общая теории относительности. Принципы относительности. Принципы симметрии.

13. Понятие и специфика законов природы. Динамические и статистические закономерности в природе.

14. законы сохранения и превращения. Принцип возрастания энтропии. законы близкодействия, дальнодействия, состояния.

15. Химические системы, энергетика химических процессов. Реакционная способность веществ. Химическая эволюция земли.

16. Принципы: неопределенности, дополнительности, суперпозиции.

17. Основные этапы биологической эволюции.

18. зарождение живой материи. Строение и разновидности клеток.

19. Состав и структура молекул ДНК и РНК. Геном организма.

20. Предмет изучения. задачи и методы биологии. Популяции и биоценозы.

21. Человек и природа. Основные этапы развития Человека Разумного.

22. Физиология, здоровье, эмоции, творчество, работоспособность.

23. Расы и этносы.

24. Биосфера. Биоэтика. Космические циклы.

Предмет и социальные функции курса «Концепции современного естествознания»

Естествознание -- совокупность наук о природе.

Наука -- сфера человеческой деятельности, функция которой состоит в выработке и систематизации объективных знаний о действительности.

Непосредственная цель науки -- описание, объяснение и предсказание процессов и явлений действительности, составляющих предмет ее изучения на основе открываемых ею законов.

Концепция -- определенный способ понимания, трактовка каких-либо явлений, основная точка зрения.

Парадигма (от греч. paradeigma -- пример, образец) -- строго научная теория, господствующая в течение определенного исторического периода в научном обществе. Это модель постановки проблем, методов их исследования и решения.

Мировоззрение -- система обобщенных взглядов на объективный мир и место человека в нем, на отношение человека к окружающей действительности и самому себе.

Предмет естествознания:

различные формы движения материи в природе;

лестница последовательных уровней организации материи и их взаимосвязи;

основные формы всякого бытия -- пространство и время;

закономерная связь явлений природы как общего, так и специфического характера.

Цели естествознания:

находить сущность явлений природы, их законы и на этой основе предвидеть или создавать новые явления;

раскрывать возможности использования на практике познанных законов природы.

Рассматривая закономерности развития естествознания, нельзя обойти вопрос о социальной функции естествознания.

Опасные последствия использования достижений современного естествознания вынуждают многих исследователей задуматься над вопросами о социальной функции естествознания, роли ученого и научного познания в современном мире.

Все отчетливее становится понимание того непреложного факта, что если не будут в геометрической прогрессии возрастать социальная ответственность ученых, роль нравственного, этического начала в науке, то человечество, да и сама наука, не смогут развиваться даже в прогрессии арифметической.

Наука не развивается в социальном вакууме, она является особым социальным инструментом, предназначение которого -- обслуживание человека, его потребностей. Это особенно относится к современной биологии, которая активно служит удовлетворению человеческих потребностей через комплекс сельскохозяйственных и медицинских дисциплин. Человек все в большей степени становится объектом исследования, открываются новые возможности управления процессами его жизнедеятельности.

Быстрое развитие генетики человека и все более широкое использование ее результатов в системе здравоохранения, а также прогресс исследований в области общей и особенно молекулярной генетики вызывают острые дискуссии относительно возможностей применения новых методов и путей воздействия на биологические основы жизни, развитие и здоровье отдельного человека и всего человечества.

Наука, религия и философия. Классификация наук

Наука включает в себя как деятельность по получению нового знания, так и ее результат -- сумму знаний, лежащих в основе научной картины мира.

Задача науки состоит в объяснении наиболее общих количественно-формулируемых законов природы. Действием таких законов можно объяснить все явления, которые привычны и, казалось бы, не нуждаются в объяснении.

Метод науки -- способ изучения реальной действительности; общие, необходимые принципы, на которых базируется данная наука.

Методика -- путь исследования, теория, учение.

Теоретическое знание -- основная форма знания. В нем собраны фундаментальные знания об изучаемом объекте.

Фактологическое знание -- эта форма присуща любому виду знаний и не является научной. Его цель -- описание форм проявления объектов такими, какими они предстают в чувственном восприятии, а также классификация и систематизация по определенным признакам.

Эмпиризм (от греч. empeiria -- опыт) -- философское направление, признающее чувственный опыт единственным источником знаний, наиболее достоверным.

Гипотеза -- мнение о действительном положении вещей, выработанное под строгим надзором разума.

Научная теория -- знания, опирающиеся на определенную научную форму и содержащие методы объяснения и предсказания некоторой предметной области. Форма достоверного научного знания о некоторой совокупности объектов, представляющая собой целостную систему утверждений и доказательств. Это отражение основных законов природы. Для науки характерны:

диалектическое, т. е. отражающее развитие и всеобщую связь, сочетание процессов;

дифференциация и интеграция;

развитие фундаментальных и прикладных исследований.

В развитии науки чередуются экстенсивные (связанные с увеличением объема исследований, расширением их) и революционные периоды -- целые научные революции, приводящие к изменению структуры науки и принципов ее познания, категорий, методов и форм ее организации.

Религия (От лат. Religio- благочестие, набожность, святыня) - мировосприятие, одушевленное верой в Бога. Это не только вера или совокупность взглядов. Религия - это также чувство связанности, зависимости и долженствования по отношению к тайной высшей силе, дающей опору и достойной поклонения. Именно так понимали религию многие мудрецы и философы - Зороастр, Лао-Цзы, Конфуций, Будда, Сократ, Христос, Мухаммед. Не расходится с этим осмыслением религии и то, что предлагают более современные мыслители.

Исследованием религии занимаются богослов, историк, философ, но они это делают с разных сторон, Первый заботится о наиболее точном выражении фактов религиозного сознания, данных путем откровения, второй рассматривает ступени религиозного сознания, сравнивает и классифицирует различные религии. Философ стремится осмыслить феномен религиозности. Сравнительное изучение религии началось лишь в XIX в. Философы пытаются выделить религиозные формы сознания, раскрыть их основные типы.

Филосомфия (цйлЯб -- любовь, стремление, жажда + упцЯб -- мудрость > др.-греч. цйлпупцЯб (дословно: стремление к мудрости)) -- дисциплина, изучающая наиболее общие существенные характеристики и фундаментальные принципы реальности (бытия) и познания, бытия человека, отношения человека и мира.Философия обычно описывается как одна из форм мировоззрения, одна из форм человеческой деятельности, особый способ познания, теория или наука. Вид духовной деятельности, формирующий общественное сознание, который всесторонне, в предельно общих понятиях (универсалиях) ставит и разрешает коренные мировоззренческие вопросы.

История естествознания. Античная картина мира. Три научные программы античного мира

На всех этапах развития человеческого познания наблюдается сложная взаимосвязь результатов философских и биологических исследований. Между философией и естествознанием всегда существовала тесная взаимосвязь, которая восходит своими истоками к глубокой древности -- античному периоду становления науки.

Первичное знание о мире, накопленное в течение многих столетий первобытно-родового общества, еще не включало в себя ни философии, ни естествознания, а являлось совокупностью эмпирических (от греч. empeiria -- опыт) сведений, верований, мифов, устно передававшихся от поколения к поколению. С изобретением письменности и развитием материального производства темпы накопления знаний растут, и это приводит к возникновению науки, содержащей систему сведений и знаний о мире, а затем -- к дифференциации наук.

Уже в Древней Греции в V--III вв. до н. э. наряду с философскими концепциями мироздания стали формироваться такие науки, как астрономия, математика (арифметика и геометрия в первую очередь), география, медицина, история.

Накапливались дифференцированные знания о практических сферах деятельности людей, таких как ведение сельского хозяйства, строительство, изготовление предметов быта, искусство военных операций и т.д. Вместе с тем изучались вопросы бытия и познания:

какова сущность мира?

в чем смысл жизни?

познаваем ли мир и каковы законы и методы этого познания?

Первой научной программой стала математическая программа, представленная Пифагором и позднее развитая Платоном. В ее основе, как и в основе других античных программ, лежит представление о том, что Космос - это упорядоченное выражение целого ряда первоначальных сущностей, которые можно постигать по-разному. Пифагор нашел эти сущности в числах и представил в качестве первоосновы мира. При этом числа вовсе не являются теми кирпичиками мироздания, из которых состоят все вещи. Вещи не равны числам, а подобны им, основаны на количественных отношениях действительности, являющихся подлинно фундаментальными. Картина мира, представленная пифагорейцами, поражала своей гармонией -протяженный мир тел, подчиненный законам геометрии, движение небесных тел по математическим законам, закон прекрасно устроенного человеческого тела, данный каноном Поликлета.

Следующий шаг в направлении формирования этой программы сделали софисты и элеаты, впервые поставившие проблемы человеческого познания, а также разработавшие теорию доказательств. Они заявили, что ум человека - это не просто зеркало, пассивно отражающее природу, он накладывает свой отпечаток на мир, активно формируя его картину.

Свое завершение математическая программа получила в философии Платона, который нарисовал грандиозную картину истинного мира - мира идей, представляющего собой иерархически упорядоченную структуру. Мир вещей, в котором мы живем, возникает, подражая миру идей, из мертвой, косной материи, творцом всего является Бог-демиург (творец, создатель). При этом созидание им мира идет на основе математических закономерностей, которые Платон и пытался вычленить, тем самым математизируя физику. В Новое время именно по этому пути пойдет наука. Но это будет осуществляться уже на новом, более высоком уровне знаний о природе. А пока - платоновская физика представляет собой набор умозрительных рассуждений о связи строения вещества с геометрическими фигурами (огонь, как самое подвижное и «острое», состоит из пирамид; воздух - из восьмигранников, вода - из двадцатигранников и т.д.).

Можно выделить основные позиции этой научной программы, ставшей такой важной в Новое время после появления математизированной науки. Эта программа заложила основы развития естествознания, опираясь не на материальные структуры вещества, а на числовые закономерности, на законы бытия. Согласно этой программе:

1. Мир - это упорядоченный Космос, чей порядок сродни порядку внутри человеческого разума. Следовательно, возможен рациональный анализ эмпирического мира.

2. Упорядоченность Космоса является следствием существования некоего всепроникающего разума, наделившего природу назначением и целью. В силу родства разумов (надмирового и человеческого), он доступен непосредственному восприятию человека, который должен для этого развить соответствующие способности, сосредоточив свои силы.

з. Умственный анализ обнаруживает за видимым миром некий вневременной порядок, сущность нашего мира - количественные отношения действительности.

4. Познание сущности мира требует от человека сознательного развития его познавательных способностей - разума, интуиции, опыта, оценки, памяти, нравственности (ибо познание конечных причин бытия - глубочайшая потребность не только ума, но и души). Итогом познания становится духовное освобождение человека.

Второй научной программой античности, оказавшей громадное влияние на все последующее развитие науки, стал атомизм. Он стал итогом развития греческой философской традиции, синтезом целого ряда ее тенденций и идейных установок. Своими корнями он уходит в ионийскую физику, пифагореизм, философию элеатов. Проблемы бытия и небытия (пустоты), существования и возникновения, множества и числа, делимости и качества - все эти проблемы, затронутые предыдущими школами, нашли свое отражение в системе атомизма. Основателями его стали Левкипп и Демокрит.

На первый взгляд, учение атомизма предельно просто. Начала всего сущего - это неделимые частицы-атомы и пустота. Ничто не возникает из несуществующего и не уходит в небытие. Возникновение вещей есть соединение атомов, а уничтожение - распадение на части, в пределе - на атомы. Причиной возникновения является вихрь, собирающий атомы вместе.

Атомизм является физической программой, так как наука, по Демокриту, должна объяснить явления физического мира. Объяснение понимается как указание на механические причины всех возможных изменений в природе - движение атомов. Более глубоких причин, принадлежащих какой-то реальности, не доступной обычному восприятию, нет. Причины естественных явлений безличны и имеют физическую природу, их следует искать в земном мире. Познание мира идет путем сочетания чувственного опыта и его рационального преобразования.Это была первая в истории мысли программа, основанная на методологическом требовании объяснения целого как суммы отдельных составляющих его частей. Именно так были построены не только физические, но многие психологические и социологические теории Нового времени. По сути дела, это означало появление механистического метода, требовавшего объяснять сущность природных процессов механическим соединением индивидуумов.

Программа Аристотеля стала третьей научной программой античности. Она возникла на переломе эпох. С одной стороны, она еще близка к античной классике с ее стремлением к целостному философскому осмыслению действительности (при этом она пытается найти компромисс между двумя предыдущими программами). С другой, в ней отчетливо проявляются эллинистические тенденции к выделению отдельных направлений исследования в относительно самостоятельные науки, со своими предметом и методом.

Пытаясь найти третий путь, возражая и Демокриту, и Платону с Пифагором, Аристотель отказывается признать существование идей или математических объектов, существующих независимо от вещей. Но не устраивает его и демокритовское появление вещей из атомов. Пытаясь снять это противоречие, Аристотель предлагает четыре причины бытия: формальную, материальную, действующую и целевую. В его «Метафизике» воссоздается мир как целостное, естественно возникшее образование, имеющее причины в себе самом. Это образование предстает перед нами в виде двойственного мира, имеющего неизменную основу, но проявляющегося через подвижную эмпирическую видимость. Предметом науки должны стать вещи умопостигаемые, не подвластные сиюминутным изменениям. Заслугой Аристотеля является и написание его знаменитого «Органона» - трактата по логике, поставившего науку на прочный фундамент логически обоснованного мышления с использованием понятийно-категориального аппарата. Кроме того, Аристотель систематизировал накопленные к этому времени научные знания.

Таковы три основные научные программы античного мира, заложившие основы науки вообще. Все дальнейшее развитие науки по сути было развитием и преобразованием этих научных программ. Это еще не наука в современном смысле слова: еще нет понятия универсального природного закона; еще невозможно применение математики в рамках физики - это разные науки, между которыми нет точек соприкосновения; еще нет эксперимента как искусственного воспроизведения природных явлений, при котором устраняются побочные и несущественные эффекты и который имеет своей целью подтвердить или опровергнуть то или иное теоретическое предположение. Естествознание греков было абстрактно-объяснительным, лишенным деятельного, созидательного компонента.

Тем не менее, только то стечение социокультурных обстоятельств, которое реализовалось в античной Греции, смогло обеспечить условия для возникновения науки. Здесь оформились такие свойства науки, как интерсубъективность, идеальное моделирование действительности, надличностность, субстанциональность, что позволяет говорить о появлении там науки как особого типа отношения к реальности.

Геоцентрическая и гелио центрическая системы мира

Солнечная система- это прежде всего Солнце и восемь больших планет, к числу которых относится и Земля. Кроме больших планет со спутниками, вокруг Солнца обращаются малые планеты (астероиды), которых в настоящее время известно более 6000, и еще большее число комет. Диаметр самых крупных астероидов не превышает 1000 км, а ядра комет еще меньше. Вокруг Солнца движутся также тела размером в десятки и сотни метров, глыбы и камни, множество мелких камешков и пылинок. Чем меньше размеры этих частиц, тем их больше. Межпланетная среда - это крайне разреженный газ, состояние которого определяется излучением Солнца и растекающимися от него потоками вещества. Движением всех больших и малых тел Солнечной системы управляет Солнце, масса которого в ззз 000 раз превышает массу Земли и в 750 раз суммарную массу всех планет.

Путь к пониманию положения нашей планеты и живущего на ней человечества во Вселенной был очень непростым и подчас весьма драматичным. В древности было естественным считать, что Земля является неподвижной, плоской и находится в центре мира. Казалось, что вообще весь мир создан ради человека. Подобные представления получили название антропоцентризма (от греч. antropos - человек). Многие идеи и мысли, которые в дальнейшем отразились в современных научных представлениях о природе, в частности в астрономии, зародились в Древней Греции, еще за несколько веков до нашей эры. Трудно перечислить имена всех мыслителей и их гениальные догадки. Выдающийся математик Пифагор (VI в. до н. э.) был убежден, что «в мире правит число». Считается, что именно Пифагор первым высказал мысль о том, что Земля, как и все другие небесные тела, имеет шарообразную форму и находится во Вселенной без всякой опоры. Другой не менее известный ученый древности, Демокрит - основоположник представлений об атомах, живший за 400 лет до нашей эры, - считал, что Солнце во много раз больше Земли, что Луна сама не светится, а лишь отражает солнечный свет, а Млечный Путь состоит из огромного количества звезд. Обобщить все знания, которые были накоплены к IV в. до н. э., смог выдающийся философ античного мира Аристотель (з84-з22 до н. э.).

Его деятельность охватывала все естественные науки - сведения о небе и Земле, о закономерностях движения тел, о животных и растениях и т. д. Главной заслугой Аристотеля как ученого-энциклопедиста было создание единой системы научных знаний. На протяжении почти двух тысячелетий его мнение по многим вопросам не подвергалось сомнению. Согласно Аристотелю, все тяжелое стремится к центру Вселенной, где скапливается и образует шарообразную массу - Землю. Планеты размещены на особых сферах, которые вращаются вокруг Земли. Такая система мира получила название геоцентрической (от греческого названия Земли - Гея). Аристотель не случайно предложил считать Землю неподвижным центром мира. Если бы Земля перемещалась, то, по справедливому мнению Аристотеля, было бы заметно регулярное изменение взаимного расположения звезд на небесной сфере. Но ничего подобного никто из астрономов не наблюдал. Только в начале XIX в. было наконец-то обнаружено и измерено смещение звезд (параллакс), происходящее вследствие движения Земли вокруг Солнца. Многие обобщения Аристотеля были основаны на таких умозаключениях, которые в то время не могли быть проверены опытом. Так, он утверждал, что движение тела не может происходить, если на него не действует сила. Как вы знаете из курса физики, эти представления были опровергнуты только в XVII в. во времена Галилея и Ньютона. Среди ученых древности выделяется смелостью своих догадок Аристарх Самосский, живший в III в. до н. э.

Он первым определил расстояние до Луны, вычислил размеры Солнца, которое, по его данным, оказалось в з00 с лишним раз больше Земли по объему. Вероятно, эти данные стали одним из оснований для вывода о том, что Земля вместе с другими планетами движется вокруг этого самого крупного тела. В наши дни Аристарха Самосского стали называть «Коперником античного мира». К сожалению, труды этого замечательного ученого до нас практически не дошли, и более полутора тысяч лет человечество было уверено, что Земля - это неподвижный центр мира. В немалой степени этому способствовало математическое описание видимого движения светил, которое разработал для геоцентрической системы мира один из выдающихся математиков древности - Клавдий Птолемей во II в. н.э. Наиболее сложной задачей оказалось объяснение петлеобразного движения планет.

Птолемей в своем знаменитом сочинении «Математический трактат по астрономии» (оно более известно как «Альмагест») утверждал, что каждая планета равномерно движется по эпициклу- малому кругу, центр которого движется вокруг Земли по деференту - большому кругу. Тем самым ему удалось объяснить особый характер движения планет, которым они отличались от Солнца и Луны. Система Птолемея давала чисто кинематическое описание движения планет - иного наука того времени предложить не могла. Вы уже убедились, что использование модели небесной сферы при описании движения Солнца, Луны и звезд позволяет вести многие полезные для практических целей расчеты, хотя реально такой сферы не существует. То же справедливо и в отношении эпициклов и деферентов, на основе которых можно с определенной степенью точности рассчитывать положение планет. Однако с течением времени требования к точности этих расчетов постоянно возрастали, приходилось добавлять все новые и новые эпициклы для каждой планеты.

Все это усложняло систему Птолемея, делая ее излишне громоздкой и неудобной для практических расчетов. Тем не менее геоцентрическая система оставалась незыблемой еще около 1000 лет. Ведь после расцвета античной культуры в Европе наступил длительный период, в течение которого не было сделано ни одного существенного открытия в астрономии и многих других науках. Только в эпоху Возрождения начинается подъем в развитии наук, в котором астрономия становится одним из лидеров. В 154з г. была издана книга выдающегося польского ученого Николая Коперника (147з-154з), в которой он обосновал новую - гелиоцентрическую - систему мира. Коперник показал, что суточное движение всех светил можно объяснить вращением Земли вокруг оси, а петлеобразное движение планет - тем, что все они, включая Землю, обращаются вокруг Солнца.

Панорама современного естествознания

Естествознание как комплекс наук о природных процессах, объектах, явлениях, закономерностях и законах природы. Научные достижения и их важность и применимость в технологических разработках. Экологическая ситуация в планетарном масштабе. Экологические кризисы и катастрофы. Информация и коммуникации в начале третьего тысячелетия. Гуманизация общества и образования. Развитие представлений человечества об окружающем мире в целом - естественно-научные картины мира. Проблемы развития и совершенствования научного языка. Необходимость разработки единого международного научного языка в отдельных областях естественно-научного знания. Расширение временных и пространственных границ изучаемой части Вселенной. Идеи всеобщего эволюционизма. Влияние научных достижений на другие сферы человеческой деятельности. Новейшие достижения в различных областях естественно-научного знания: их общая характеристика и направленность.

Понятие материи. Виды материи

Слово «материя» многозначно. В быту им пользуются для обозначения той или иной ткани. Иногда придают иронический смысл, говоря о «высокой материи». Человека окружает множество различных вещей и процессов: животные и растения, машины и инструменты, химические соединения, произведения искусства, явления природы и т.д. Современная астрономия сообщает, что видимая Вселенная насчитывает сотни тысяч звезд, звездных туманностей и других небесных тел. У всех предметов и явлений, несмотря на их разнообразие, есть общая черта: все они существуют вне сознания человека и независимо от него, т.е. являются материальными. Люди открывают все новые и новые свойства природных тел и процессов, производят бесконечное множество несуществующих в природе вещей, следовательно, материя, как уже отмечалось выше, неисчерпаема.

Структурные уровни материи. Микро , мезо , макро , супермир

Известные в настоящее время структурные уровни материи могут быть выделены по вышеперечисленным признакам в следующие области.

1. Микромир. Сюда относятся:

частицы элементарные и ядра атомов -- область порядка 10-15 см;

атомы и молекулы 10-8--10-7 см.

Макромир: макроскопические тела 10-6--107 см.

Мегамир: космические системы и неограниченные масштабы до 1028 см.

Разные уровни материи характеризуются разными типами связей.

В масштабах 10-1з см -- сильные взаимодействия, целостность ядра обеспечивается ядерными силами.

Целостность атомов, молекул, макротел обеспечивают электромагнитные силы.

з. В космических масштабах -- гравитационные силы. С увеличением размеров объектов уменьшается энер гия взаимодействия. Если принять энергию гравитаци онного взаимодействия за единицу, то электромагнит ное взаимодействие в атоме будет в 10з9 больше, а взаи модействие между нуклонами -- составляющими ядро частицами -- в 1041 раз больше. Чем меньше размеры материальных систем, тем более прочно связаны между собой их элементы.

Деление материи на структурные уровни носит относительный характер. В доступных пространственно-временных масштабах структурность материи проявляется в ее системной организации, существовании в виде множества иерархически взаимодействующих систем, начиная от элементарных частиц и кончая Метагалактикой.

Говоря о структурности -- внутренней расчлененности материального бытия, можно отметить, что сколь бы ни был широк диапазон мировидения науки, он тесно связан с обнаружением все новых и новых структурных образований. Например, если раньше взгляд на Вселенную замыкался Галактикой, затем расширился до системы галактик, то теперь изучается Метагалактика как особая система со специфическими законами, внутренними и внешними взаимодействиями.

Начало термодинамики. Энтропия. Проблема тепловой смерти Вселенной

Как известно из курса общей физики, I-е начало термодинамики представляет собой наиболее общую форму закона сохранения и превращения энергии.

Дальнейшее развитие принципа необратимости, принципа возрастания энтропии состояло в распространении этого принципа на бесконечную Вселенную в целом. Уильям Томсон экстраполировал принцип возрастания энтропии на крупномасштабные процессы, протекающие в природе. Клаузиус распространил этот принцип на Вселенную в целом, что привело его к гипотезе о тепловой смерти Вселенной. Все физические процессы протекают в направлении передачи тепла от более горячих тел к менее горячим; это означает, что медленно, но верно идет процесс выравнивания температуры во Вселенной. Следовательно, будущее вырисовывается перед нами в достаточно трагических тонах: исчезновение температурных различий и превращение всей мировой энергии в теплоту, равномерно распределенную во Вселенной. Отсюда Клаузиус делает вывод о том, что: «1. Энергия мира постоянна. 2. Энтропия мира стремится к максимуму».

Экстраполяционный вывод о грядущей тепловой смерти Вселенной, означающий прекращение каких-либо физических процессов вследствие перехода Вселенной в равновесное состояние с максимальной энтропией, на протяжении всего дальнейшего развития привлекает внимание ученых, так как затрагивает как глубинные проблемы чисто научного характера, так и философско-мировоззренческие, ибо указывает определенную верхнюю границу возможности существования человечества. С научной точки зрения возникают проблемы правомерности следующих экстраполяции, высказанных Клаузиусом:

Вселенная рассматривается как замкнутая система.

Эволюция мира может быть описана как смена его состояний.

Для мира как целого состояние с максимальной энтропией имеет смысл, как и для любой конечной системы.

Проблемы эти представляют несомненную трудность и для современной физической теории. Решение их следует искать в общей теории относительности и развивающейся на ее основе современной космологии. Многие теоретики считают, что в общей теории относительности мир как целое должен рассматриваться «не как замкнутая система, а как cистема, находящаяся в переменном гравитационном поле; в связи с этим применение закона возрастания энтропии не приводит к выводу о необходимости статистического равновесия».

Проблему будущего развития Вселенной пытался разрешить Больцман, применивший к замкнутой Вселенной понятие флуктуации. Под флуктуацией физической вели чины понимается отклонение истинного значения величины от ее среднего значения, обусловленное хаотическим тепловым движением частиц системы. Больцман принял ограничение Максвелла, согласно которому для небольшого числа частиц II начало термодинамики не должно применяться, ибо в случае небольшого числа молекул нельзя говорить о состоянии равновесия системы. При этом он использует это ограничение для Вселенной, рассматривая видимую часть Вселенной как небольшую область бесконечной Вселенной. Для такой небольшой области допустимы флуктуационные отклонения от равновесия, благодаря чему в целом исчезает необратимая эволюция Вселенной в направлении к хаосу. Идея эволюции, результатом которой явились бы самоорганизация материи, возникновение огромной палитры многообразных красок физической реальности, неотразимо влекла Больцмана. Больцман назвал XIX век, век величайших открытий в области физики, веком Дарвина, подчеркивая особое значение эволюционной теории Дарвина. Если эволюционная теория Дарвина -- это путь от спонтанных флуктуаций видов, после чего наступает отбор и необратимая биологическая эволюция в сторону возникновения и возрастания сложности, то в физике, согласно II началу термодинамики, картина обратная: необратимость приводит к забыванию начальных условий и разрушению порядка. Со времен Дарвина идея эволюции и самоорганизации целиком относилась к живым организмам. Больцман поставил своей целью не просто описывать состояние равновесия, но и создать теорию эволюции системы к равновесию. При этом он пытался соединить II начало термодинамики с динамикой, вывести «необратимость» из динамики. Флуктуационная гипотеза Больцмана как раз является развитием этих его целеустремлений. Как отмечают авторы: «Его мечтой было стать Дарвином эволюции материи»15. При формулировании флуктуационной гипотезы Больцман исходил из допущения, что бесконечная Вселенная уже достигла состояния термодинамического равновесия. Но вследствие статистического характера принципа возрастания энтропии для небольших областей этой бесконечной Вселенной возможны макроскопические отклонения от состояния равновесия -- флуктуации. «Имеется выбор между двумя представлениями, -- пишет Больцман. -- Можно предположить, что вся Вселенная сейчас находится в некотором весьма невероятном состоянии. Но можно мыслить зоны -- промежутки времени, по истечении которых снова наступают невероятные события, -- такими же крошечными по сравнению с продолжительностью существования Вселенной, как расстояние от Земли до Сириуса ничтожно по сравнению с ее размерами.

Тогда во всей Вселенной (которая в противном случае повсюду находилась бы в тепловом равновесии, т. е. была бы мертвой) имеются относительно небольшие участки (мы будем называть их отдельными мирами), которые в течение относительно небольших по сравнению с эоном промежутков времени значительно отклоняются от теплового равновесия, а именно: среди этих миров одинаково часто встречаются состояния, вероятности которых возрастают и уменьшаются. Таким образом, для Вселенной в целом два направления времени являются неразличимыми, так как в пространстве нет верха и низа. Но точно так же, как мы в некотором определенном месте земной поверхности называем «низом» направление к центру Земли, так и живое существо, которое находится в определенной временной фазе одного из таких отдельных миров, назовет направление времени, ведущее к более невероятным состояниям, по-другому, чем противоположное (первое -- как направление к «прошлому», к началу, последнее -- к «будущему», к концу), и вследствие этого названия будет обнаруживать «начало» для этих малых областей, выделенных из Вселенной, всегда в некотором невероятном состоянии.

Этот метод представляется мне единственным, с помощью которого можно осмыслить второе начало, тепловую смерть каждого отдельного мира без того, чтобы предполагать одностороннее изменение всей Вселенной от некоторого определенного начального состояния к некоторому итоговому конечному состоянию»16.

К сожалению, мечта Больцмана не сбылась в полной мере; ему не удалось найти ключ к объединению динамики и II начала термодинамики, а предлагаемая флуктуационная модель эволюции Вселенной имела всего лишь характер гипотезы ad hoc и при этом очень большое число оппонентов.

Скептическое отношение многих ученых к атомистической теории Больцмана (сам он был убежден в том, что отстаиваемое им учение об атомах завоюет признание через много десятков лет), трудности с определением роли II начала термодинамики в системе естествознания, возможно, и ряд других причин привели этого замечательного ученого к трагическому концу. В 1906 году он покончил жизнь самоубийством.

Пространство и время

Всеобщие формы существования материи. П. и в. не существуют вне материи и независимо от неё.

Пространственными характеристиками являются положения относительно др. тел (координаты тел), расстояния между ними, углы между различными пространственными направлениями (отдельные объекты характеризуются протяжённостью и формой, которые определяются расстояниями между частями объекта и их ориентацией). Временные характеристики -- «моменты», в которые происходят явления, продолжительности (длительности) процессов. Отношения между этими пространственными и временными величинами называются метрическими. Существуют также и топологические характеристики П. и в. -- «соприкосновение» различных объектов, число направлений. С чисто пространственными отношениями имеют дело лишь в том случае, когда можно отвлечься от свойств и движения тел и их частей: с чисто временными -- в случае, когда можно отвлечься от многообразия сосуществующих объектов.

Однако в реальной действительности пространственные и временные отношения связаны друг с другом. Их непосредственное единство выступает в движении материи; простейшая форма движения -- перемещение -- характеризуется величинами, которые представляют собой различные отношения П. и в. (скорость, ускорение) и изучаются кинематикой. Современная физика обнаружила более глубокое единство П. и в. (см. Относительности теория), выражающееся в совместном закономерном изменении пространственно-временных характеристик систем в зависимости от движения последних, а также в зависимости этих характеристик от концентрации масс в окружающей среде.

Для измерения пространственных и временных величин пользуются системами отсчёта.

По мере углубления знаний о материи и движении углубляются и изменяются научные представления о П. и в. Поэтому понять физический смысл и значение вновь открываемых закономерностей П. и в. можно только путём установления их связей с общими закономерностями взаимодействия и движения материи.

Понятия П. и в. являются необходимой составной частью картины мира в целом, поэтому входят в предмет философии. Учение о П. и в. углубляется и развивается вместе с развитием естествознания и прежде всего физики. Из остальных наук о природе значительную роль в прогрессе учения о П. и в. сыграла Астрономия и в особенности Космология.

Развитие физики, геометрии и астрономии в 20 в. подтвердило правильность положений диалектического материализма о П. и в. В свою очередь диалектико-материалистическая концепция П. и в. позволяет дать правильную интерпретацию современной физической теории П. и в., вскрыть неудовлетворительность как субъективистского ее понимания, так и попыток «развить» её, отрывая П. и в. от материи.

Пространственно-временные отношения подчиняются не только общим закономерностям, но и специфическим, характерным для объектов того или иного класса, поскольку эти отношения определяются структурой материального объекта и его внутренними взаимодействиями. Поэтому такие характеристики, как размеры объекта и его форма, Время жизни, ритмы процессов, типы симметрии, являются существенными параметрами объекта данного типа, зависящими также от условий, в которых он существует. Особенно специфичны пространственные и временные отношения в таких сложных развивающихся объектах, как организм или общество. В этом смысле можно говорить об индивидуальных П. и в. таких объектов (например, о биологическом или социальном времени).

Порядок и хаос (беспорядок) в материальном мире. Виды взаимодействий

Современная ситуация в мире характеризуется резко обострившимися процессами хаотизации, поглотившими столь желанную упорядоченность. На хаос бытовой, проявляющийся в проявлении множества воль, интересов, создающий сумятицу в экономике, накладывается хаос потревоженного естества, заявивший о себе все разрастающимся конфликтом мира естественного и мира искусственного. Если XVIII в. можно назвать сатиричным, XIX в. -- патетичным, то XX в. можно назвать катастрофичным. Это хаос крупноисторического масштаба: первая мировая война, революция, вторая мировая и Отечественная войны, крушение политических режимов стран Восточной Европы, афганская и чеченская войны...

Социологизация понятий порядка и хаоса имели своим следствием принципиально отрицательные отношения к хаосогенным структурам и полное принятие упорядоченных. С новой силой прозвучал древнекитайский вывод из книги «Дао-дэ цзин»: «Непочитание мудрости, назначение на должность неспособных -- в результате хаос в стране». Распространился призыв к тому, чтобы сильная рука приостановила сползание к хаосу. Хаос же отождествлялся с беспорядком и отражал такое состояние общественной системы, когда функционирование ее рассогласованных элементов было сопряжено с появлением предсказуемых последствий и вело к деградации и распаду.

Между тем такая понятная и даже оправданная в размеренном человеческом бытии позиция при своей абсолютности искажала картину мира. Она вступала в конфликт с естествознанием, представляющим процесс развития как взаимосвязь структурирования и хаотизации. Она была несовместима с видением мира, учитывающим не только особенности структурогенеза, но и разупорядочивания. Кроме того, социологизация категорий порядка и хаоса, выявляющая исключительно предпочтение порядку и негативное отношение к хаосу, шла вразрез с глубоко философской традицией.

Современный уровень развития проблематики порядка и хаоса формулирует три существенных дополнения к традиционным взглядам:

Представление о хаосе как источнике гибели и деструкции (разрушения) заменяется более емким пониманием хаоса как основания для установления упорядоченности, причины спонтанного структурирования.

Определение хаоса как состояния, производного от первичной неустойчивости материальных взаимодействий, подразумевается универсальной характеристикой, охватывающей живую, косную (неживую) и социально-организованную материю.

Хаос -- это не только бесформенная масса, а сверх-сложноорганизованная последовательность, логика которой представляет большой интерес.

Принципы относительности

естествознание материя пространство время

Значительное влияние на развитие научной мысли оказал известный итальянский физик Г. Галилей, которому человечество обязано принципом относительности, сыгравшим большую роль не только в, механике, но и во всей физике.

Принцип относительности Галилея гласит: «Никакими механическими опытами, произведенными в инерциаль-ной системе отсчета, невозможно определить, движется ли эта система равномерно и прямолинейно, или находится в покое».

Иными словами: все законы механики инвариантны (неизменны, т.е. имеют один и тот же вид) во всех инер-циальных системах отсчета, ни одна не имеет преимущества перед другой.

Принцип относительности Эйнштейна. Эйнштейн обобщил принцип относительности Галилея на все явления природы. Принцип относительности Эйнштейна гласит: «Никакими физическими опытами, произведенными в инерциальной системе отсчета, невозможно определить, движется ли эта система равномерно и прямолинейно, или находится в покое». Не только механические, но и все физические законы одинаковы во всех инерциальных системах отсчета.

Одним из косвенных результатов СТО Эйнштейна явилась доказанная ею необходимость анализа, казалось бы, хорошо известных понятий, которые многие поколения воспринимали как нечто привычное, не требующее разъяснения.

В этом плане историю науки можно представить как историю попыток уточнения содержания и области применения научных понятий. И здесь успех всегда сопутствовал понятиям, которые выделялись своей эстетической привлекательностью. К таким понятиям может быть отнесена симметрия, которая с древнейших времен фигурировала в качестве скорее эстетического критерия, чем строго научного понятия.

Понятие и специфика законов природы. Динамические и статистические закономерности в природе

Основное содержание проблем детерминизма и причинности -- это соотношение динамических и статистических закономерностей.

Детерминизм -- это учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и духовного миров. Центральным ядром детерминизма является положение о существовании причинности.

Причинность -- это генетическая связь между отдельными состояниями видов и форм материи в процессе ее движения и развития.

Понятие причинности возникло в связи с практической деятельностью людей. Для него характерно три признака:

Временное предшествие причин следствию («нет дыма без огня»).

Одна и та же причина всегда обуславливает одно и то же следствие (яблоко одинаково падает, так как причина -- притяжение Земли).

Причина -- это активный агент, производящий действие.

Идея детерминизма, таким образом, состоит в том, что все явления и события в мире не произвольны, а подчиняются объективным закономерностям, существующим вне и независимо от их познания.

Проявление детерминизма связано с существованием объективных физических законов и находит отражение в фундаментальных физических теориях.

Фундаментальные физические законы -- это наиболее полное на сегодняшний день, но приближенное отражение объективных процессов в природе.

Законы сохранения физических величин -- это утверждения, согласно которым численные значения этих величин не меняются со временем в любых процессах или классах процессов.

законы сохранения и превращения. Принцип возрастания энтропии. законы близкодействия, дальнодействия, состояния

Важнейшими законами сохранения, справедливыми

для любых изолированных систем, являются:

закон сохранения и превращения энергии;

закон сохранения импульса;

закон сохранения электрического заряда;

закон сохранения массы.

Кроме всеобщих существуют законы сохранения, справедливые лишь для ограниченного класса систем и явлений. Так, например, существуют законы сохранения, действующие только в микромире. Это:

закон сохранения барионного или ядерного заряда;

закон сохранения лептонного заряда;

закон сохранения изотопического спина;

закон сохранения странности.

В современной физике обнаружена определенная иерархия законов сохранения и принципов симметрии. Одни из этих принципов выполняются при любых взаимодействиях, другие же -- только при сильных. Эта иерархия отчетливо проявляется во внутренних принципах симметрии, которые действуют в микромире.

Химические системы, энергетика химических процессов. Реакционная способность веществ. Химическая эволюция земли

Можно отметить следующие характерные черты химических реакций:

Химические реакции протекают самопроизвольно в направлении достижения равновесия.

Фактором, определяющим состояние равновесия, является энергия. Равновесие стремится сместиться в сторону образования веществ с минимальной энергией.

Другим фактором, определяющим состояние равновесия, является беспорядочность движения, обусловленная температурой. Равновесие стремится сместиться в сторону максимальной беспорядочности движения.

Состояние равновесия определяется одновременно обоими факторами: минимальной энергией и максимальной беспорядочностью движения.

При очень низких температурах преобладающим фактором является беспорядочное тепловое движение молекул. В этом случае равновесие благоприятствует произвольному распределению исходных веществ и продуктов реакции. Это и есть модель для объяснения химических реакций и равновесия. При очень высоких температурах преобладающим фактором является беспорядочное тепловое движение молекул. В этом случае равновесие благоприятствует произвольному распределению исходных веществ и продуктов реакции.

Принципы: неопределенности, дополнительности, суперпозиции

Агрегатные состояния веществ: газообразное, жидкое, твёрдое, плазменное. Различия в тепловом движении молекул или атомов вещества и их взаимодействии как условие возможности нахождения вещества в нескольких агрегатных состояниях. Принципы суперпозиции, неопределённости и дополнительности как основополагающие принципы теоретической физики. Принцип суперпозиции и результирующий эффект от наложения нескольких независимых воздействий как суммы эффектов, вызываемых каждым воздействием в отдельности. Принцип неопределённости (соотношение неопределённостей В. Гейзенберга) как фундаментальное положение квантовой теории: дополнительные физические величины не могут одновременно принимать точные значения. Принцип дополнительности Н. Бора и данные об энергиях и импульсах микрообъекта или о его поведении в пространстве и времени при экспериментальных условиях.

Основные этапы биологической эволюции

Основными особенностями эволюции растительного мира были:

постепенный переход к доминирующему положению спорофита над

1.гаметофитом в цикле развития;

2. выход на сушу, дифференциация тела на органы (корень, стебель, лист) и дифференциация тканей (проводящие, механические, покровные);

з. переход от наружного оплодотворения к внутреннему; возникновение цветка и двойного оплодотворения;

4. возникновение семян, содержащих запах питательных веществ и защищенных от воздействия неблагоприятных условий среды семенными покровами (и стенками околоплодника у покрытосеменных);

5. совершенствование органов размножения и перекрестного оплодотворения у покрытосеменных параллельно с эволюцией насекомых;

6.возникновение разнообразных способов распространения плодов и семян.

Основные особенности эволюции животного мира:

1. прогрессивное развитие многоклеточности и, как следствие, специа лизация тканей и всех систем органов;

2.свободный образ жизни, который определил выработку различных механизмов поведения, а также относительную независимость онтогенеза от колебаний факторов окружающей среды;

з.возникновение твердого скелета: наружного у некоторых беспозво ночных (членистоногие) и внутреннего у хордовых;

4.прогрессивное развитие нервной системы, что явилось основой для возникновения условно-рефлекторной деятельности.

зарождение живой материи. Строение и разновидности клеток

Первая идея, которая была выдвинута, -- это идея самопроизвольного зарождения жизни. Эмпедокл, например, считал, что все дышащее обязано своим существованием самозарождению отдельных органов -- рук, ног, лап, голов, сердец, которые затем, случайно комбинируясь, складывались в тела и достигали в конце концов вполне удачных комбинаций.

В XVII в. опыты Реди показали, что без мух черви в гниющем мясе не обнаружатся, а если прокипятить органические растворы, то микроорганизмы в них не смогут зарождаться (суждение, известное сейчас любой хозяйке, занимающейся консервированием продуктов). И только в 60-х гг. XIX в. Пастер (1822--1895) в своих опытах продемонстрировал, что микроорганизмы появляются в органических растворах только потому, что туда раньше был внесен зародыш. Пастером фактически была открыта природа брожения. Он ввел методы асептики и антисептики, а в 1888 г. создал и возглавил институт микробиологии (впоследствии Пастеровский институт).

Сегодня проблема происхождения жизни исследуется широким фронтом различных наук. В зависимости от того, какое наиболее фундаментальное свойство живого исследуется и преобладает в данном изучении (вещество, информация, энергия), все современные концепции происхождения жизни можно условно разделить:


Подобные документы

  • Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.

    книга [353,5 K], добавлен 21.03.2009

  • Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.

    курс лекций [545,5 K], добавлен 05.10.2009

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Эволюция научного метода и естественнонаучной картины мира. Развитие научных исследовательских программ. Пространство, время и симметрия. Системные уровни организации материи. Порядок и беспорядок в природе. Панорама современного естествознания.

    курс лекций [47,6 K], добавлен 15.01.2011

  • Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.

    лекция [26,7 K], добавлен 24.11.2017

  • Социальные функции естественных наук. Естественнонаучная, гуманитарная культуры. Роль естествознания в научно-техническом прогрессе, классификация его методов, их роль в познании. Формы естественнонаучного познания: факт, проблема, идея, гипотеза, теория.

    курс лекций [279,5 K], добавлен 15.11.2014

  • Цели и задачи курса "Концепции современного естествознания", место данной дисциплины в системе других наук. Классификация наук, предложенная Ф. Энгельсом. Взаимосвязь физических, химических и биологических знаний. Виды атмосферных процессов в природе.

    контрольная работа [28,8 K], добавлен 13.06.2013

  • Эмпирический и теоретический уровни и структура научного познания. Анализ роли эксперимента и рационализма в истории науки. Современное понимание единства практической и теоретической деятельности в постижении концепции современного естествознания.

    контрольная работа [18,7 K], добавлен 16.12.2010

  • Естественнонаучная и гуманитарная культура. Дифференциация, интеграция и математизация в современной науке. Культурный уровень организации материи. Квантовомеханическая концепция описания микромира. Пространство и время в общей теории относительности.

    курс лекций [47,9 K], добавлен 16.11.2009

  • Рассмотрение стадий исторического развития естествознания. Отказ от созерцательности и наивной реалистичности установок классического естествознания. Усиление математизации современного естествознания, сращивание фундаментальных и прикладных исследований.

    реферат [30,2 K], добавлен 11.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.