Динамические и статистические закономерности

Роль математики в современном естествознании, динамические и статистические закономерности. Классическая механика Ньютона, уравнения Максвелла. Уравнения теории относительности. Специфика математики, источник представлений и концепций в естествознании.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 20.01.2011
Размер файла 60,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ДИНАМИЧЕСКИЕ И СТАТИСТИЧЕСКИЕ ЗАКОНОМЕРНОСТИ. РОЛЬ МАТЕМАТИКИ В СОВРЕМЕННОМ ЕСТЕСТВОЗНАНИИ

У любого человека еще в самом раннем возрасте возникает любопытство - естественное стремление познать окружающий мир. «Любопытство сродно человеку, и просвещенному, и дикому», - утверждал выдающийся русский историк и писатель Николай Карамзин (1766--1826). С возрастом неосознанное стремление познать окружающий мир постепенно перерастает в осознанную форму любопытства - желание познать законы, которые управляют природой, и способы их применения, позволяющие человеку предвидеть возможные последствия своих действий. Законы о природе и способы их применения - концентрированный опыт человечества, составляющий опору практической деятельности человека, способную защитить его от возможных ошибок и неудач и помочь достичь желаемых целей. Концентрированный опыт человечества - фундаментальная и необходимая основа любого образовательного процесса: человек должен знать, как функционирует сложнейшая система - природа Земли - его единственный дом, которому он обязан своим появлением на свет и частью которого является сам.

Естествознание - наука о явлениях и законах природы. Современное естествознание включает многие естественно-научные отрасли: физику, химию, биологию, а также многочисленные смежные отрасли, такие как физическая химия, биофизика, биохимия и многие другие. Естествознание затрагивает широкий спектр вопросов о многочисленных и многосторонних проявлениях свойств объектов природы, которую можно рассматривать как единое целое.

Если излагать подробно весь научный материал, накопленный в течение длительного периода времени во всех отраслях естествознания, то получится огромный фолиант, может быть и нужный, но мало полезный даже для узких специалистов естественнонаучного профиля, не говоря уже о специалистах гуманитарных направлений. Задача изложения материала естествознания усложняется еще и тем, что его форма должна быть доступной будущим специалистам, для которых естествознание не является дисциплиной, формирующей профессиональные знания.

Для решения данной задачи нужен обобщающий философский подход с учетом передовых методов дидактики, основанных на закономерностях усвоения знаний и приобретения умений и навыков. Сущность такого подхода заключается в изложении естественнонаучного материала на уровне концепций - основополагающих идей и системы взглядов. Концептуальный системный подход полезен не только для понимания развития самого естествознания и изучаемых им явлений и законов природы, но и для знакомства с важнейшими достижениями естествознания, на основе которых успешно развиваются современные наукоемкие технологии, способствующие повышению качества выпускаемой продукции и бережному отношению к природе.

Многие достижения современного естествознания, составляющие базу для наукоемких технологий, связаны со всесторонним изучением объектов и явлений природы. С привлечением современных технических средств эксперимента именно такое изучение позволило не только создать сверхпрочные, сверхпроводящие и многие другие материалы с необычными свойствами, но и по-новому взглянуть на биологические процессы, происходящие внутри клетки и даже внутри молекулы. Большинство отраслей современного естествознания так или иначе связано с молекулярным исследованием тех или иных объектов, которое объединяет многих естествоиспытателей, занимающихся узкоспециализированными проблемами. Результаты подобного рода исследований - разработка и производство новой высококачественной продукции, и, прежде всего товаров повседневного спроса. Для того, чтобы знать, какой ценой дается такая продукция - важнейшая составляющая экономики, каковы перспективы развития современных наукоемких технологий, тесно связанных с экономическими, социальными, политическими и другими проблемами, нужны фундаментальные естественно-научные знания, в том числе и общее концептуальное представление о молекулярных процессах, на которых основаны важнейшие достижения современного естествознания.

Современные средства естествознания - науки о фундаментальных законах, природных явлениях и разнообразных свойствах объектов природы - позволяют изучать многие сложнейшие процессы на уровне ядер, атомов, молекул, клеток. Плоды постижения истинных знаний о природе именно на таком глубинном уровне известны каждому образованному человеку. Синтетические и композиционные материалы, искусственные ферменты, искусственные кристаллы - все это не только реальные объекты разработок ученых-естествоиспытателей, но и продукты потребления различных отраслей промышленности, производящих в широком ассортименте товары повседневного спроса. В этой связи изучение естественно-научных проблем на молекулярном уровне в рамках основополагающих идей-концепций - вне всякого сомнения актуально, полезно и необходимо для будущих специалистов высокой квалификации естественно-научного и технического профиля, а также для тех, чья профессиональная деятельность не имеет прямого отношения к естествознанию, т.е. для будущих экономистов, специалистов управления, товароведов, юристов, социологов, психологов, журналистов, менеджеров и др.

В последнее время все чаще говорят не о химическом взаимодействии веществ и повышении их химической активности, а об изменении структуры молекулы, о разрыве цепи молекул, о взаимодействии молекулярных пучков, о соединении фрагментов молекул ДНК и т.д. В лексиконе специалистов и научных комментаторов-журналистов все чаще встречаются слова «молекула», «молекулярная структура» и т.п. А это означает, что современный уровень естествознания отражает понимание происходящих в природе явлений, а также процессов, наблюдаемых в лабораториях, с учетом строения и поведения каждой молекулы. Именно благодаря такому пониманию синтезируются ранее не существовавшие в природе вещества с принципиально новыми свойствами, а из них создаются новые машины, устройства, изделия и т. п., выращиваются высококачественные сорта культурных растений, разрабатываются эффективные способы и средства лечения болезней и т. д.

На первый взгляд может показаться, что подобного рода знания совсем не нужны, например, будущему специалисту управления или журналисту. В действительности же без них специалист управления не сможет выбрать перспективное направление своей деятельности, ибо любое дело так или иначе связано с новой материальной базой и новыми технологиями. Следовательно, специалист управления, если он истинный специалист, должен обладать глубокими и всесторонними знаниями. То же самое можно сказать и о журналисте: без глубокого понимания комментируемой проблемы журналист не в состоянии правильно и в популярной форме донести до широкого круга читателей важнейшие естественно-научные достижения. Не обладая нужными знаниями, журналист может ошибочно сориентировать общественное мнение и спровоцировать необъективное решение, как это случилось, например, при необоснованном объявлении временного моратория на генную инженерию (1975-- 1985 гг.).

Надо сказать, что естественно-научные знания с концептуальным представлением о важнейших достижениях современного естествознания нужны не только будущим экономистам, юристам, менеджерам, предпринимателям и другим высококвалифицирован­ным специалистам, но и любому образованному человеку вне зависимости от рода его деятельности.

Знания сами по себе не приходят. Нужно усердно работать, прилежно учиться, понимая свободу как осознанную необходимость. «Надобно учиться не стыдясь, а учить не скупясь», - так сказал в далекие времена известный мыслитель Василий Великий (ок. 330--379), и только в этом случае можно надеяться на успех.

II. Динамические и статистические закономерности

Наука, с каждым годом, все стремительнее идет вперед и общие (классические) концепции существования природы известны уже сейчас. Физика изучает огромнейшее количество различных процессов в природе. Не все из них поддаются изучению и объяснению. Конечно, многое человеку еще не известно, а если известно, то может быть не объяснено сейчас

Процессы, окружающие нас, не всегда поддаются точному объяснению. Как раз на этом этапе перед человеком и встала проблема создания таких моделей и методов познания, которые бы смогли объяснить непознанное. Конечно же в решении этой нелегкой задачи главную роль сыграло не только физическое толкование и применение физики, а пришлось обращаться к математике, к прикладной математике и ряду других точных наук. Каков же результат? Постепенное постижение истины

В этом разделе речь пойдет о динамических и статистических законах, на которых сегодня и держится современная картина мира. Такое деление законов еще раз подтверждает что не познанное, не точно исчисляемое и объясняемое постепенно становится явью с помощью новых концепций. Появление статистических методов в познании, а также развитие теории вероятностей ѕ вот новое оружие современного ученого.

1. Лапласовский детерминизм

Причинное объяснение многих физических явлений, т. е. реальное воплощение зародившегося еще в древности принципа причинности в естествознании, привело в конце XVIII - начале XIX вв. к неизбежной абсолютизации классической механики. Возникло философское учение - механистический детерминизм, классическим представителем которого был Пьер Симон Лаплас (1749--1827), французский математик, физик и философ. Лапласовский детерминизм выражает идею абсолютного детерминизма - уверенность в том, что все происходящее имеет причину в человеческом понятии и есть непознанная разумом необходимость. Суть его можно понять из высказывания Лапласа:

Современные события имеют с событиями предшествующими связь, основанную на очевидном принципе, что никакой предмет не может начать быть без причины, которая его произвела... Воля, сколь угодно свободная, не может без определенного мотива породить действия, даже такие, которые считаются нейтральными... Мы должны рассматривать современное состояние Вселенной как результат ее предшествующего состояния и причину последующего. Разум, который для какого-нибудь данного момента знал бы все силы, действующие в природе, и относительное расположение ее составных частей, если бы он, кроме того, был достаточно обширен, чтобы подвергнуть эти данные анализу, обнял бы в единой формуле движения самых огромных тел во Вселенной и самого легкого атома; для него не было бы ничего неясного, и будущее, как и прошлое, было бы у него перед глазами... Кривая, описываемая молекулой воздуха или пара, управляется столь же строго и определенно, как и планетные орбиты: между ними лишь та разница, что налагается нашим неведением.

Дальнейшее развитие физики показало, что в природе могут происходить процессы, причину которых трудно определить. Например, процесс радиоактивного распада происходит случайно. Подобные процессы происходят объективно случайно, а не потому, что мы не можем указать их причину из-за недостатка наших знаний. И наука при этом не перестала развиваться, а обогатилась новыми законами, принципами и концепциями, которые показывают ограниченность классического принципа - лапласовского детерминизма. Абсолютно точное описание всего прошедшего и предсказание будущего для колоссального многообразия материальных объектов, явлений и процессов - задача сложная и лишенная объективной необходимости. Даже в самом простейшем случае классической механики из-за неустранимой неточности измерительных приборов точное предсказание состояния даже простого объекта - материальной точки - также нереально

2. Динамические законы

Многие физические явления в механике, электромагнетизме и теории относительности подчиняются, так называемым динамическим закономерностям. Динамические законы отражают однозначные причинно-следственные связи, подчиняющиеся детерминизму Лапласа

Причина Следствие

Динамические законы - это законы Ньютона, уравнения Максвелла, уравнения теории относительности

Классическая механика Ньютона

Основу механики Ньютона составляют закон инерции Галилея, два закона открытые Ньютоном, и закон Всемирного тяготения, открытый также Исааком Ньютоном

1. Согласно сформулированному Галилеем закону инерции, тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет его из этого состояния

2. Этот закон устанавливает связь между массой тела, силой и ускорением

3. Устанавливает связь между силой действия и силой противодействия

4. В качестве IV закона выступает закон всемирного тяготения

Два любых тела притягиваются друг к другу с силой пропорциональной массе сил и обратно пропорциональной квадрату расстояния между центрами тел.

Уравнения Максвелла

Уравнения Максвелла - наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. В учении об электромагнетизме они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

Из уравнений Максвелла следует, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных

Уравнения теории относительности

Специальная теория относительности, принципы которой сформулировал в 1905 г. А. Эйнштейн, представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Специальная теория часто называется релятивистской теорией, а специфические явления, описываемые этой теорией - релятивистским эффектом (эффект замедления времени).

В основе специальной теории относительности лежат постулаты Эйнштейна: принцип относительности: никакие опыты (механические, электрические, оптические), проведенные в данной инерциальной системе отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы к другой; принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения света или наблюдателя и одинакова во всех инерциальных системах отсчета

Первый постулат, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т.е. явления механические, электродинамические, оптические и др. во всех инерциальных системах отсчета протекают одинаково

Согласно второму постулату, постоянство скорости света в вакууме - фундаментальное свойство природы.

Общая теория относительности, называемая иногда теорией тяготения - результат развития специальной теории относительности. Из нее вытекает, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени может изменяться от одной области к другой, в зависимости от концентрации масс в этих областях и их движения

Статистические закономерности

При попытке использовать однозначные причинно-следственные связи и закономерности к некоторым физическим процессам обнаружилась их недееспособность. Появились многозначные причинно-следственные связи, подчиняющиеся вероятностному детерминизму

Следствие

Причина Следствие

Следствие

Причина

Следствие Причина

Причина

Статистические закономерности и законы используют теорию вероятностей. Это наука о случайных процессах. В этих рамках следует пояснить следующие понятия:

Достоверные события, невозможные события и промежуточные между достоверными и невозможными случайные события.

Количественно случайные события оцениваются при помощи вероятности:

Статистическая вероятность

Достоверные и невозможные события можно рассматривать как частные случаи случайных событий:

Вероятность достоверна = 1

Вероятность невозможна = 0

Классическая вероятность

Этой вероятностью называется отношение числа элементарных событий к общему числу равнозначных событий

Например рассмотрим куб. У него 6 граней. 6 - это число равнозначных событий. Появление определенной грани - это элементарное событие (в данном случае 1). Следовательно: P = 5

Приведем пример статистического закона, который описывает физические явления, наблюдаемые в физических средах, состоящих из большого числа частиц:

Закон распределения Максвелла

Этот закон устанавливает зависимость вероятности в распределении скорости движения молекул газа от скорости движения молекул, причем с вероятной скоростью движется большинство молекул

Вероятностный характер микропроцессов

Вероятностные процессы также наблюдаются в поведении отдельно взятых микрочастицах:

Y - волновая функция (де Бройля )

Необходимость вероятностного подхода к описанию микрочастиц - важная отличительная особенность квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т.е. считать, что вероятность обнаружить микрочастицы в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля неверно уже хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла

Чтобы устранить эти трудности, немецкий физик М. Борн (1882--1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, названная волновой функцией. Описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер:

квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в данный момент времени в определенном, ограниченном объеме.

dP

dV частицы в данной точке пространства

Законы статистической физики

Раздел физики, изучающий закономерности процессов, наблюдающихся в макроскопических телах (физические системы, состоящие из большого числа взаимодействующих частиц)

Статистическая механика

К концу XIX в. была создана последовательная теория поведения больших общностей атомов и молекул - молекулярно-кинетическая теория, или статистическая механика. Многочисленными опытами была доказана справедливость этой теории

Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул.

Поведение громадного числа молекул анализируется с помощью статистического метода, который основан на том, что свойства макроскопической системы в конечном результате определяются свойствами частиц систем, особенностями их движения и усредненными значениями кинетических и динамических характеристик этих частиц (скорости, энергии, давления и т. д.). Например, температура тела определяется скоростью беспорядочного движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул

После создания молекулярной физики термодинамика не утратила своего значения. Она помогает понять многие явления и с успехом применяется при расчетах многих важных механических устройств. Общие законы термодинамики справедливы для всех веществ, независимо от их внутреннего строения

Однако при расчете различных процессов с помощью термодинамики многие физические параметры, например теплоемкости тел, необходимо определять экспериментально. Статистические же методы позволяют на основе данных о строении вещества определить эти параметры. Но количественная теория твердого и особенно жидкого состояния вещества очень сложна. Поэтому в ряде случаев простые расчеты, основанные на законах термодинамики, оказываются незаменимы.

В настоящее время в науке и технике широко используются как термодинамические, так и статистические методы описания свойств микросистемы.

Термодинамика

1. Первое начало термодинамики.

Всякая представленная самой себе система стремится перейти в состояние термодинамического равновесия, в котором тела покоятся друг относительно друга, обладая одинаковыми температурами и давлением. Достигнув этого состояния, система сама по себе из него не выходит. Значит все термодинамические процессы, приближающиеся к тепловому равновесию, необратимы

2. Второе начало термодинамики.

Сущность второго начала термодинамики составляет утверждение о невозможности получения работы за счет энергии тел, находящихся в термодинамическом равновесии

Окружающая нас среда обладает значительными запасами тепловой энергии. Двигатель, работающий только за счет энергии находящихся в тепловом равновесии тел, был бы для практики вечным двигателем. Второе начало термодинамики исключает возможность создания такого вечного двигателя

Необратимость тепловых процессов имеет вероятностный характер. Самопроизвольный переход тела из равновесного состояния в неравновесное не невозможен, а лишь подавляюще маловероятен. В конечном результате необратимость тепловых процессов обусловливается колоссальностью числа молекул, из которых состоит тело.

Молекулы газа стремятся к наиболее вероятному состоянию, т.е. состоянию с беспорядочным распределением молекул, при котором примерно одинаковое число молекул движется вверх и вниз, вправо и влево, при котором в каждом объеме находится примерно одинаковое число молекул, одинаковая доля быстрых и медленных молекул в верхней и нижней частях какого-либо сосуда. Любое отклонение от такого беспорядка, хаоса, т.е. от равномерного и беспорядочного перемешивания молекул по местам и скоростям, связана с уменьшением вероятности, или представляет собой менее вероятное событие. Напротив, явления, связанные с перемешиванием, с созданием хаоса из порядка, увеличивают вероятность состояния. Только при внешнем воздействии возможно рождение порядка из хаоса, при котором порядок вытесняет хаос. В качестве примеров, демонстрирующих порядок, можно привести созданные природой минералы, построенные человеком большие и малые сооружения или просто радующие глаз своеобразные фигуры

Количественной характеристикой теплового состояния тела является число микроскопических способов, которыми это состояние может быть осуществлено. Это число называется статистическим весом состояния.

Нетрудно убедиться в том, что энтропия сложной системы равна сумме энтропии ее частей.

Закон, определяющий направление тепловых процессов, можно сформулировать как закон возрастания энтропии:

для всех происходящих в замкнутой системе тепловых процессов энтропия системы возрастает; максимально возможное значение энтропии замкнутой системы достигается в тепловом равновесии.

Данное утверждение принято считать количественной формулировкой второго закона термодинамики, открытого Р.Ю. Клаузиусом (его молекулярно-кинетическое истолкование дано Л. Больцманом)

Идеальному случаю - полностью обратимому процессу замкнутой системы - соответствует не изменяющаяся энтропия. Все естественные процессы происходят так, что вероятность состояния возрастает, что означает переход от порядка к хаосу. Значит, энтропия характеризует меру хаоса, которая для всех естественных процессов возрастает. В этой связи закон о невозможности вечного двигателя второго рода, закон о стремлении тел к равновесному состоянию получают свое объяснение. Почему механическое движение переходит в тепловое? Да потому, что механическое движение упорядочено, а тепловое беспорядочно, хаотично

В этом разделе были рассмотрены закономерности, деление которых приводит к появлению статистических и динамических. Суть их заключается и подчиняется так называемой причинно-следственной связи, основоположником и представителем которой был Пьер Симон Лаплас. В разделе я попытался показать суть и динамических и статистических закономерностей, причем грань различия между ними четкая и ясная

В заключении хотелось бы сказать, что из выше приведенного все законы и принципы применяются сейчас не только в современной физике, но и космологии, а также в развивающемся сейчас естествознании и в ряде других наук, изучающих природу в целом.

Нельзя точно сказать, что статистические законы более точные и более применимые в описании явлений вокруг нас по сравнению с динамическими закономерностями и принципами. Ни в коем случае, ведь каждая из предложенных к рассмотрению совокупность законов рассматривает абсолютно не идентичные процессы, да и протекают они (процессы) совершенно по-разному и в разных условиях. Поэтому и произошло такое разделение на две составные части.

III. Роль математики в современном естествознании

Вряд ли вызывает сомнение утверждение: математика нужна всем вне зависимости от рода занятий и профессии. Однако для разных людей необходима и различная математика: для продавца может быть достаточно знаний простейших арифметических операций, а для истинного естествоиспытателя обязательно требуются глубокие знания современной математики, поскольку только на их основе возможно открытие законов природы и познание ее гармонического развития. Иногда к познанию математики влекут и субъективные побуждения. Об одном из них Луций Анней Сенека (4 до н.э. - 65 н.э.), римский писатель и философ, писал: «Александр, царь Македонский, принялся изучать геометрию - несчастный! - только с тем, чтобы узнать, как мала земля, чью ничтожную часть он захватил. Несчастным я называю его потому, что он должен был понять ложность своего прозвища, ибо можно ли быть великим на ничтожном пространстве».

Возникает вопрос: может ли серьезный естествоиспытатель обойтись без глубокого познания премудростей математики? Ответ несколько неожиданный: да, может. Однако к нему следует добавить: только в исключительном случае. И вот подтверждающий пример. Чарлз Дарвин, обобщая результаты собственных наблюдений и достижения современной ему биологии, вскрыл основные факторы эволюции органического мира. Причем он сделал это, не опираясь на хорошо разработанный к тому времени математический аппарат, хотя и высоко ценил математику: «… в последние годы я глубоко сожалел, что не успел ознакомиться с математикой, по крайней мере, настолько, чтобы понимать в ее великих руководящих началах; так усвоившие их производят впечатление людей, обладающих одним органом чувств более, чем простые смертные».

Кто знает - может быть, обладание математическим чувством позволило бы Дарвину внести еще больший вклад в познание гармонии природы.

Известно, что еще в древние времена математике придавалось большое значение. Девиз первой академии - платоновской академии - «Не знающие математики сюда не входят» - ярко свидетельствует о том, насколько высоко ценили математику на заре науки, хотя в те времена основным предметом науки была философия.

Простейшие в современном понимании математические начала, включающие элементарный арифметический счет и простейшие геометрические измерения, служат отправной точкой естествознания.

«Тот, кто хочет решить вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является», - утверждал выдающийся итальянский физик и астроном, один из основоположников естествознания Галилео Галилей (1564-1642).

1. Предмет и специфика математики

Математика имеет для естествознания непреходящее значение, а потому прежде чем обратиться непосредственно к анализу ее роли, целесообразно рассмотреть вопрос о ее достоинствах.

Самое лаконичное и притом довольно удачное определение математики дает Николай Бурбаки (коллективное имя группы французских математиков). Он определяет современную математику как науку о структурах, «единственными математическими объектами становятся, собственно говоря, математические структуры». В данном случае под структурой имеется в виду определенным образом упорядоченное многообразие математических элементов (чисел, функций и т.п.).

В основаниях любой математической дисциплины непременно обнаруживаются некоторые математические элементы и постилируемые различия между ними. При этом для построения математической системы используются, как правило, два метода: аксиоматический и конструктивистский.

При аксиоматическом методе исходят из аксиом (исходных положений теории) и правил вывода (дедукции) из них других положений. Широко используются символьные записи, а не громоздкие словесные выражения. Замена естественного языка математическими символами называется формализацией. Если формализация состоялась, то аксиоматическая система является формальной, а положения системы приобретают характер формул. Получаемые в результате вывода доказательства формулы называются теоремами. Таково описанное вкратце содержание аксиоматического метода.

В случае конструктивистского метода исходят из принимаемых интуитивно очевидными математических конструктов, на их основе строят более сложные, чем они, элементы (а не выводят формулы), в процессе конструирования этих элементов используют подходящую для построения последовательность шагов.

Математик непременно оперирует конструктами, часть из которых принимается интуитивно, выражаясь точнее, на основе обобщения доступного ему математического опыта, а другие либо дедуцируются из аксиом, либо конструируются, чаще всего в форме последовательно осуществляемых символьных записей. Для математика важно задать отличие математических конструктов друг от друга. В естествознании чувства, мысли, слова и предложения несут информацию об изучаемых природных явлениях, они обращены в сторону природы. В математике дело обстоит принципиально по-другому, здесь математические конструкты « не смотрят по сторонам », они соотносятся исключительно друг с другом. Поясним сказанное на примере задания натуральных чисел.

Натуральное число может быть задано на основе следующих аксиом (правил):

1. 0 является натуральным числом.

2. Если n натуральное число, то и следующее за ним n? - натуральное число.

3. Никаких натуральных чисел, кроме тех, которые получаются согласно 1 и 2, не существует.

4. Для любых натуральных чисел m и n из m?=n? следует m=n.

5. Для любого натурального числа n, n??0.

Задать натуральное число - значит выразить операцию «?», читается «следующий за» столько раз, сколько это необходимо для задания числа. Так, задать натуральное число означает дважды применить операцию «?». Используя операцию «следующий за», «?», математик строит ряд натуральных чисел настолько далеко, насколько это возможно. Ему важно установить, какое число следует за каким, как соотносятся числа друг с другом ( так, 5 - 3 = 2, «5» - это число, которое на «2» больше, чем «3» ), то есть какова их упорядоченность. Вопрос о том, существуют ли числа в природе, математика не интересует (природой пусть занимаются естествоиспытатели), ему важно изобрести систему упорядоченных конструктов, характер взаимосвязи которых невозможно установить без задания их отличительных признаков.

Характер математического знания таков, что его приверженцы, оправдывая свой статус, вынуждены, разумеется, это делается в силу их свободного волеизъявления, как можно более детально устанавливать характер упорядоченности тех совокупностей элементов, которые они изобретают и изучают. Именно в этой связи доказательство новой теоремы или построение ранее неизвестного конструкта расценивается как математический успех. Интерес математика заключен в изобретении многообразий упорядоченных математических конструктов.

Если многообразие математических конструктов не упорядочено, то есть невозможно их сопоставление друг с другом, то работа математика теряет всякий смысл. Дабы этого не случилось, математик внимательно следит за тем, чтобы математическая теория была непротиворечивой. Математическая теория называется непротиворечивой, если в ней не наличествуют два или больше взаимно исключающих предположения. Наличие противоречий «разваливает» математическую теорию. Простой пример: если бы согласно таблице умножения 3 Ч 3 = 9 и 3 Ч 3 = 8, то ее невозможно было бы продуктивно использовать.

Многовековое развитие математики показывает, что непротиворечивость - это ее основополагающий научный критерий.

2. Математика - источник представлений и концепций в естествознании

динамическая статистическая закономерность

Назначение математики состоит в том, она вырабатывает для остальной науки, прежде всего для естествознания, структуры мысли, формулы, на основе которых можно решать проблемы специальных наук.

Это обусловлено особенностью математики описывать не свойства вещей, а свойства свойств, выделяя отношения, независимые от каких-либо конкретных свойств, то есть отношения отношений. Но поскольку и отношения, выводимые математикой, особые (будучи отношениями отношений), то ей удается проникать в самые глубокие характеристики мира и разговаривать на языке не просто отношений, а структур, определяемых как инварианты систем. Поэтому, кстати сказать, математики скорее говорят не о законах (раскрывающих общие, существенные, повторяющиеся и т.д. связи), а именно о структурах.

Эти глубинные проникновения в природу и позволяют математике исполнять роль методологии, выступая носителем плодотворных идей. Относительно сказанного современный американский исследователь Ф. Дайсон пишет: "Математика для физики - это не только инструмент, с помощью которого она может количественно описать явление, но и главный источник представлений и принципов, на основе которых зарождаются новые теории". Близкие мысли высказывает известный математик, академик Б. Гнеденко, также подчеркивая, что роль математики не ограничивается функцией аппарата вычисления, подчеркивал, что математика - определенная концепция природы.

Поскольку привилегия математики - выделять чистые, безотносительные к какому-либо физическому (химическому или социально насыщенному содержанию), она тем самым вырабатывает модели возможных еще неизвестных науке состояний. Естествоиспытатель может выбирать из них и примеривать к своей области исследования. Это стимулирует научный поиск, пробуждая и будоража ученую мысль. В силу указанной особенности математику характеризуют как склад готовых костюмов, пошитых на все живые существа, мыслимые и немыслимые (Р. Фейнман), вообще на все возможные природные ситуации. То есть это своеобразный портной для разнообразных вещественных образований, которые могут быть вписаны в эти готовые одежды. Характеризуя рассматриваемую особенность отношений между математикой и физикой, американский физик-теоретик венгерского происхождения Е. Вигнер в режиме шутки произнес: "Физики - безответственные люди: они берут готовые математические уравнения и используют их, не зная, верны они или нет".

В свое время И. Кант метко определил: "Математика - наука, брошенная человеком на исследование мира в его возможных вариантах". Если физику или вообще естествоиспытателю позволено видеть мир таким, каков он есть, то математику дано видеть мир во всех его логических вариантах. Иначе сказать, физик не может строить мир, противоречивый физически (и уж тем более - логически), математику же разрешены построения, противоречивые физически, лишь бы они не страдали логическими противоречиями. Физики говорят, каков мир, математики исследуют, каким бы он мог быть в его потенциальных версиях. Это и придает стимул воображению. Как замечает австрийский математик и писатель нашего времени Р. Музиль, математика есть роскошь броситься вперед, очертя голову, потому математики предаются самому отважному и восхитительному авантюризму, какой доступен человеку. Стоит заметить лишь, что раскованность и рискованность - преимущество не только собственно математика, но и любого исследователя, если и поскольку он мыслит математически, то есть, пытаясь дать, по выражению Г. Вейля, "теоретическое изображение бытия на фоне возможного".

Здесь не должно сложиться впечатления о возможности бескрайней фантазийной деятельности ученого. Истина состоит в том, что нематематические науки, сталкиваясь с запретами в проявлении какого-либо свойства, действия, не знают границ, до которых распространяется их компетенция. Это способна определить и узаконить лишь математика, владеющая искусством расчета на основе количественного описания явлений. Другие науки знают лишь, что нечто разрешено, но они не умеют знать той черты, до которой это разрешено, не умеют устанавливать пределов возможного - той количественной меры, определяющей вариантность изменений. Скажем, биолог не располагает сведениями пределов возможного для жизни и познает их в диапазоне лишь наблюдаемого.

Методологическое значение математики для других наук проявляется еще в одном аспекте. Поскольку ее абстракции отвлечены от конкретных свойств, она способна проводить аналогии между качественно различными объектами, переходить от одной области реальности к другой. Д. Пойа назвал это свойство математики умением "наводить мосты над пропастью". Там, где конкретная наука останавливается (кончается ее компетенция), математика в силу ее количественного подхода к явлениям, свободно переносит свои структуры на соседние, близкие и далекие, регионы природы.

Таковы некоторые методологические уроки, внушаемые математикой. Однако, сколь ни эффективна математическая наука, и на нее брошены некоторые тени, а лучше сказать: эти тени - есть продолжение ее достоинств (при неадекватном использовании последних).

Мы говорим: математический аппарат исследования применим там, где выявлена однородность, точнее сказать, математика и приводит природные образования к однородностям. Но тем самым она лишает мир многообразия и богатства качественных проявлений, ибо счет, по выражению отечественного математика современности И. Шафаревича, "убивает индивидуальность". Он пишет. Мы имеем, скажем, яблоко, цветок, кошку, дом, солдата, студента, луну. Можно сосчитать и объявить, что их 7. Но 7 чего? Единственный ответ: "7 предметов". Различия между солдатом, луной, яблоком и т.д. исчезают. Они все потеряли свою индивидуальность и превратились в лишенные признаков "предметы". То есть счет выравнивает вещи, убирая "персональные" характеристики. Как шутил В. Маяковский, математику все едино: он может складывать окурки и паровозы.

Описывая объект, процесс, математика выявляет какую-то лишь одну (существенную) характеристику и, прослеживая ее вариации, выводит закономерность. Все остальные характеристики уходят в тень, иначе они будут мешать исследованию. Конечно, эти другие также могут оказаться предметом изучения, но, будучи взяты по тому же математическому сценарию: каждый раз только один единственный параметр, одно выделенное свойство в отвлечении от остального разнообразия. Напрашивается аналогия. Ее проводит Ю. Шрейдер, называя математику пародией на природу. И в самом деле. Пародия схватывает какую-то одну характеристическую черту пародируемого, за которой уже не видно других особенностей, просто они не важны.

Однако из этого обстоятельства не следуют лишь негативные выводы. Во-первых, математика по-иному работать не может, а во-вторых, в подобном подходе свое преимущество, оно сопряжено, так сказать, с "чистотой" описания: налицо четкая заданность исследования, когда необходимо проследить "поведение" объекта на основе определенного свойства, вычленить линию изменений, тенденцию развития и передать информацию в строгих графиках, схемах, уравнениях.

Используя математические методы исследования, вовлекая их в познавательный поиск, науки должны учитывать возможности математики, считаясь с границами ее применимости. Имеется в виду то, что сама по себе математическая обработка содержания, его перевод на язык количественных описаний не дает прироста информации.

Таким образом можно подчеркнуть важную роль этой математики как языка, арсенала особых методов исследования, источника представлений и концепций в естествознании

3. Математика - язык точного естествознания

" ... Все законы выводятся из опыта. Но для выражения их нужен специальный язык. Обиходный язык слишком беден, кроме того, он слишком неопределен для выражения столь богатых содержанием точных и тонких соотношений. Таково первое основание, по которому физик не может обойтись без математики; она дает ему единственный язык, на котором он в состоянии изъясняться". Математика - наука о количественных отношениях действительности. "Подлинно реалистическая математика, подобно физике, представляет собой фрагмент теоретической конструкции одного и того же реального мира" (Г. Вейль) Она является междисциплинарной наукой. Результаты ее используются в естествознании и общественных науках. Роль математики в современном естествознании проявляется в том, что новая теоретическая интерпретация какого-либо явления считается полноценной, если удается создать математический аппарат, отражающий основные закономерности этого явления. Во многих случаях математика играет роль универсального языка естествознания, специально предназначенного для лаконичной точной записи различных утверждений. Точность есть выражение однозначности, исключающее вариантность, разброс значений, неопределенность. Этим и отличаются математические знаки - символы, обозначающие объекты и операции математики. Здесь символы жестко привязаны к значениям, не допуская разночтений, интерпретаций и объяснений, что имеет место относительно знаков других наук.

Огромные успехи точных математических наук привели к появлению среди ученых, особенно среди физиков, веры в то, что все реально наблюдаемое в их опытах подчиняется законам математики вплоть до мельчайших деталей. Установление математических законов, которым подчиняется физическая реальность, было одним из самых поразительных чудесных открытий, сделанных человечеством. Ведь математика не основана на эксперименте, а порождена человеческим разумом. Когда физик использует свои знания для предсказаний и на основе нескольких экспериментов, проведенных в конкретное время и в конкретном месте, и подходящей теории пытается объяснить явления природы, происходящие в совершенно другом месте и в совершенно другое время, и такие предсказания сбываются, то это граничит с чудом. Физик при этом лишь с удовлетворением заключает, что, по-видимому, теория верна. Но почему, собственно говоря, реально существующий мир должен подчиняться теории, математической структуре? Кант дал на этот вопрос остроумный ответ: само наше восприятие выстраивает действительность, т.е. то, что отражается нашим разумом и воспринимается как реальность, подчиняется математическим законам.

Другая мысль такова: в смирительную рубашку математики природу одевает вовсе не наша чувственная или познавательная деятельность, а сама природа в ходе своего эволюционного развития вкладывает математику в наш разум как реально существующую структуру, неотъемлемую от нее самой. Развитие наших способностей к абстрагированию и манипулированию логическими символами должно быть ориентировано на реально существующие структуры реального мира.

"Вступая на проложенный древними путь, скажем вместе с ними, что если приступить к божественному нам дано только через символы, то всего удобнее воспользоваться математическими из-за их непреходящей достоверности" (Н. Кузанский).

Допустим, вы физик и в вашем распоряжении имеется уравнение, описывающее некоторые физические явления, например состояние движения. «Обрушив» на это уравнение всю мощь математического анализа, вы обнаружите множество регулярностей, упорядоченностей, о которых, возможно, и не подозревали. Предположим, речь идет о равноускоренном движении: S=V t + at /2, где S - путь, V - начальная скорость, a - ускорение, t - время движения. Вам необходимо определить формулу скорости: V=dS/dt=V + at. Формула скорости найдена легко и не без изящества.

Совершенно очевидно, что наши геометрические и логические возможности простираются далеко за пределы окружающего мира. А это означает, что реальный мир подчиняется математическим законам в значительно большей степени, чем нам известно сейчас. Но даже если эти структурные (математические) принципы экстраполируются все более глубокими конструкциями и теоремами, то и в этом случае просто невероятно, чтобы действительность с исчерпывающей полнотой отражалась математическими конструкциями - от огромных космологических размеров и до микрочастиц. Открытыми остаются вопросы, как математика соотносится с миром и дает возможность познавать его; какой способ познания преобладает в математике - дискурсивный или интуитивный. По мнению В. Гейзенберга, "наиболее важными ему кажутся, прежде всего, математические законы природы, находящиеся за явлениями, а не сам многогранный мир явлений". Физику-теоретику нелегко с этим согласиться, но в эволюционной теории познания фактически неизбежно возникает предположение о том, что математические способности вида "хомо сапиенс" принципиально ограниченны, так как имеют биологическую основу и, следовательно, не могут полностью содержать все структуры, существующие в действительности. Иными словами, должны существовать пределы для математического описания природы. По мнению некоторых методологов, законы природы не сводятся к математическим соотношениям. Их надо понимать как любой вид организованности идеальных прообразов вещей, или пси-функций. Есть три вида организованности: простейший - числовые соотношения; более сложный - ритмика первого порядка, изучаемая математической теорией групп; ритмика второго порядка - "слово". Два первых вида организованности наполняют Вселенную мерой и гармонией, третий вид - смыслом. В рамках этого объяснения математика занимает свое особое место в познании. "Чисто логическое мышление не может принести нам никакого знания эмпирического мира. Все познание реальности отправляется от опыта и возвращается к нему. Предложения, полученные при помощи чисто логических средств, при сравнении с реальностью оказываются совершенно пустыми". (А. Эйнштейн).

Говоря о важности применения математики в естествознании, мы не должны абсолютизировать ее роль. Математические формулы сами по себе абстрактны и лишены конкретного содержания. Математика является лишь орудием, или средством, физического исследования. Только согласованные с научным наблюдением и экспериментом физические исследования наполняют математические формулы конкретным содержанием.

Ньютон обнаружил, что взаимное притяжение небесных тел можно описать законом обратных квадратов, который связывает силу тяготения (F) с расстоянием (r) от центра сферического тела. Закон всемирного тяготения И. Ньютона имеет вид:

F=Gm m /r .

Но так компактно и изящно закон выглядит лишь в формуле, а реально тяготеющие массы, например планеты Солнечной системы, движутся при наблюдении за ними сложно, с теми или иными отклонениями от той траектории, которая предписывается формулой.

Построение различных формальных систем, моделей, алгоритмических схем - лишь одна из сторон научного познания. Научную интуицию и гениальные догадки формализовать не удается. Универсальной "логики открытий" нет. Кроме того, даже наиболее тщательно поставленный эксперимент никогда, в конце концов не бывает полностью изолирован от влияния окружающей среды, а состояние системы ни в один момент времени не может быть известным точно. Абсолютная (математическая) точность физически недостижима - небольшие неточности будут всегда, и это принципиальный момент. Почти одинаковые причины будут давать почти одинаковые следствия, причем как в природе, так и в хорошо поставленном эксперименте. Это чаще всего именно так и происходит, особенно для коротких временных отрезков, в противном случае было бы невозможно установить какой-либо закон природы или же построить реально работающую машину.

Но это весьма правдоподобное предположение оказывается справедливым не всегда, более того, оно неверно для больших промежутков времени даже в случае нормального (типичного) течения природных процессов. В этом смысл захватывающего прорыва, осуществленного при исследовании динамических систем.

Существует раздел математики, посвященный анализу конфликтных ситуаций, где под компромиссом понимается коллективное решение, не нарушающее интересы всех сторон (устойчивой системы). Всякий компромисс достигается определенной последовательностью шагов и действий. Например, для разрешения экологических проблем необходимо учесть все ограничения, нарушения которых означало бы нарушение гомеостатического состояния. Это позволило составить формальную систему запретов или минимум условий, необходимых для обеспечения гомеостазиса. В 1944 г. в США опубликована книга Д. Неймана и О. Моргенштерна "Теория игр и экономическое поведение", в которой рассматривались вопросы математического описания способов принятия решений, типичных для конкурентной экономики. Впоследствии теория игр превратилась в общую математическую теорию конфликтов, описывающую военные, экономические и правовые коллизии, столкновения, связанные с биологической борьбой за существование, различные игровые стратегии. В случае игр с противоположными интересами (антагонистическая игра) оптимальной считается стратегия, направленная на достижение максимального выигрыша. Конкуренция здесь является разновидностью конфликта.


Подобные документы

  • Понятие состояния физической системы как центрального элемента физической теории, ее разделение на динамическую и статистическую. Существование ограничений в применимости законов Ньютона. Характеристика состояния в классической и квантовой механике.

    доклад [18,4 K], добавлен 23.06.2011

  • Научная революция и работы Коперника, Кеплера, Галилея и Декарта. Механика Ньютона, атомы микромира и лапласовский детерминизм, теории газов. Электромагнитная картина мира в работах Фарадея, Максвелла и Лоренца. Теория относительности Эйнштейна.

    реферат [599,1 K], добавлен 25.03.2016

  • Квантово-полевая (неклассическая) картина мира, суть ее принципов. Особенности принципов соответствия и суперпозиции. Концепция детерминизма, динамические и статистические закономерности. Принципы эволюционно-синергетической (современной) картины мира.

    реферат [38,2 K], добавлен 30.10.2012

  • Детерминизм как учение об объективной закономерной взаимосвязи и взаимообусловленности явлений материального и духовного миров. Общая характеристика законов сохранения, история открытия закона сохранения вещества. Эволюция закона сохранения энергии.

    реферат [23,5 K], добавлен 29.11.2009

  • Сфера человеческой деятельности, представляющая собой рациональный способ познания мира. Цель прикладных наук. Результаты научных исследований. Характерные черты науки. Разработка средств представления исследуемых объектов как систем. Обобщенные модели.

    контрольная работа [26,7 K], добавлен 04.12.2008

  • Концепция детерминизма - одна из фундаментальных онтологических идей, положенных в основу классического естествознания. Сущность небесной механики — раздели астрономии, применяющего законы механики для изучения движения небесных тел. Механика Ньютона.

    реферат [65,3 K], добавлен 26.03.2011

  • Синергетика как теория самоорганизующихся систем в современном научном мире. История и логика возникновения синергетического подхода в естествознании. Влияние этого подхода на развитие науки. Методологическая значимость синергетики в современной науке.

    реферат [30,9 K], добавлен 27.12.2016

  • Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна. Основные закономерности развития биогеоценоза. Взаимодействие между компонентами как важнейший механизм поддержания целостности и устойчивости биогеоценозов.

    контрольная работа [150,8 K], добавлен 13.04.2012

  • Понятие общей теории относительности - общепринятой официальной наукой теории о том, как устроен мир, объединяющей механику, электродинамику и гравитацию. Принцип равенства гравитационной и инертной масс. Теория относительности и квантовая механика.

    курсовая работа [111,1 K], добавлен 17.01.2011

  • Близкодействие и дальнодействие, динамические и статические закономерности в природе. Солнечная система, происхождение и строение планет. Экологическая обстановка в мире и в России. Питательная ценность пищи и усвояемость. Витамины и микроэлементы.

    контрольная работа [21,6 K], добавлен 03.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.