Принципы относительности в современном естествознании. Эволюционные процессы в природе

Суть принципа относительности одного из основоположников современного естествознания Галилея, который сыграл важную роль в создании научной картины мира. Особенности эволюционных процессов в природе и их отличие от динамических и статистических процессов.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 12.01.2011
Размер файла 16,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Принципы относительности в современном естествознании

Важную роль в создании научной картины мира сыграл принцип относительности одного из основоположников современного естествознания Галилея - принцип равноправия всех инерциальных систем отсчета в классической механике, который утверждает, что никакими механическими опытами, проводящимися в какой-то инерциальной системе отсчета, нельзя определить, покоится данная система или движется равномерно и прямолинейно.

Математически принцип относительности Галилея выражает инвариантность уравнений механики относительно преобразований координат движущихся точек (и времени) при переходе от одной инерциальной системы отсчета к другой - преобразований Галилея. Впервые положение об относительности механического движения было высказано Галилео Галилеем в 1638 г. в его труде «Диалог о двух основных системах мира - птоломеевой и коперниковой». Там же сформулирован один из фундаментальных принципов физики - принцип относительности. Галилей использовал наглядный и образный метод изложения. Он писал, что находясь «в помещении под палубой корабля» и проводя опыты и наблюдения над всем, что там происходит, нельзя определить, покоится ли корабль, или же он движется «без толчков», то есть равномерно и прямолинейно. При этом подчеркивались два положения, составляющие суть принципа относительности:

1) движение относительно: по отношению к наблюдателю «в помещении под палубой» и к тому, кто смотрит с берега, движение выглядит по-разному;

2) физические законы, управляющие движением тел в этом помещении, не зависят от того, как движется корабль (если только это движение равномерно). Иначе говоря, никакие опыты в «закрытой кабине» не позволяют определить, покоится кабина или движется равномерно и прямолинейно.

Таким образом, Галилей сделал вывод, что механическое движение относительно, а законы, которые его определяют, абсолютны, то есть безотносительны. Эти положения коренным образом отличались от общепринятых в то время представлений Аристотеля о существовании «абсолютного покоя» и «абсолютного движения».

Принцип относительности Галилея органически вошел в созданную И. Ньютоном классическую механику.

«Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние» - так Ньютон сформулировал закон, который сейчас называется первым законом механики Ньютона, или законом инерции.

Система отсчета, в которой справедлив закон инерции: материальная точка, когда на нее не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения, - называется инерциальной. Всякая система отсчета, движущаяся по отношению к ней поступательно, равномерно и прямолинейно, есть также инерциальная.

Теория относительности - физическая теория пространства и времени. В частной (специальной) теории относительности рассматриваются только инерциальные системы отсчета. Явления, описываемые теорией относительности, называются релятивистскими (от лат. «относительный») и проявляются при скоростях, близких к скорости света в вакууме (эти скорости тоже принято называть релятивистскими).

Существует фактически две различных теории относительности, известных в физике, одна из них называется специальной (частной) теорией относительности, другая - общей теорией относительности. Альберт Эйнштейн предложил первую из них в 1905 г., вторую - в 1916 г. Принимая во внимание, что специальная теория относительности связана, в первую очередь, с электрическими и магнитными явлениями и с их распространением в пространстве и времени, общая теория относительности была разработана, прежде всего, чтобы иметь дело с тяготением. Обе теории сосредотачиваются на новых подходах к пространству и времени, подходах, которые отличаются глубоко от тех, которые используются в каждодневной жизни; но релятивистские понятия пространства и времени неразрывно вплетаются в любую современную интерпретацию физических явлений в пределах от атома до вселенной в целом.

Особенности эволюционных процессов в природе и их отличие от динамических и статистических процессов

относительность естествознание эволюционный

Эволюционные процессы характеризуются необратимостью во времени и случайностью изменения хода процесса. Канонической иллюстрацией этих свойств является теория Дарвина [3, cc.53-54]. Эволюционные процессы представляют собой разновидность динамических процессов (процессов протекающих во времени).

В динамических теориях явления природы подчиняются однозначным (динамическим) закономерностям, а статистические теории основаны на объяснении процессов вероятностными (статистическими) закономерностями.

К динамическим теориям относятся классическая механика (создана в XVII-XVIII вв.), механика сплошных сред, т. е. гидродинамика (XVIII в.), теория упругости (начало XIX в.), классическая термодинамика (XIX в.), электродинамика (XIX в.), специальная и общая теория относительности (начало ХХ в). К статистическим теориям относятся статистическая механика (вторая половина XIX в.), микроскопическая электродинамика -(начало ХХ в.), квантовая механика (первая треть ХХ в.)

Таким образом, XIX столетие получается столетием динамических теорий; ХХ столетие - столетием статистических теорий. Значит, динамические теории соответствовали первому этапу в процессе познания природы человеком, тогда как на следующем этапе главную роль стали играть статистические теории.

Современную концепцию детерминизма можно сформулировать следующим образом: динамические законы представляют собой первый, низший этап в процессе познания окружающего мира; статистические же законы более совершенно отображают объективные связи в природе: они являются следующим, более высоким этапом познания.

Статистические теории не являются однозначными, а только вероятностными. Вероятностными они называются потому, что заключения, основанные на них, не следуют логически из имеющейся информации, а потому не являются достоверными и однозначными. Информация при этом носит статистический характер, законы, выражающие эти процессы, называются статистическими законами, и этот термин получил в науке большое распространение.

В классической науке статистические законы не признавали подлинными законами, так как ученые в прошлом предполагали, что за ними должны стоять такие же универсальные законы, как закон всемирного тяготения Ньютона, который считался образцом детерминистического закона, поскольку он обеспечивает точные и достоверные предсказания приливов и отливов, солнечных и лунных затмений и других явлений природы. Но при этом, статистические же законы признавались в качестве удобных вспомогательных средств исследования, дающих возможность представить в компактной и удобной форме всю имеющуюся информацию о каком-либо предмете исследования.

Статистическими, например, являются законы квантовой механики, касающиеся движения микрочастиц; они не в состоянии определить движение каждой отдельной частицы, но определяют движение группы, того или иного множества.

Подлинными законами считались именно детерминистические законы, обеспечивающие точные и достоверные предсказания.

Отношение к статистическим законам принципиально изменилось после открытия законов квантовой механики, предсказания которых имеют существенно вероятностный характер.

Таким образом, исторически детерминизм выступает в двух следующих формах [1, сс.321-322]:

1) лапласовый, или механистический, детерминизм, в основе которого лежат универсальные законы классической физики;

2) вероятностный детерминизм, опирающийся на статистические законы и законы квантовой физики.

Рассматривая проблему соотношения между динамическими и статистическими закономерностями, современная наука исходит из концепции примата статистических закономерностей [1, сс.322-323]. Не только динамические, но и статистические законы выражают объективные причинно-следственные связи. Более того, именно статистические закономерности являются фундаментальными, более глубокими по сравнению с динамическими закономерностями, они ярче выражают указанные связи.

В отличие от динамических законов, статистические законы не позволяют точно предсказать наступление или ненаступление того или иного конкретного явления, направление и характер изменения тех или иных его характеристик. На основе статистических закономерностей можно определить лишь степень вероятности возникновения или изменения соответствующего явления. Динамические теории не противостоят статистическим, а включаются в рамки последних как предельный случай. Это хорошо видно на примере классической механики, которую можно рассматривать как предельный случай квантовой механики [1, сс.323-324].

Таким образом, согласно современной научной концепции, можно говорить о всеобщности, универсальности вероятностного подхода. Это означает, в частности, что деление фундаментальных теорий на динамические и статистические является, строго говоря, условным.

В современной концепции детерминизма органически сочетаются необходимость и случайность. Признание самостоятельности статистических, или вероятностных, законов, отображающих существование случайных событий в мире, дополняет прежнюю картину строго детерминистического мира. В результате в новой современной картине мира необходимость и случайность выступают как взаимосвязанные и дополняющие друг друга аспекты объяснения окружающего мира.

Литература

Григорьев В.Н. Альберт Эйнштейн // Большая энциклопедия Кирилла и Мефодия. - М., 2001.

Данилова В.С., Кожевников Н.Н. Основные концепции естествознания. - М.: Аспект Пресс, 2000. - 256 с.

Гусейханов М.К., Раджабов О.Р., Концепции современного естествознания: Учебник. - 2-е изд. - М.: Издательско-торговая корпорация «Дашков и К'»,2005. - 692 с.

Горелов А.А., Концепции современного естествознания. - М.,: Центр, 2001. - 208 с.

Пригожин И., Стенгерс И. Время, хаос, квант. М., "Прогресс", 1994.

Размещено на Allbest.ru


Подобные документы

  • Основные свойства эволюционных процессов и их отличие от динамических и статистических процессов и явлений в природе. Современные подходы к анализу сложных самоорганизующихся систем. Особенности синергетики. Экономика с точки зрения синергетики.

    курсовая работа [23,1 K], добавлен 01.10.2010

  • Изучение принципа относительности Галилея. История возникновения и содержание концепции наименьшего действия. Ознакомление с основными постулатами специальной теории относительности Эйнштейна. Экспериментальные подтверждения общей теории относительности.

    реферат [30,5 K], добавлен 30.07.2010

  • Истоки теории относительности, порядок ее формирования и значение. Принцип относительности Галилея. Сущность преобразования Галилея и Лоренца. Теория относительности А. Эйнштейна, особенности и отличительные признаки ее общей и специальной формы.

    реферат [2,4 M], добавлен 09.11.2010

  • Научный метод познания. Принципы симметрии и законы сохранения. Специальная и общая теория относительности. Структурные уровни и системная организация материи. Порядок и беспорядок в природе. Панорама современного естествознания. Биосфера и человек.

    тест [32,4 K], добавлен 17.10.2010

  • Исторические этапы познания природы, логика и закономерности развития науки. Понятие научной картины мира и теория относительности. Антропный принцип космологии и Учение Вернадского о ноосфере. Современные концепции экологии, задачи и принципы биоэтики.

    шпаргалка [64,8 K], добавлен 29.01.2010

  • Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.

    курс лекций [545,5 K], добавлен 05.10.2009

  • Характеристика современной естественно-научной картины мира. Междисциплинарные концепции как важнейшие элементы структуры научной картины мира. Принципы построения и организации современного научного знания. Открытия XX века в области естествознания.

    контрольная работа [21,9 K], добавлен 18.08.2009

  • Эволюция научного метода и естественнонаучной картины мира. Развитие научных исследовательских программ. Пространство, время и симметрия. Системные уровни организации материи. Порядок и беспорядок в природе. Панорама современного естествознания.

    курс лекций [47,6 K], добавлен 15.01.2011

  • Научные картины мира и научные революции в истории естествознания. Изучение физической картины мира в ее развитии. Явления электричества и магнетизма. Квантово-релятивистская физическая картина мира, законы электродинамики. Общая теория относительности.

    реферат [30,1 K], добавлен 11.02.2011

  • Предмет и задачи естествознания как системы научных знаний. Характеристика этапов развития естествознания. Научная картина мира как одно из основополагающих понятий в естествознании — особая форма систематизации знаний, синтез различных научных теорий.

    презентация [1001,9 K], добавлен 28.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.