Рестрикционные карты и банки генов

Принцип построения рестриктных карт. Результаты электрофореза после обработки фрагмента ДНК разными рестриктазами. Хранение библиотеки генов. Значение ферментов рестрикции как инструментов исследования. Перенос генетического материала с помощью плазмид.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 12.12.2010
Размер файла 232,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (ТГУ)

Институт биологии, экологии, почвоведения, сельского и лесного хозяйства

(Биологический институт)

Кафедра экологического менеджмента

рестрикционные карты и банки генов

Вяльшин александр Шамильевич

Томск 2010

Оглавление

1. Рестрикционные карты 3

2. Построение карт рестрикции 5

3. Генетические банки 9

Список литературы 11

1. Рестрикционные карты

При исследовании протяженных (до 40 т.п.о.) клонированных последовательностей нуклеотидов, включающих исследуемые гены, строят их рестрикционные карты . Рестрикционные карты представляют собой схемы, изображающие взаимное расположение сайтов рестрикции для разных рестриктаз и расстояния между ними. Поскольку каждый сайт рестрикции является не чем иным, как строго определенной последовательностью нуклеотидов ДНК, рестрикционные карты заключают в себе информацию об особенностях первичной структуры картируемых участков генома.

Для построения рестрикционной карты используют гибридизацию по методу Е. Саузерна. Клонированный фрагмент ДНК отдельно или в составе вектора получают в препаративном количестве, затем его обрабатывают соответствующими рестриктазами и продукты рестрикции разделяют электрофорезом в агарозном геле. Количество образовавшихся рестрикционных фрагментов ДНК, обнаруживаемых после окрашивания бромистым этидием в виде флуоресцирующих полос в ультрафиолетовом свете, соответствует количеству сайтов рестрикции в том случае, если различия в размерах образовавшихся фрагментов ДНК достаточны для их разделения при электрофорезе.

Размеры рестрикционных фрагментов оценивают путем сравнения их электрофоретической подвижности с таковой фрагментов ДНК известных размеров. Получив информацию о количестве сайтов рестрикции в гене, далее определяют их взаимное расположение. Для этого в качестве зондов выбирают короткие фрагменты ДНК и после введения в них радиоактивной метки гибридизуют с рестрикционными фрагментами ДНК, которые после электрофоретического разделения в агарозном геле были перенесены на нитроцеллюлозные или нейлоновые фильтры. По завершении гибридизации положение фрагментов ДНК, связавших метку, на фильтрах обнаруживают с помощью авторадиографии. Получение такой информации о принадлежности конкретных фрагментов ДНК, образовавшихся под действием различных рестриктаз, к 5'- или 3'-концевым частям исследуемой последовательности нуклеотидов обычно бывает достаточным для определения взаимного расположения различных сайтов рестрикции на рестрикционных картах.

Принцип построения рестриктных карт был предложен D. Nathans в начале 70х годов для построения карты генома вируса SV40. Им было предложено определение рестриктной карты как списка рестриктных сайтов, встречающихся в данной последовательности с указанием порядка их расположения и расстояний между ними, и принципиального способа их получения - анализ двойных и одинарных рестриктов.

Достоинством рестриктных карт является то, что информация, которая в них содержится, может быть использована непосредственно для клонирования интересующих фрагментов генома. Результаты же анализа этих фрагментов можно использовать для получения STS из данной области генома или для упорядочения ранее полученных маркеров. Кроме того, для их построения не требуется предварительного клонирования изучаемой ДНК. До середины 80х годов были разработаны основные методы рестриктного картирования и получены полные рестриктные карты некоторых организмов, в основном вирусов. Однако, существовавшие методы разделения нуклеиновых кислот позволяли анализировать фрагменты размером до 30-40 килобаз. Таким образом, получение рестриктной карты даже такого сравнительно простого генома, как геном E. coli (длина около 6 Мб), представляло собой практически неразрешимую задачу.

Анализ генома млекопитающих осложнялся кроме того тем, что известные в то время рестриктазы имели сайты узнавания, которые встречались слишком часто. Это приводило к тому, что существовал разрыв в масштабах расстояний, картируемых с помощью генетических методов (методы классической генетики позволяют картировать исследуемый локус относительно соседних с точностью 2-5 сМ при размере генома мыши 1300 сМ и генома человека 3300 сМ, при этом 1 сМ у мыши соответствует в среднем 2000 килобаз, а у человека - 1000 килобаз) и расстояний, которые можно было откартировать с помощью рестриктаз (максимум несколько сотен килобаз).[1]

генетический рестриктный электрофорез

2. Построение карт рестрикции

Ферменты рестрикции стали эффективным инструментом исследования. Они позволяют превращать молекулы ДНК очень большого размера в набор фрагментов длиной от нескольких сотен до нескольких тысяч оснований. Короткие фрагменты мигрируют намного быстрее, чем длинные. При сравнительно высокой концентрации агарозы большие фрагменты вообще не могут проникнуть в гель. В процессе миграции рестрикционные фрагменты не деградируют, их можно элюировать (вымывать) в виде биологически активных двуцепочечных молекул. При окрашивании гелей красителями, связывающимися с ДНК, выявляется набор полос, каждая из которых отвечает рестрикционному фрагменту, молекулярную массу которого можно определить, проведя калибровку с помощью ДНК с известными молекулярными массами.

Сравнение размеров фрагментов ДНК, полученных после обработки определенного участка генома набором рестрицирующих нуклеаз позволяет построить рестрикционную карту, на которой указано положение каждого сайта рестрикции относительно других участков. Молекулу ДНК длиной 5000 пар нуклеотидов (п. н.). обрабатывают отдельно рестриктазами А и В. Фрагменты разделяют электрофорезом. Фермент А разрезал ДНК на 4 фрагмента размером 2100, 1400, 1000 и 500 п. н. Обработка рестриктазой В дала 3 фрагмента: 2500, 1300 и 1200 п. н. (рис. 1). Для определения расположения сайтов рестрикции этих ферментов на следующем этапе применяют процедуру двойного расщепления - обрабатывают ДНК двумя эндонуклеазами. Обработка изучаемого фрагмента одновременно двумя рестриктазами дала 6 фрагментов: 1900, 1000, 800, 600, 500, 200 п. н.

Рис. 1. Результаты электрофореза после обработки фрагмента ДНК разными рестриктазами

Наиболее полный вариант - элюировать каждый фрагмент, образующийся в результате расщепления одной рестриктазой, а затем обработать его второй. Смесь фрагментов, полученных после такой обработки, также анализируют с помощью электрофореза. В нашем примере были получены следующие результаты:

Обработка каждого из 4-х А-фрагментов рестриктазой В

2100 - 1900 и 200,

1400 - 800 и 600,

1000 - 1000 (изменений нет)

500 - 500 (изменений нет)

Обработка каждого из 3-х В-фрагментов рестриктазой А

2500 - 1900 и 600

1300 - 800 и 500

1200 - 1000 и 200

Анализ полученных результатов показывает, что каждый из ферментов, полученный при расщеплении А-фрагментов рестриктазой В можно обнаружить в образцах, полученных при расщеплении В-фрагментов рестриктазой А. Ключом к рестрикционному картированию являются перекрывающиеся фрагменты. Такими в рассматриваемом примере являются В-фрагмент 2100 и А-фрагмент 2500. При обработке другой рестриктазой они дают фрагмент 1900. Из данных о расщеплении этих фрагментов мы предполагаем, что с одной стороны на расстоянии 200 п. н. от фрагмента 1900 находится следующий А-сайт, а с другого конца, на расстоянии 600 п. н. - следующий В-сайт (рис. 2). При обработке двумя эндонуклеазами фрагмент 200 п. н. образуется 1 раз, при обработке рестриктазой А из В-фрагмента 1200, т. е. фрагмент 1200 лежит слева. Остается определить, как продолжается карта вправо. Очевидно, это А-фрагмент 1400, так как он рассечен рестриктазой В на фрагменты 600 и 800. Вправо от фрагмента 2500 следует отложить, очевидно, фрагмент 1300. Тогда логично наличие А-фрагмента 500 и деления В-фрагмента 1300 рестриктазой А на 800 и 500.

При построении рестрикционных карт обычно используют несколько рестриктаз, поэтому приходится анализировать сложные соотношения между фрагментами, полученными при действии разных ферментов. Для упрощения процедуры картирования можно применять неполное расщепление. В определенных условиях рестриктаза узнает и расщепляет не все сайты в молекуле ДНК. Например, при частичном расщеплении ДНК ферментом А могут образовываться фрагменты 3100 п. н., 1400 п. н. и 500 п. н. Сопоставив их с данными полного расщепления (2100, 1400, 1000 и 500), можно сразу поставить рядом 2100 и 1000 (фрагмент 3100). А получив фрагмент 3500 - расположить рядом 2100 п. н. и 1400 п. н.

Рис. 2. Анализ фрагментов рестрикции и карта фрагмента ДНК

Другой прием - введение радиоактивной концевой метки. Концевые фрагменты определяются в этом случае по включению метки. Можно также сопоставить фрагменты путем гибридизации нуклеиновых кислот. Перекрывающиеся фрагменты (в данном случае 2100 и 2500) будут гибридизоваться.

Первая карта была получена для вируса SV40 (обезьяний вирус, вызывающий злокачественную трансформацию), содержащего 5423 пары оснований. Использовали рестриктазу Hind-II, расщепляющую кольцевую ДНК вируса на 11 фрагментов. Порядок их расположения в ДНК был установлен путем исследования наборов фрагментов, образующихся по мере того, как расщепление доходит до конца. Первый разрыв превращал кольцевую молекулу в линейную, которая затем расщеплялась на все меньшие и меньшие фрагменты. Исследовали вначале наборы перекрывающихся фрагментов, а затем продукты полного расщепления. Таким образом была получена рестрикционная карта кольцевой вирусной ДНК, на которую были нанесены сайты расщепления рестриктазой. Повторив подобные эксперименты с другой рестриктазой можно получить более подробную карту, где отмечено много сайтов рестрикции.

Располагая такой информацией, можно идентифицировать на ДНК биологически важные участки. Поскольку рестрикционная карта отражает расположение определенной последовательности нуклеотидов в данном участке, сравнение таких карт для двух или более родственных генов позволяет оценить гомологию между ними. Анализируя рестрикционные карты, можно сравнивать определенные участки ДНК разных видов животных без определения их нуклеотидной последовательности. Таким образом, например, было установлено, что хромосомные участки, кодирующие цепи гемоглобина у человека, орангутанга и шимпанзе сохранились в практически неизменном виде в течение последних 5 - 10 млн. лет (с тех пор как виды дивергировали).

Метод рестрикционного картирования позволяет увидеть крупные генетические изменения, такие как делеции или инсерции. При этом происходит уменьшение или увеличение рестрикционных фрагментов, а также исчезновение или возникновение сайтов рестрикции. Один из приемов картирования - фингерпринт («метод отпечатков пальцев» или DNA-fingerprint). Он подразумевает использование неупорядоченных и неполных наборов фрагментов, которые являются характеристикой генома, хотя описывает его не полностью.[2]

3. Генетические банки

Генетический банк - genetic bank - учреждение с хранилищем, занимающееся консервацией и хранением семян и вегетативных тканей различных сортов культурных и дикорастущих растений, способных к размножению. Многие виды растений при этом через определенные промежутки времени должны проращиваться и омолаживаться. Такие Б. г. необходимы для сохранения генетического материала, так как в процессе интенсификации сельского хозяйства происходит вытеснение многих местных сортов, а также идет исчезновение дикорастущих видов, предшественников культурных растений. Существует более 40 государственных Б. г., есть также такие банки у крупных концернов. В основном все они находятся в Европе и Северной Америке, в них ранится порядка 6 млн образцов. В России первый Б. г. был создан Н.И. Вавиловым, который собрал крупнейшую в мире коллекцию семян культурных растений и их дикорастущих сородичей. Национальное хранилище мировых растительных ресурсов расположено на Кубанской опытной станции Всесоюзного научно-исследовательского института им. Н.И. Вавилова в Краснодарском крае. В нем хранится 400 тыс. образцов семян. В настоящее время организуются также банки генов животных или банки ДНК, где при очень низкой температуре сохраняются клетки, тела и органы животных.[3]

Библиотеку генов можно длительно хранить (в замороженном состоянии) и, по необходимости, выделять отдельные микроорганизмы, содержащие фрагменты ДНК с нужными генами, и размножать (клонировать) их. Клонированные таким способом гены выделяют из клеток и используют для решения различных теоретических и практических задач генетики, медицины (в том числе диагностики наследственных болезней) и биотехнологии.[4]

Список использованной литературы

1. http://medbiol.ru/medbiol/01122001/kartirovan/000153c1.htm

2. http://www.biotechnolog.ru/ge/ge4_1.htm

3. http://science.viniti.ru/index.php?&option=com_content&task=view&Itemid=139&Section=&id=316&id_art=B004570

4. http://ru.wikipedia.org/wiki/Библиотека_генов

Размещено на Allbest.ru


Подобные документы

  • Исследование механизмов передачи генетического материала и создание новых способов генетического картирования. Перенос генетического материала с помощью плазмид, с помощью рекомбинации и посредством трансдукции. Генетическое картирование актиномицетов.

    реферат [25,9 K], добавлен 15.12.2010

  • Обмен генетического материала у бактерий при трансформации, конъюгации и трансдукции. Перенос фрагмента ДНК от донорских бактериальных клеток к реципиентным при непосредственном контакте. Перенос, гены специальных и необходимых при конъюгации структур.

    реферат [18,9 K], добавлен 27.05.2010

  • Понятие и основные методы генной инженерии. Методика выделения ДНК на примере ДНК плазмид. Принципы действия системы рестрикции-модификации. Перенос и обнаружение клонируемых генов в клетках. Конструирование и введение в клетки рекомбинантных молекул ДНК.

    реферат [22,1 K], добавлен 23.01.2010

  • Этапы проведения экспериментов по переносу генетического материала, применение технологий для изучения процессов дифференцировки, канцерогенеза. Условия культивирования клеток. Виды и назначение селекции. Перенос генов, опосредованный хромосомами и ДНК.

    учебное пособие [25,1 K], добавлен 11.08.2009

  • Эволюция представлений о гене. Основные методы идентификации генов растений. Позиционное клонирование (выделение) генов, маркированных мутациями. Выделение генов, маркированных делециями методом геномного вычитания и с помощью метода Delet-a-gen.

    контрольная работа [937,4 K], добавлен 25.03.2016

  • Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.

    лекция [2,8 M], добавлен 31.10.2016

  • Особенности транскрипции генов оперонов на примере пластома ячменя. Структурно-термодинамические исследования генов. Поиск, картирование элементов геномных последовательностей. Анализ гена растительных изопероксидаз. Характеристика модифицированных генов.

    реферат [23,2 K], добавлен 12.04.2010

  • Классификация актиномицетов по Красильникову и Ваксману-Генрици. Морфология и физиология. Сущность постинфекционного иммунитета. Генетическое картирование актиномицетов. Перенос генетического материала с помощью плазмид. Патогенность и патогенез.

    презентация [858,2 K], добавлен 04.11.2013

  • Экспрессия генов - способность контролировать синтез белка. Структура и свойства генетического кода, его универсальность и просхождение. Передача генетической информации, транскрипция и трансляция. Митохондриальный и хлоропластный генетические коды.

    реферат [41,5 K], добавлен 27.01.2010

  • Внесение мутированного гена в наследственную информацию клеток с целью "препарирования" генетического заболевания. Определение роли метилирования ДНК и механизма его негативного воздействия организм. Содержание методики "программируемого нокаута генов".

    реферат [608,3 K], добавлен 15.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.