Физиология человека

Внутренняя среда организма, жидкости внеклеточного пространства. Изменение состава межклеточной жидкости, состав и свойства крови. Строение миофибрилл, сократительные белки, механизм мышечного сокращения. Гормоны аденогипофиза и их эффекты в организме.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 11.11.2010
Размер файла 36,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Внутренняя среда организма человека. Понятие о гомеостазе

К внутренней среде организма относят все жидкости внеклеточного пространства: интерстициальную, или тканевую, жидкость, кровь, лимфу, трансцеллюлярные жидкости, заполняющие полости организма и некоторых органов, -- спинномозговую, внутриглазную, внутрисуставную (синовиальную) жидкость, жидкости серозных пространств (плевральную, перикардиальную, перитонеальную). Жидкости внутренней среды организма характеризуются постоянством физико-химических показателей -- осмолярности, рН, концентрации различных ионов и органических соединений, температуры. Постоянны объемы, занимаемые различными жидкостями внеклеточного пространства. Для каждого показателя внеклеточной жидкости эмпирически установлены средняя величина и границы ее нормальных отклонений, а также крайние сдвиги границ величины показателей внеклеточной жидкости, при которых может нарушаться жизнедеятельность клеток или организма в целом. Показатели внутренней среды организма, диапазон границ, отклонения которых от средней величины мал (концентрация Na+, К+, рН), относят к жестким константам. Показатели, границы отклонений которых от средних величин имеют более значительный диапазон (концентрация глюкозы, белки плазмы крови), относят к пластическим константам. Отклонения средних величин показателей внеклеточной жидкости к их верхним или нижним нормальным границам могут быть обусловлены возрастом организма, социальными и профессиональными условиями, в которых находится человек, а также временем года и суток, географическими и природными условиями, половыми и индивидуальными особенностями организма. Выход за нормальные границы физико-химических и биологических жестких констант внутриклеточной жидкости является или причиной, или следствием заболевания организма. Поэтому для врача исследование показателей внеклеточной жидкости (крови, спинномозговой жидкости и др.) и их отклонений от нормальных величин имеет большую диагностическую ценность, поскольку используется врачом при постановке диагноза заболевания, позволяет по изменению этих показателей анализировать течение заболевания, оценивать эффективность применяемого лечения. Отклонения от нормальных границ физико-химических показателей, объемов или давления жидкостей внутренней среды организма восприни­маются рецепторами (осмо-, хемо-, волюмо- и барорецепторами), улавливающими изменение ионного, газового, антигенного состава жидкостей, их объема, оказываемого ими механического давления на стенки кровеносных сосудов, что приводит к включению нервной, гормональной и иммунной систем в организацию биохимических, биофизических и физиологических регуляторных реакций, реализуемых различными системами организма (дыхания, кровообращения, крови, выделения, иммунной системой и др.), которые и устраняют сдвиги, возникшие во внутренней среде организма. При этом показатели внутренней среды контролируются в организме механизмами, реализуемыми на уровне генома клеток, клеточном, тканевом, органном, системном, и организменном. Например, сниженное содержание кислорода в крови уменьшает поступление его в клетки почек, являющихся высокочувствительными к недостатку кислорода, что приводит к активации в них участка генома, ответственного за синтез эритропоэтиновой и-РНК. Биосинтез эритропоэтина клетками почек резко усиливается, костный мозг, стимулированный эритропоэтином, воспроизводит больше эритроцитов, и с увеличением массы гемоглобина в крови возрастает количество переносимого кровью кислорода. На данном примере можно видеть, что изменение физиологической константы -- содержания кислорода в крови -- включило механизмы, контролирующие этот параметр внутренней среды организма на уровне генома клеток почек, на тканевом уровне -- в костном мозге и в системе крови -- в целом. У. Кэннон предложил обозначать постоянство внутренней среды организма, обеспечиваемое совокупностью физиологических реакций систем организма, возникающих при действии на него внешних и внутренних возмущающих влияний, термином «гомеостазис» («гомеостаз» -- от греч. homoios -- подобный, stasis -- неподвижность). Гомеостазис есть состояние относительного и динамического постоянства показателей внутренней среды организма, отклонение от которого устраняется регуляторными механизмами. Отклонение от этого часто бывает несовместимо с жизнью. Врачу трудно исследовать непосредственно истинную внутреннюю среду организма. Поэтому, в понятие "внутренней среды" правильно включают, наряду с межклеточной жидкостью, еще кровь и лимфу. Это - не истинная внутренняя среда организма: в крови не живут собственные клетки организма (в крови живут клетки, но это "другие" клетки).То, что "кровь омывает клетки" - это вульгаризм. Кровь течет по кровеносным сосудам. Кровь течет "по системе кровоснабжения". Сама по себе кровь клетки тканей и органов не омывает. Клетки тканей и органов находятся в межклеточной жидкости. Тогда встает вопрос, почему кровь причислили к "внутренней среде" организма. Потому что идет постоянный обмен между кровью и межтканевой жидкостью. Это - как бы единая жидкостная система организма.

Изменение состава межклеточной жидкости всегда отражается на составе и свойствах крови. Кровь -зеркало внутренней среды организма. Поэтому врачи, исследуя кровь, проводят оценку внутренней среды организма. Постоянство внутренней среды организма предстает перед врачом в виде нормативных показателей - констант - постоянных показателей. Врач проводит оценку констант. Константы отражают норму, нормальное значение. Врач проводит постоянное сличение измеренных/определенных/ им показателей при обследовании пациента с константами, принятыми за норму у человека. Как подразделяются константы? Константы внутренней среды организма делятся на жесткие и пластичные. Жесткие константы - это такие константы, которые могут отклоняться от нормы, от своего исходного уровня в процессе жизнедеятельности на небольшую величину (т.е. колебания есть, так как человек живет, но лишь на небольшую величину).

Существенное отклонение жестких констант от своей исходной величины не совместимо с жизнью. (Пример: рН крови. В организме существуют специальные механизмы (которые нам предстоит изучать), служащие для поддержания этой жесткой константы, которые удерживают процессы в определенном русле, в определенных показателях. Этихмеханизмов много - механизмов, которые поддерживают уровень показателей жестких констант. Один из признаков надежности биологических систем - это дублирование механизмов поддержания. Пластичные константы - это тоже постоянные константы, но которые в процессе жизнедеятельности колеблются в значительном диапазоне величин. Однако и при значительном колебании это совместимо с жизнью. правда и у пластичных констант существуют пределы, выход за которые несовместим с жизнью. Пример: артериальное давление - 120 / 80. Но если нормальному здоровому человеку 20 раз присесть, то артериальное давление уже будет 200/100. Большие колебания, но все это - норма, однако если давление выскочит за 250, то какой-то микрососудик может лопнуть - произойдет кровоизлияние в мозг - инсульт, в сердце - инфаркт. У гипертоников инсульты и инфаркты - чаще: сосуды не выдерживают и происходят кровоизлияния - смерть. Таким образом, давление - пластичная константа, но и она колеблется в определенных пределах.

2. Строение миофибрилл. Сократительные белки. Механизм мышечного сокращения

Мышцы в организме человека представлены двумя группами: поперечнополосатыми и гладкими. К поперечно-полосатому типу мышц относятся скелетная и сердечная мышцы (сердце). Функцией скелетных поперечнополосатых мышц является движение скелета, а в целом -- тела человека. При этом скелетные поперечнополосатые мышцы называются произвольными, поскольку человек по своей воле может управлять их действиями.

Сокращение сердечной мышцы не может возникать произвольно, т. е. по воле человека, и в этом отношение сердце, как поперечнополосатая мышца, представляет исключение.

В гладких мышцах отсутствует поперечно-полосатая исчерченность. Эти мышцы образуют основную массу стенок внутренних органов (пищеварительный канал, кровеносные сосуды, внутренние полые органы, выводные протоки желез внешней секреции и дыхательные пути). Гладкие мышцы организма человека называются непроизвольными, поскольку человек по своей воле не способен контролировать их сократительную способность и функцию. Скелетная, сердечная и гладкие мышцы имеют как структурные, так и функциональные различия образующих их мышечных волокон и, в свою очередь, подразделяются на следующие подтипы. Скелетные мышцы подразделяются на белые и красные: первые по функции являются быстро сокращающимися мышцами, а вторые -- медленно сокращающимися. Большинство мышц тела человека являются смешанными и их функция обусловлена быстрыми и медленными мышечными волокнами. Гладкие мышцы подразделяются на два разных по строению и функции типа: унитарные и мультиунитарные. Первые образованы большим числом связанных между собой гладкомышечных клеток -- так называемыми плотными контактами , а вторые состоят из отдельных гладкомышечных волокон. В унитарной гладкой мышце возбуждение отдельного гладкомышечного волокна способно распространяться на всю мышцу. Напротив, в мультиунитарной мышце каждое гладкомышечное волокно имеет собственную иннервацию, через которую управляется сократительная способность мышцы. Сердечная мышца подразделяется на сократительные клетки, которые образуют предсердия и желудочки (миокард), и клетки, которые не обладают сократительной способностью, способны спонтанно генерировать электрические импульсы и проводить их к сократительным клеткам сердца.

Скелетная мышца

Скелетная мышца представляет собой комплекс отдельных многоядерных мышечных клеток или волокон, которые состоят из функциональных единиц -- миофибрилл, осуществляющих механизм сокращения в результате взаимодействия белковых филаментов миозина и актина. Основной характеристикой скелетной мышечной ткани является ее способность под контролем со стороны нервной системы развивать силу сокращения и укорочение. Степень механического напряжения и укорочения мышцы обусловлена активацией числа двигательных единиц, образующих целую мышцу.

Двигательной единицей скелетной мышцы называется количество двигательных (моторных) мышечных волокон, которые иннервируются одним двигательным нейроном спинного мозга. Скелетное мышечное волокно представляет собой вытянутую многоядерную клетку, которая содержит сократительные элементы, или миофибриллы. В каждом мышечном волокне содержится до 1000 миофибрилл и более, толщиной 1 -- 3 мкм. Отдельная миофибрилла состоит, в свою очередь, из множества толстых и тонких миофиламентов -- нитей белка миозина и белка актина соответственно. Взаимодействие между толстыми и тонкими миофиламентами является физической основой мышечного сокращения. Миофиламенты окружены цитоплазмой, называемой саркоплазмой. Кроме того, в состав нитей актина входят белки -- тропонин и тропомиозин, которые необходимы для развития процессов сокращения и расслабления мышцы. Каждая миофибрилла содержит примерно 1500 миозиновых и около 3000 актиновых миофиламентов. По всей длине мышечной клетки миофиламенты миофибриллы разделены на структурно-функциональные единицы, которые называются саркомерами. Саркомеры отделены друг от друга Z-мембранами, к которым прикреплены тонкие актиновые филаменты. Расположены толстые и тонкие филаменты в саркомере гексамодально, т. е. вокруг каждого толстого миозинового филамента расположено шесть тонких активновых филаментов. Нити миозина лежат в центре саркомера и выглядят в световом микроскопе как темная полоска, которая называется анизотропным А-диском.

По обе стороны от А-диска лежат тонкие нити актина, которые в световом микроскопе образуют светлые изотропные диски. Нити актина, которые образуют в саркомере два изотропных диска, тянутся до Z-мембран. Сократительная способность скелетной мышцы обусловлена функцией мышечных белков актина и миозина, взаимодействие которых между собой является основой механизма сокращения скелетной мышцы. Актиновые филаменты представляют собой двойные белковые спирали F-актина, каждая из которых образована примерно 200 единицами (мономерами) глобулярного G-актина. Каждый G-актин состоит из четырех субдоменов. Два больших субдомена (3-й и 4-й) актина выполняют функцию связывания между собой белковой спирали F-актина, а два маленьких (1 -й и 2-й), локализованные на периферии глобулярного G-актина, являются местами взаимодействия каждого мономера G-актина с толстым филамен- том. Основную роль в связывании актина с миозином во время сокращения мышцы выполняет субдомен 1, содержащий NH2 СООН терминали актина. Этот субдомен актина выполняет функцию связывающего центра. Поэтому каждый глобулярный G-актин представляет собой место связывания с миозином при сокращении мышцы. В состоянии покоя скелетной мышцы центры связывания на каждом глобулярном G-актине закрыты белками тропонином и тропомиозином. Эти белки функционально связаны между собой и образуют тропонин-тропомиозиновый комплекс, который расположен вдоль всей двойной белковой спирали F-актина. Тропомиозин представляет собой молекулу длиной 42 нм, образованную двумя белковымицепями по типу спирали. Тропомиозин связан электростатически с актиновым филаментом. Однако элетростатическая связь между актиновым филаментом и тропомиозином является плотной только во время расслабления скелетной мышцы. В присутствии ионов Са2+ эта связь становится менее плотной, тропомиозин становится подвижным и способен открывать места связывания на актиновом филаменте для поперечных мостиков миозина, что происходит во время сокращения. В разных типах мышечной ткани тропомиозин имеет различную подвижность относительно актина.

Например, в скелетной мышце тропомиозин более подвижен, чем в сердечной мышце, что обусловливает отличие в сократительных свойствах этих двух типов поперечнополосатых мышечных тканей. Подвижность тропомиозина относительно актинового филамента регулируется тропонином. Тропонин состоит из трех белковых субъединиц: С, I и Т. Субъединица С тропонина является своеобразным сенсором для ионов Са2+ в регуляции сокращения как в скелетной, так и в сердечной мышцах. Тропонин С имеет две глобулярные области -- NH2 и СООН терминали. В скелетном мышечном волокне каждая из этих концевых областей тропонина С содержит два возможных места связывания ионов Са2+. Функция субъединицы I тропонина заключается в связывании тропонина с актином. Субъединица Т тропонина прочно удерживает вместе тропонин-тропомиозиновый комплекс на нитях актина. В присутствии ионов Са2+ связь тропонина Т и тропомиозина относительно тонкой нити актина становится подвижной. Это приводит к открытию мест связывания на актиновом филаменте, с которым способны связываться поперечные мостики толстого филамента с началом процесса мышечного сокращения.

Толстый филамент представляет собой биполярный полимер белка миозина, который способен взаимодействовать с актином и развивать в результате этого взаимодействия силу и укорочение мышцы. Двигательный белок миозин состоит из двух тяжелых и четырех легких полипептидных цепей. Тяжелые полипептидные цепи образуют спираль миозина. Глобулярные концевые NH2 области называются головками, с помощью которых происходит взаимодействие между центрами связывания на актиновом филаменте с миозином во время сокращения мышцы. Одна пара легких полипептидных цепей связана с каждой головкой. Основа толстого филамента представлена миозиновым стержнем, который скручен из множества белковых нитей. Образование миозинового стержня происходит в период развития мышечной ткани, благодаря функции белка С саркомера, который является антителом для белка миозина. В скелетных мышцах от миозинового стержня по его окружности отходят с равным интервалом в 14,3 нм пары головок поперечных, а расстояние между головками по одной линии толстого филамента составляет 43 нм. При этом каждая пара головок на филаменте миозина ориентирована на 180" относительно другой. Подобная «геометрия» расположения поперечных мостиков на толстом филаменте обусловливает их взаимодействие с любой из шести окружающих его тонких филаментов с интервалом в 14,3 нм. Важным внутриклеточным элементом эластичности мышечных волокон является высокоэластичный белок титин, который формирует своеобразную сеть вокруг нитей актина и миозина в пределах каждого саркомера и придает ему механические свойства как в покое, так и при мышечном сокращении. Благодаря наличию белка титина в саркомере, в состоянии покоя сократительные элементы развивают напряжение при растяжении мышцы.

Механизм сокращения скелетной мышцы

Во время укорочения мышцы уменьшается длина саркомеров. При этом филаменты актина и миозина, входящие в состав саркомеров, не изменяют своей длины. Уменьшение длины соркомеров происходит в результате движения (скольжения) тонких филаментов с двух сторон саркомера к его центру относительно толстых миозиновых филаментов.

Молекулы актина и миозина способны взаимодействовать между собой как в условиях in vivo, так и in vitro. В мышце эта связь миозиновых головок с актиновым филаментом является циклической и представляет собой многочисленные укорочения миозиновых поперечных мостиков, что поддерживает постоянство сокращения в целой активной мышце. Цикл поперечного мостика во время сокращения мышцы -- это связывание, укорочение, высвобождение и вновь связывание поперечного мостика миозина с актиновым филаментом, что весьма напоминает собой человека, который на руках поднимается вверх по канату. В саркомере каждый миозиновый филамент находится в окружении шести актиновых филаментов. Миозиновые филаменты вращаются во время взаимодействия с окружающими их шестью филаментами актина, а их поперечные мостики связываются лишь с тремя случайными тонкими миофиламентами. Согласно теории скольжения филаментов мышечного сокращения поперечные мостики миозина взаимодействуют с актином асинхронно, т. е. одни находятся «в захвате», в то время как другие «изменяют свой захват». Миозиновые головки, которые образуют поперечные мостики, расположены только на концах миозиновых филаментов. Поэтому при максимальном увеличении длины саркомеров, несмотря на раздражение мышцы, полностью отсутствует сокращение мышцы. Активность актомиозиновых мостиков, с помощью которых актиновые филаменты прикрепляются к миозину, представляет собой процесс, в ходе которого химическая энергия АТФ превращается в сокращение мышцы.

Каждый отдельный поперечный мостик имеет структурные особенности, которые вовлечены в сокращение мышцы. Эти особенности включают двойную головку миозина, которая содержит АТФазную активность поперечного мостика, и способность связываться плотно с актином, и в то же время вращается наподобие шарнира относительно стержня поперечного мостика. В свою очередь стержень поперечного мостика также наподобие шарнира связан с миозиновым стержнем и обладает эластическими свойствами, заключающими в себе энергию, необходимую при развитии напряжения во время вращении головки поперечного мостика. Поперечные мостики отходят от миозинового стержня таким образом, что образуют спираль вдоль толстного филамента с интервалом 14,3 нм между мостиками. Этот интервал столь мал, что каждой мостик должен многократно взаимодействовать с актином по мере продвижения вдоль актинового филамента, чтобы произошло существенное укорочение длины всей мышцы.

В состоянии покоя поперечный мостик расположен параллельно миозиновому стержню, а его головка -- перпедикулярно относительно последнего, и не прикреплена к актиновому филаменту (стадия 1). После того, как ионы Са2+ высвобождаются из саркоплазматического ретикулума (описано ниже) и активируют сокращение мышцы, активновый филамент может связываться с миозиновой головкой (стадия 2). После связывания головка наклоняется (стадия 3), используя энергию, заключенную в миозин-АТФазном комплексе головки. Это является основной силой поперечного мостика, которая растягивает его эластический компонент для того, чтобы произвести энергию движения вдоль активного филамента (стадия 4). В результате головка мостика совершает движение на 40° к центру саркомера и перемещает при этом на 10 нм нить актина. В это время от головки высвобождаются АДФ и монофосфат, что необходимо для захвата головкой миозина новой молекулы АТФ. Только после этого головка миозина отделяется от молекулы актина, необходимой для размыкания поперечного мостика с актином. Цикл будет продолжаться до тех пор, пока концентрация ионов Са++ в межфибриллярном пространстве не снижается до подпороговой величины, т. е. 10 М, что приведет к расслаблению мышцы, или пока не будут исчерпаны запасы АТФ. В последнем случае в мышце возникает спазм или мышечная контрактура (rigor), при которой в течение нескольких секунд или минут отсутствует расслабление мышцы. При трупном окоченении (rigor mortis), возникающем после смерти человека, значительный процент поперечных мостиков остается в связанном с актиновыми филаментами положении, что придает мышцам необычно высокую плотность. Таким образом, функция АТФ проявляется в двух точках процесса сокращения мышцы. Во-первых, АТФ является источником энергии для сокращения. Во-вторых, АТФ отсоединяет поперечной мостик для того, чтобы повторялся цикл поперечных мостиков «замыкание--сокращение--размыкание».

Активация мышечного сокращения

Процесс, при котором потенциалы действия, генерируемые на сарколемме в области нервно-мышечного синапса, активируют сокращение мышцы, называется электромеханическим сопряжением. Центральным процессом в электромеханическом сопряжении является взаимодействие ионов Са2+ с тропонином, когда изменяется положение тропомиозина, закрывающего места связывания на активном филаменте для поперечных мостиков миозина. В состоянии покоя мышечного волокна Са2+-АТФаза саркоплазматического ретикулума активно закачивает ионы Са2+ из саркоплазмы в его цистерны, где большинство ионов находится в обратимо связанном состоянии с белком кальсеквестрином. В саркоплазме мышечного волокна концентрация ионов Са2+ снижена до уровня порядка 0,1 мкМ/л или Ю-7 М, при котором тропонин-тропомиозиновый комплекс закрывает места связывания актина с головками поперечных мостиков миозина. Тем не менее даже при столь низкой концентрации ионов Са2+ в саркоплазме отдельные места на концевых субдоменах актина могут осуществлять слабое электростатическое взаимодействие с миозином. В этом случае имеет место прямое связывание головки миозина с актином. Благодаря этому в состоянии покоя мышечного волокна тонкие филаменты в саркомере находится не в свободном, а в зафиксированном положении, что поддерживает упорядоченное пространственное расположение тонких и толстых миофиламентов между собой в саркомерах мышц. Для того чтобы вызвать сокращение, потенциал действия мышцы, вызваемый двигательным нервом, распространяется по сарколемме мышечной клетки и внутрь поперечных трубочек (t-система), открывая кальциевые ионные каналы мембраны. В фазу деполяризации потенциала действия сарколеммы в области t-системы открывается L-тип потенциалзависимых кальциевых ионных каналов, которые, в свою очередь, вызывают открытие кальциевых ионных каналов саркоплазматического ретикулума. Это обусловлено тем, что L-тип потенциалзависимых кальциевых ионных каналов сарколеммы в области t-системы, или дигидропиридиновый рецептор (агонист--дигидропиридин), прямо структурно связан с рианодиновым рецептором (агонист -- рианодин) или кальциевым ионным каналом саркоплазматического ретикулума. Функцией структурного взаимодействия этих двух рецепторов является открытие кальциевых каналов саркоплазматического ретикулума и выход ионов Са2+ в саркоплазму. Когда концентрация ионов Са2+ в межфибриллярном пространстве, т. е. в саркоплазме между нитями актина и миозина, увеличивается до 10 мкМ/л (10~5 М) и более, ионы Са2+ начинают связываться с тропонином С. Активация тропонина С при связывании с ионами Са2+ вызывает смещение тропонин-тропомиозинового комплекса примерно на 25° вокруг поверхности актинового филамента и погружение молекул тропомиозина вглубь между белковыми цепями актина. В результате на актиновых филаментах открываются места связывания для головок поперечных мостиков миозина и начинается цикл их сокращения. При этом начинается сокращение всей скелетной мышцы, которое будет продолжаться до тех пор, пока концентрация ионов Са2+ в саркоплазме не станет пороговой или сверхпороговой для поддержания сократительного процесса.

Расслабление скелетной мышцы начинается только после того, как концентрация ионов Са2+ в саркоплазме мышечных клеток снижается ниже порогового уровня, т. е. ниже 10 мкМ/л, или Ю-5 М. Расслабление мышцы обусловливают три процесса: 1. Отсоединение (диссоциация) ионов Са2+ от субъединицы С тропонина. 2. Диффузия ионов Са2+ в сторону саркоплазматического ретикулума. 3. Активный транспорт ионов Са2+ внутрь саркоплазматического ретикулума при участии Са2+-АТФазы. В начальный момент расслабления длина мышцы остается постоянной. Это происходит из-за того, что первоначально происходит расслабление саркомеров, находящихся на концах мышц, в то время как центральные саркомеры остаются укороченными. Это состояние характерно лишь для начального момента мышечного расслабления, а именно фазы изометрического расслабления. Процесс расслабления во всех саркомерах усиливается после того как сила сокращения мышцы уменьшается примерно на 20-- 30 %. Это обусловлено тем, что во время расслабления мышцы уменьшается подвижность тропомиозина по поверхности белковых цепей актина примерно с той же скоростью, что и сила сокращения. В результате чем меньше сила сокращения мышцы, тем меньше открыто мест связывания на актиновых филаментах для поперечных мостиков миозина.

3 Гормоны аденогипофиза. Их характеристика и функциональное значение

Гормоны аденогипофиза и их эффекты в организме

Структура передней доли гипофиза представлена 8 типами клеток, из которых секреторная функция присуща хромафильным клеткам. Выделяют 5 типов хромафильных клеток: 1) ацидофильные красные клетки с мелкими гранулами или соматотрофы -- вырабатывают соматотропин (СТГ, гормон роста); 2) ацидофильные желтые клетки с крупными гранулами или лактотрофы -- вырабатывают пролактин; 3) базофильные тиреотрофы -- вырабатывают тиреотропин (тиреотропный гормон -- ТТГ); 4) базофиль­

ные гонадотрофы -- вырабатывают гонадотропины: фоллитропин (фолликулостимулирующий гормон -- ФСГ) и лютропин (лютеинизирующий гормон -- ЛГ); 5) базофильные кортикотрофы -- вырабатывают кортикотропин (адренокортикотропный гормон -- АКТГ). Кроме того, так же как и в клетках промежуточной доли, в базофильных кортикотрофах образуются бета-эндорфин и меланотропин, поскольку все эти вещества происходят из единой общей молекулы предшественника липотропинов. Таким образом в аденогипофизе синтезируются и секретируются пять гормонов: кортикотропин, гонадотропины (фоллитропин и лютропин), тиреотропин, пролактин и соматотропин. Первые три из них обеспечивают гипофизарную регуляцию периферических эндокринных желез (коры надпочечников, половых желез и щитовидной железы), т. е. участвуют в реализации гипофизарного пути управления. Для двух других гормонов (соматотропина и пролактина) гипофиз является периферической эндокринной железой, поскольку эти гормоны сами действуют на ткани-мишени. Регуляция секреции аденогипофизарных гормонов осуществляется с помощью гипоталамических нейропептидов (либеринов и статинов), приносимых кровью воротной системы гипофиза.

Регуляция секреции и физиологические эффекты кортикотропина

Кортикотропин является продуктом расщепления крупного (239 аминокислот) гликопротеина проопиомеланокортина, образующегося базофильными кортикотрофами. Этот белок делится на две части, одна из которых при расщеплении служит источником кортикотропина и меланотропина, а вторая, называемая липотропином,-- расщепляясь, дает, кроме меланотропина, пептид эндорфин, обладающий морфиноподобным действием и играющий важнейшую роль в антиноцицептивной (антиболевой) системе мозга и в модуляции секреции гормонов аденогипофиза. Секреция кортикотропина происходит пульсирующими вспышками с четкой суточной ритмичностью. Наивысшая концентрация гормона в крови отмечается в утренние часы (6--8 часов), а наиболее низкая -- с 18 до 2 часов ночи. Механизм регуляции секреции представлен прямыми и обратными связями. Прямые связи реализуются кортиколиберином гипоталамуса и вазопрессином. Усиливают эффекты кортиколиберина адреналин и ангиотензин-И, ацетилхолин, норадреналин, адреналин, серотонин, холецистокинин, бомбезин, атриопептид, а ослабляют -- опиоидные пептиды, гамма-аминомасляная кислота. Глюкокортикоиды, циркулирующие в крови (кортизол), в гипоталамусе тормозят секрецию кортиколиберина, а в гипофизе -- секрецию кортикотропина (обратная связь). Обратная связь имеет отрицательную направленность и замыкается как на уровне гипоталамуса (подавление секреции кортиколиберина), так и гипофиза (торможение секреции кортикотропина). Продукция кортикотропина резко возрастает при действии на организм стрессорных раздражителей, например холода, боли, физической нагрузки, повышения температуры тела, эмоций, а также под влиянием гипогликемии (снижение сахара в крови), при этом суточная ритмика секреции изчезает. Физиологические эффекты кортикотропина принято делить на надпочечниковые и вненадпочечниковые. Надпочечниковое действие гормона является основным и заключается в стимуляции (через системы аденилатциклаза--цАМФ и Са2+ с последующей активацией протеинкиназы А) клеток пучковой зоны коры надпочечников, секретирующей глюкокортикоиды (кортизол и кортикостерон). Значительно меньший эффект кортикотропин оказывает на продукцию минералокортикоидов и половых стероидов клетками клубочковой и пучковой зон коры надпочечников. Под влиянием кортикотропина не только усиливается стероидогенез (синтез гормонов) за счет повышения образования и активности ферментов, но и синтез белков ткани за счет избирательной активации транскрипции генов, что при избытке гормона вызывает гипертрофию и гиперплазию ткани коры надпочечников. При этом происходит и перестройка структуры коры, с преимущественным увеличением массы клеток пучковой зоны, в ткани уменьшается содержание холестерина и аскорбиновой кислоты, опосредующей синтез гормонов. Таким образом, кортикотропин является основным звеном гипоталамо-аденогипофизарно-надпочечниковой регуляторной оси. Вненадпочечниковое действие кортикотропина заключается в прямых эффектах гормона: 1) липолитическом действии на жировую ткань, 2) повышении секреции инсулина и соматотропина, 3) гипогликемии из-за стимуляции секреции инсулина, 4) увеличении захвата аминокислот и глюкозы мышечной тканью, 5) повышенном отложении меланина с гиперпигментацией из-за родства молекулы гормона с меланотропином. Избыток секреции кортикотропина сопровождается развитием гиперкортицизма с преимущественным увеличением секреции надпочечниками кортизола и носит название болезни Иценко--Кушинга. Дефицит кортикотропина ведет к недостаточности синтеза и секреции в кровь глюкокортикоидов с выраженными метаболическими сдвигами и снижением устойчивости организма к стрессорным влияниям среды.

Регуляция секреции и физиологические эффекты гонадотропинов

Секреция гонадотропинов из специфических гранул аденогипофизарных клеток имеет четко выраженную суточную и месячную цикличность как у мужчин, так и, особенно, у женщин. Молекулы гонадотропинов секретируются с прикрепленными на конце углеводных цепей гликопротеида сиаловыми кислотами, что защищает их от разрушения в печени. Фоллитропин и лютропин образуются и секретируются одними и теми же клетками, и активация их секреции обеспечивается единым гонадолиберином гипоталамуса. Эффект последнего на секрецию фоллитропина и лютропина зави- сит от циклических изменений содержания в крови половых гормонов -- эстрогенов, прогестерона и тестостерона (отрицательная обратная связь). Секреция гонадолиберина стимулируется катехоламинами, а подавляется эндогенными опиоидными пептидами, гастрином, холецистокинином и соматостатином. Главный тормозной эффект на продукцию фоллитропина оказывает по механизму обратной связи гормон семенников -- ингибин. Тормозят секрецию гонадотропинов гормон аденогипофиза пролактин и мелатонин эпифиза; секрецию лютропина угнетают и глюкокортикоиды. Основное действие на половые железы гонадотропины реализуют через систему аденилатциклаза--цАМФ, причем они влияют не только на образование и секрецию половых гормонов, но и на функции яичников и семенников. Фоллитропин связывается с рецепторами клеток примордиального фолликула в яичниках и клеток Сертоли в семенниках. Следствием является рост фолликулов яичника и пролиферация клеток гранулезы у женщин, рост яичек, пролиферация клеток Сертоли и сперматогенез у мужчин. В продукции половых гормонов фоллитропин оказывает вспомогательный эффект, готовя секреторные структуры к действию лютропина и стимулируя ферменты биосинтеза половых стероидов. Лютропин вызывает овуляцию и рост желтого тела в яичниках, стимулирует клетки Лейдига в семенниках. Он является ключевым гормоном стимуляции образования и секреции половых гормонов: эстрогенов и прогестерона в яичниках, андрогенов в семенниках. Для оптимального развития гонад и секреции половых гормонов необходимо синергичное действие фоллитропина и лютропина, поэтому их часто объединяют единым названием гонадотропины. Таким образом, гонадотропины гипофиза являются основным звеном гипоталамо-аденогипофизарно-гонадной регуляторной оси.

Регуляция секреции и физиологические эффекты тиреотропина

Тиреотропин -- гликопротеидный гормон аденогипофиза -- секретируется непрерывно, с ритмичными колебаниями в течение суток, при этом максимум содержания в крови приходится на вечерние часы. Секреция тиреотропина стимулируется тиреолиберином гипоталамуса, а подавляется соматостатином. По механизму отрицательной обратной связи повышение содержания в крови гормонов щитовидной железы (трийодтиронина и тетрайодтиронина), секрецию которых тиреотропин усиливает, ведет к подавлению секреции тиреотропина. Замыкание обратной связи возможно и на уровне гипоталамуса в виде подавления продукции тиреолиберина. Таким образом, тиреотропин является ведущим звеном гипоталамо-аденогипофизарно-тиреоидной регуляторной оси. Тормозят секрецию тиреотропина дофамин, глюкокортикоиды и соматотропин, а стимулируют -- вазопрессин и антагонисты дофаминовых рецепторов. Тиреотропин секретируется в повышенных количествах при действии на организм низкой температуры, другие же воздействия -- травма, боль, наркоз -- секрецию гормона подавляют. Тиреотропин связывается со специфическим рецептором фолликулярных клеток щитовидной железы и вызывает метаболические реакции с помощью четырех вторичных посредников: цАМФ, инозитол-3-фосфата, диацилглицерола и комплекса Са2+--кальмодулин. Под влиянием тиреотропина в клетках фолликулов щитовидной железы меняются все виды обмена веществ, ускоряется захват иода и осуществляется синтез тиреоглобулина и тиреоидных гормонов. Тиреотропин увеличивает секрецию гормонов щитовидной железы активацией гидролиза тиреоглобулина. Благодаря увеличению синтеза пурина и пиримидина, РНК, белка и фосфолипидов тиреотропин вызывает увеличение массы щитовидной железы.

Внетиреоидное действие тиреотропина проявляется повышением образования гликозаминогликанов в коже и подкожной клетчатке, что ведет к так называемому слизистому отеку, или микседеме. Это происходит, например, при дефиците йода и недостаточной продукции гормонов щитовидной железы, когда по механизму обратной связи возрастает секреция тиреотропина. Избыточная секреция тиреотропина приводит к развитию зоба, гиперфункции щитовидной железы с эффектами избытка тиреоидных гормонов (тиреотоксикоз), пучеглазию (экзофтальм), что в совокупности называют «базедова болезнь».

Регуляция секреции и физиологические эффекты соматотропина

Соматотропин секретируется аденогипофизарными клетками непрерывно и «вспышками» через 20--30 мин и 3--5 ч с отчетливой суточной ритмикой -- повышение секреции соматотропина происходит во время глубокого сна, на ранних его стадиях (народная мудрость гласит: «человек растет, когда спит»). Секреция соматотропина стимулируется гипоталамическим нейропептидом соматолиберином, в механизме действия которого основным вторичным посредником является Са2+. Подавляется секреция соматотропина гипоталамическим соматостатином, приводящим к снижению концентрации ионов кальция в соматотрофах аденогипофиза. Увеличивается секреция гормона после мышечных нагрузок, под влиянием травм, инфекций, голодания. Стимулируют продукцию соматотропина вазопрессин, глюкагон, эстрогены (увеличивая число рецепторов соматолиберина на соматотрофах), дофамин, норадреналин, эндорфин и серотонин, причем последний обеспечивает рост секреции гормона в начале глубокого сна, а также изменения обмена веществ. Так, гипогликемия активирует секрецию соматолиберина и соматотропина, а гипергликемия -- тормозит; избыток аминокислот и снижение свободных жирных кислот в крови активируют их секрецию. Эти влияния реализуются через специальные рецепторные нейроны гипоталамуса, воспринимающие сдвиги биохимического состава крови и участвующие в регуляции обмена веществ. Угнетает синтез и секрецию гормона повышение в крови содержания прогестерона и свободных жирных кислот. Механизм отрицательной обратной связи в саморегуляции уровня гормона в крови реализуется стимуляцией соматотропином нейросекреции соматостатина. Механизм действия соматотропина на клетки-эффекторы заключается в его связывании с двумя молекулами мембранных рецепторов, активации тирозинкиназы -- протеинкиназы С, фосфорилировании и активации цитоплазматических белков. Гормон-рецепторный комплекс активирует и мембранную фосфолипазу С, что ведет к образованию диацилглицерола, мобилизации внутриклеточного кальция и активации протеинкиназы С. Следствием является фосфорилирование и активация цитоплазматических белков, стимулирование транскрипции генов и синтез новых белков. Специфические рецепторы к гормону имеются на клетках жировой, мышечной, хрящевой и лимфоидной ткани, клетках печени, поджелудочной железы, кишечника, половых органов, мозга, легких, сердца и почек. Соматотропин участвует в регуляции роста и развития организма. Повышая синтез хрящевой ткани в эпифизарных отделах костей, гормон в детском возрасте стимулирует рост тела в длину, а активирование пери- остального роста увеличивает толщину и ширину костей. Возрастание массы тканевых структур происходит в мышечной и соединительной ткани, растет масса и внутренних органов. Основные эффекты соматотропина связаны с его влияниями на обмен веществ, приводящими к: 1) усилению липолиза и уменьшению массы жировой ткани; 2) повышению усвоения аминокислот и синтеза белков, в результате чего масса тела возрастает за счет нежировой ткани; 3) увеличению глюконеогенеза и повышению уровня сахара в крови. Вместе с тем большинство ростовых эффектов гормона опосредуется специальными гуморальными факторами (гормонами) печени, почек и костной ткани, получившими название соматомедины. Поскольку эффекты соматомединов на обмен веществ во многом сходны с эффектами инсулина, а их структура имеет сходство с молекулой проинсулина, их еще называют инсулиноподобные факторы роста (ИФР). Химическая структура и основные эффекты установлены для двух факторов (ИФР-1 и ИФР-2). ИФР-1 обладает большим, чем ИФР-2, влиянием на рост, а также является основным фактором, реализующим отрицательную обратную связь в виде угнетения секреции соматолиберина и соматотропина, увеличения продукции соматостатина. Действие на хрящевую ткань инсулиноподобных факторов проявляется в виде стимуляции включения сульфата в синтезируемые протеогликаны, стимуляции включения тимидина в образуемую ДНК, активации синтеза РНК и белка. Эти эффекты выражены у ИФР-1 и ИФР-2 в 100 раз больше, чем у инсулина, а влияние на обмен глюкозы у них в 50 раз слабее, чем у инсулина. В то же время дифференцировка прехондроцитов, повышение транспорта аминокислот через их клеточную мембрану обеспечиваются не соматомединами, а самим соматотропином. Несмотря на то что соматомедины называют инсулиноподобными факторами роста, рецепторы клеточной мембраны для них отличаются от рецепторов инсулина. Рецепторы инсулиноподобных факторов находятся не только в хрящевой ткани, но и в мышечной и соединительной тканях, где эти регуляторы также стимулируют митогенез и синтез белка. При длительной и чрезмерной секреции соматотропина хотя и сохраняется действие соматомединов на хрящевую ткань, но в целом эффекты соматотропина приобретают четкие контринсулярные черты. Они проявляются в изменениях углеводного и жирового обмена в тканях. Так, соматотропин вызывает гипергликемию из-за распада гликогена в печени и мышцах и угнетения утилизации глюкозы в тканях, благодаря повышению секреции глюкагона островками Лангерганса поджелудочной железы. Соматотропин увеличивает и секрецию инсулина островками Лангерганса, как за счет прямого стимулирующего действия, так и благодаря гипергликемии. Но в то же время соматотропин активирует инсулиназу печени -- фермент, разрушающий инсулин, и вызывает инсулинорезистентность тканей. Подобное сочетание стимуляции секреции инсулина с его разрушением и подавлением эффекта в тканях может вести к сахарному диабету, который по происхождению называют гипофизарным. Как антагонист инсулина соматотропин проявляет свои эффекты и в метаболизме липидов. Гормон оказывает пермиссивное (облегчающее) действие по отношению к влияниям катехоламинов и глюкокортикоидов, следствием чего являются стимуляция липолиза жировой ткани, повышение уровня свободных жирных кислот в крови, избыточное образование кетоновых тел в печени (кетогенный эффект) и даже жировая инфильтрация печени. Инсулинорезистентность тканей может быть связана и с этими сдвигами жирового обмена. Избыточная секреция соматотропина и, соответственно, возросший под его влиянием уровень ИФР-1, возникающие в раннем детстве, ведут к развитию гигантизма с пропорциональным развитием конечностей и туловища. В юношеском и зрелом возрастах избыток гормона усиливает рост эпифизарных участков костей скелета, зон с незавершенным окостенением, что получило название акромегалия. Растут кисти и стопы, нос, подбородок и т. д. Увеличиваются в размерах и внутренние органы, что называют спланхомегалия. Появляются утолщение кожи, повышенная потливость, ущемление нервов, резистентность к инсулину. При врожденном дефиците соматотропина, особенно при нечувствительности тканей к нему (при этом в организме имеет место низкий уровень ИФР-1 при высоком уровне соматотропина), формируется карликовость, называемая «гипофизарный нанизм». После выхода в 1726 г. романа Дж. Свифта «Путешествия Гулливера» таких карликов стали называть лилипутами. Приобретенный дефицит гормона в зрелом возрасте выраженного морфогенетического эффекта не вызывает.

Регуляция секреции и физиологические эффекты пролактина

Синтез и секреция аденогипофизом пролактина в основном регулируется гипоталамическим ингибитором дофамином, (пролактостатин), а также стимуляторами пролактолиберином и тиреолиберином. Образование дофамина происходит в тубероинфундибулярных нейронах дугообразного и перивентрикулярного ядер гипоталамуса. На лактотрофах аденогипофиза выявлено 2 типа дофаминовых рецепторов: D, и D2 Первые стимулируют аденилатциклазу, а вторые, напротив, ингибируют ее активность. Пролактолиберин образуется в нейронах переднего гипоталамуса и срединного таламуса. Пролактолибериновой активностью обладают также окситоцин, серотонин и вазоинтестинальный пептид. Секреция пролактина зависит и от уровня в крови эстрогенов, глюкокортикоидов и тиреоидных гормонов, изменяющих число рецепторов пролактолиберина и тиреолиберина на лактотрофах. Повышается секреция пролактина при беременности, кормлении грудью, во время сна, физической нагрузки, стресса. Одним из органов-мишеней пролактина является молочная железа, где гормон стимулирует развитие секреторной ткани, рост желез и лактацию, оказывая свой эффект после связывания со специфическим рецептором и образования вторичного посредника цАМФ. В молочных железах пролактин влияет на процессы образования молока, а не на его выделение. При этом гормон стимулирует синтез белка -- лактальбумина, а также жиров и углеводов молока. В регуляции роста и развития молочных желез синергистами пролактина являются эстрогены, но при начавшейся лактации эстрогены выступают в роли антагонистов пролактина. Эффект пролактина на лактацию во многом опосредуется образованием в печени лактогенного фактора. Пролактин способствует поддержанию секреторной активности желтого тела в яичниках и образованию прогестерона. Он является одним из регуляторов водно-солевого обмена организма, уменьшая экскрецию воды и электролитов, повышает в крови содержание альдостерона и вазопрессина, стимулирует рост внутренних органов, эритропоэз, способствует появлению инстинкта материнства. Помимо усиления синтеза белка, пролактин увеличивает образование жира из углеводов, способствуя послеродовому ожирению.

Список литературы:

1. Беруштейн Н.А. Физиология движений и активности. - М.: Наука, 1990. - 494 с

2. Костюк П.Г., Крышталь О.А. Механизм электрической возбудимости нервной клетки. - М.: Наука, 1981. - 204 с

3. Угрюмов М.В. Механизм нейроэндокринной регуляции. - М.: Наука, 1999. - 295 с

4. Физиология эндокринной системы: руководство/под ред. В.Г. Баранова. - М.: Наука, 1979. - 680 с.

5. Ноздрачев А.Д., Янцев А.В. Автономная передача. - Спб., 1994.


Подобные документы

  • Сущность и основные элементы внутренней среды организма. Состав и функции крови, соотношение ее компонентов. Форма, строение и место образования эритроцитов, лейкоцитов и тромбоцитов. Схема движения лимфы, ее назначение. Характеристика тканевой жидкости.

    презентация [1,6 M], добавлен 02.10.2012

  • Основные функции крови, ее физиологическое значение, состав. Физико-химические свойства плазмы. Белки крови, эритроциты, гемоглобин, лейкоциты. Группы крови и резус-фактор. Кроветворение и регуляция системы крови, гемостаз. Образование лимфы, ее роль.

    курсовая работа [1,4 M], добавлен 06.03.2011

  • Внутренняя среда человека и устойчивость всех функций организма. Рефлекторная и нервно-гуморальная саморегуляция. Количество крови у взрослого человека. Значение белков плазмы крови. Осмотическое и онкотическое давление. Форменные элементы крови.

    лекция [108,2 K], добавлен 25.09.2013

  • Взаимосвязь компонентов, составляющих внутреннюю среду человеческого организма как совокупности жидкостей, принимающих участие в процессах обмена веществ и поддержания постоянства внутренней среды. Описание состава тканевой жидкости, крови и лимфы.

    презентация [340,6 K], добавлен 14.01.2011

  • Содержание воды в организме человека. Кровь как разновидность соединительных тканей. Состав крови, ее функции. Объем циркулирующей крови, содержание веществ в ее плазме. Белки плазмы крови и их функции. Виды давления крови. Регуляция постоянства рН крови.

    презентация [593,9 K], добавлен 29.08.2013

  • Объем и состав ликвора (спинномозговой жидкости): гормоны, витамины, неорганические и органические соединения. Описание основных функций спинномозговой жидкости. Механизм ее выработки и порядок ее циркуляции. Патологии при нарушении. Причины гидроцефалии.

    презентация [1,5 M], добавлен 30.03.2016

  • Свойства и механизм сокращения гладких мышц. Лимбическая система мозга, ее образования и функции. Базальные или подкорковые ядра. Гормоны семенников, яичников и плаценты, их роль в организме. Адаптивный (приобретенный) иммунитет. Пищеварение в желудке.

    контрольная работа [380,1 K], добавлен 14.12.2011

  • Внутренняя среда организма. Система крови. Основы гемопоэза. Физико-химические свойства крови, состав плазмы. Резистентность эритроцитов. Группы крови и резус-фактор. Правила переливания крови. Количество, виды и функции лейкоцитов. Система фибpинолиза.

    лекция [29,4 K], добавлен 30.07.2013

  • Принцип саморегуляции организма. Понятие о гомеостазе и гомеокинезе. Энергетика и биомеханика мышечного сокращения. Ультраструктура скелетного мышечного волокна. Особенности строения периферических синапсов. Классификация, строение и функции нейронов.

    курс лекций [342,3 K], добавлен 14.06.2011

  • Растворы и жидкости в отношении их кислотности. Показатель водно-солевого баланса в тканях и крови организма - pH-фактор. Закисление организма, повышенное содержание щёлочи в организме (алкалоз). Концентрация буферных систем. Защита от перекислений.

    презентация [1,2 M], добавлен 18.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.