Микроорганизмы. Вирусы

Рассмотрение понятия и видов микроорганизмов. Характеристика прионов как инфекционных агентов. Изучение спиральной и кубическом симметрии нуклеокапсида вируса. Инфекционность нуклеиновых кислот вирусов. Формирование негликозилированных матричных белков.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 02.09.2010
Размер файла 368,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Микроорганизмы. Типы микроорганизмов. Классификация микроорганизмов. Прионы

Все микроорганизмы подразделяют на три группы:

-высшие протисты (водоросли, грибы, простейшие);

-низшие протисты (эубактерии, архебактерии, риккетсии и сине-зелёные водоросли)

-неклеточные формы (прионы, вироиды и вирусы).

Лишь ничтожная их часть в процессе эволюции приспособилась к паразитизму в организмах животных и человека. Микроорганизмы, способные вызывать инфекционные заболевания у человека, разделяют на пять основных типов: прионы, вирусы, бактерии, грибы и простейшие.

Прионы

Прионы [от англ. proteinaceous infectious (particle), белковоподобная инфекционная (частица)] -- белковые инфекционные агенты, приводящие к развитию летальных неврологических заболеваний (губчатых энцефалопатии). Прионовые белки выделены как инфекционное начало скрепи у овец, спонгиоформной энцефалопатии крупного рогатого скота ("коровье бешенство"), а у человека -- куру, болезни Кройтцфельдта-Якоба, синдрома Гёрстманна-Штройсслера-Шайнкера и фатальной семейной бессоницы.

Прионы передаются инокуляционно или алиментарным путем не только между особями одного биологического вида, но и между животными разных видов, в том числе между животным и человеком. Нормальный прионовый белок -- трансмембранный гликопротеин РrРc-- кодируется одноимённым геном, функция этого связывающего медь гликопротеина неизвестна, его экспрессия нормально происходит в различных типах клеток. После трансляции матричной рибонуклеиновой кислоты (мРНК) полипептид РrРc подвергается альфа-спирализации, связывается с мембранами клеток и выполняет свои функции.

Мутантные формы белка называют скрепиизоформными белками РrРsc (так как они впервые были выделены из нервных тканей овец, погибших от скрепи). РrРsc вместо а-спиралей образуют структуры, устойчивые к воздействию детергентов и протеаз и формирующие амилоидоподобные нерастворимые отложения. Таким образом, патогенез прионовых болезней связан не с подавлением функций РrРsc, а с изменением характера укладки полипептидной цепи, то есть изменением конформации белка, и накоплением РrРsc. В результате формируются конгломераты в виде палочек или лент размером 25~550x11 нм. Эти прионовые формы белков устойчивы к кипячению, ультрафиолетовому (УФ) облучению, действию 70% этанола и формальдегида и сохраняются в тканях, фиксированных 10% формалином. Попадая в здоровый организм человека или животного, патологические конформеры способствуют постепенному отложению амилоидоподобных структур, в состав которых входят и нормальные белки РrРc.

Вирусы. Вирион. Морфология вирусов. Размеры вирусов. Нуклеиновые кислоты вирусов

Вирусы [от лат. virus, яд] -- наименьшие по размерам агенты, имеющие геном, окружённый белковой оболочкой. Вирусы не воспроизводятся самостоятельно, они -- облигатные внутриклеточные паразиты, репродуцирующиеся только в живых клетках. Все вирусы существуют в двух формах. В настоящее время известны вирусы бактерий (бактериофаги), грибов, растений и животных.Внеклеточная форма -- вирион -- включает в себя все составные элементы (капсид, нуклеиновую кислоту, структурные белки, ферменты и др.). Внутриклеточная форма -- вирус -- может быть представлена лишь одной молекулой нуклеиновой кислоты, так как, попадая в клетку, вирион распадается на составные элементы.

Морфология вирусов. Размеры вирусов

Несмотря на внутриклеточный паразитизм, среди вирусов имеются крупные виды, соизмеримые по размерам с микоплазмами и хламидиями. Например, вирус натуральной оспы достигает 400 нм и вполне сравним с риккетсиями (300-500 нм) и хламидиями (300-400 нм). По морфологии выделяют вирусы палочковидные (например, возбудитель лихорадки Эбола), пуле-видные (вирус бешенства), сферические (герпесвирусы), овальные (вирус оспы), а также бактериофаги, имеющие сложную форму (рис. 2-1). При всём разнообразии конфигураций, размеров и функциональных характеристик вирусам присущи некоторые общие признаки. В общем виде зрелая вирусная частица (вирион) состоит из нуклеиновой кислоты, белков и липидов, либо в его состав входят только нуклеиновые кислоты и белки.

Нуклеиновые кислоты вирусов

Вирусы содержат только один тип нуклеиновой кислоты, ДИК или РНК, но не оба типа одновременно. Например, вирусы оспы, простого герпеса, Эпстайна-Барр -- ДНК-содержащие, а тогавирусы, пикорнавирусы -- РНК-содержащие. Геном вирусной частицы гаплоидный. Наиболее простой вирусный геном кодирует 3-4 белка, наиболее сложный -- более 50 полипептидов. Нуклеиновые кислоты представлены однонитевыми молекулами РНК (исключая реовиру-сы, у которых геном образован двумя нитями РНК) или двухнитевыми молекулами ДНК (исключая парвовирусы, у которых геном образован одной нитью ДНК). У вируса гепатита В нити двухнитевой молекулы ДНК неодинаковы по длине. Вирусные ДНК образуют циркулярные, ковалентно-сцёпленные суперспирализованные (например, у паповавирусов) или линейные двухнитевые структуры (например, у герпес- и аденовирусов). Их молекулярная масса в 10-100 раз меньше массы бактериальных ДНК. Транскрипция вирусной ДНК (синтез мРНК) осуществляется в ядре заражённой вирусом клетки. В вирусной ДНК на концах молекулы имеются прямые или инвертированные (развёрнутые на 180") повторяющиеся нуклеотидные последовательности. Их наличие обеспечивает способность молекулы ДНК замыкаться в кольцо. Эти последовательности, присутствующие в одно- и двух-нитевых молекулах ДНК, -- своеобразные маркёры вирусной ДНК. Вирусные РНК представлены одно- или двухнитевыми молекулами. Однонитевые молекулы могут быть сегментированными -- от 2 сегментов у ареновирусов до 11 -- у ротавирусов. Наличие сегментов ведёт к увеличению кодирующей ёмкости генома. Вирусные РНК подразделяют на следующие группы: плюс-нити РНК (+РНК), минус-нити РНК (-РНК). У различных вирусов геном могут образовывать нити +РНК либо -РНК, а также двойные нити, одна из которых -РНК, другая (комплементарная ей) -- +РНК.

Плюс-нити РНК представлены одиночными цепочками, имеющими характерные окончания ("шапочки") для распознавания рибосом. К этой группе относят РНК, способные непосредственно транслировать генетическую информацию на рибосомах заражённой вирусом клетки, то есть выполнять функции мРНК. Плюс-нити выполняют следующие функции: служат мРНК для синтеза структурных белков, матрицей для репликации РНК, упаковываются в капсид с образованием дочерней популяции. Минус-нити РНК не способны транслировать генетическую информацию непосредственно на рибосомах, то есть они не могут функционировать как мРНК. Однако такие РНК служат матрицей для синтеза мРНК.

Инфекционность нуклеиновых кислот вирусов

Многие вирусные нуклеиновые кислоты инфекционны сами по себе, так как содержат всю генетическую информацию, необходимую для синтеза новых вирусных частиц. Эта информация реализуется после проникновения вириона в чувствительную клетку. Инфекционные свойства проявляют нуклеиновые кислоты большинства +РНК- и ДНК-содержащих вирусов. Двухнитевые РНК и большинство -РНК не проявляют инфекционных свойств.

Рис. 2-1. Размеры и морфология основных возбудителей вирусных инфекций человека

Капсид вируса. Функции капсида вирусов. Капсомеры. Нуклеокапсид вирусов. Спиральная симметрия нуклеокапсида. Кубическая симметрия капсида

Генетический материал вирусов упакован в специальный симметричный футляр -- капсид [от лат. capsa, футляр]. Капсид представлен белковой оболочкой, состоящей из повторяющихся субъединиц. Основные функции капсида -- зашита вирусного генома от внешних воздействий, обеспечение адсорбции вириона к клетке, проникновение его в клетку путём взаимодействия с клеточными рецепторами.

Капсид образуют одинаковые по строению субъединицы -- капсомеры, организованные в один или два слоя по двум типам симметрии -- кубическому или спиральному. Симметричность капсида связана с тем, что для упаковки генома требуется большое количество капсомеров, а компактное их соединение возможно лишь при условии симметричного расположения субъединиц. Формирование капсида напоминает процесс кристаллизации и протекает по принципу самосборки. Число капсомеров строго специфично для каждого вида и зависит от размеров и морфологии вирионов. Капсомеры (морфологические единицы вирусов) образуют молекулы белка-- протомеры (структурные единицы). Протомеры могут быть мономерными (содержать один полипептид) либо полимерными (включать несколько полипептидов).

Нуклеокапсид вирусов

Комплекс капсида и вирусного генома называют нуклеокапсидом. Он повторяет симметрию капсида, то есть обладает спиральной либо кубической симметрией соответственно .

Спиральная симметрия.

В нуклеокапсиде взаимодействие нуклеиновой кислоты и белка осуществляется по одной оси вращения. Каждый вирус со спиральной симметрией обладает характерной длиной, шириной и периодичностью нуклеокапсида. Нуклеокапсиды большинства патогенных для человека вирусов имеют спиральную симметрию (например, коронавирусы, рабдовирусы, пара- и ортомиксовирусы, буньявирусы и ареновирусы). К этой группе относят и вирус табачной мозаики. Организация по принципу спиральной симметрии придаёт вирусам палочковидную форму. При спиральной симметрии белковый чехол лучше защищает наследственную информацию, но требует большого количества белка, так как покрытие состоит из сравнительно крупных блоков.

Кубическая симметрия. У подобных вирусов нуклеиновая кислота окружена капсомерами, образующими фигуру икосаэдра-- многогранника с 12 вершинами, 20 треугольными гранями и 30 углами. К вирусам с подобной структурой относят аденовирусы, реовирусы, иридови-русы, герпесвирусы и пикорнавирусы. Организация по принципу кубической симметрии придаёт вирусам сферическую форму. Принцип кубической симметрии -- самый экономичный для формирования замкнутого капсида, так как для его организации используются сравнительно небольшие белковые блоки, образующие большое внутреннее пространство, в которое свободно укладывается нуклеиновая кислота.

Двойная симметрия

Некоторые бактериофаги (вирусы бактерий) имеют двойную симметрию: головка организована по принципу кубической симметрии, отросток -- по принципу спиральной симметрии. Отсутствие постоянной симметрии. Для вирусов больших размеров (например, для поксвирусов) характерно отсутствие постоянной симметрии.

В состав нуклеокапсидов также входят внутренние белки, обеспечивающие правильную упаковку генома, а также выполняют структурную и ферментативную функции. Вирусные ферменты разделяют на вирионные и вирусиндуцированные. Первые входят в состав вирионов и участвуют в транскрипции и репликации (например, обратная транскриптаза), вторые закодированы в вирусном геноме (например, РНК-полимераза орто- и парамиксовирусов или ДНК-полимераза герпесвирусов). Вирионные ферменты также подразделяют на две функциональные группы: ферменты первой группы обеспечивают проникновение вирусных нуклеиновых кислот в клетку и выход дочерних популяций; ферменты второй группы участвуют в процессах репликации и транскрипции вирусного генома. В капсидах могут присутствовать ферменты обеих групп.

Суперкапсид вируса. Одетые вирусы. Голые вирусы. Матричные белки ( М-белки ) вирусов. Репродукция вирусов

Одетые вирусы. Некоторые вирусы могут содержать поверх капсида особую оболочку -- суперкапсид, организованный двойным слоем липидов и специфичными вирусными белками, наиболее часто образующими выросты-шипы, пронизывающие липидный бислой. Такие вирусы называют "одетыми".

Образование суперкапсида происходит на поздних этапах репродуктивного цикла, обычно при отпочковывании дочерних популяций.

Липиды. Основная функция липидов -- стабилизация структуры вирусов. Деградация или утеря липидов приводит к потере инфекционных свойств, так как такие вирусные частицы теряют стабильность своего состава и, соответственно, способность к заражению клеток. Состав липидов обычно зависит от характера "почкования" вирусной частицы. Например, у вируса гриппа состав липидного бислоя аналогичен таковому в клеточных мембранах. Герпес-вирусы почкуются через ядерную мембрану, поэтому набор липидов суперкапсида отражает состав липидов ядерной мембраны. Гликопротеины входят в состав поверхностных структур суперкапсида (например, "шипов"). Сахара, входящие в состав гликопротеинов, обычно происходят из клетки-хозяина. Поверхностные белки "голых" вирусов обеспечивают взаимодействие вирусов с клеточными рецепторами и последующее проникновение в клетку путём эндоцитоза. Большинство "одетых" вирусов имеют поверхностные специальные F-белки [от лат. fusio, слияние], обеспечивающие слияние вирусных суперкапсидов и клеточных мембран. Поверхностные белки -- важный компонент, облегчающий проникновение вирусов в чувствительные клетки. Их характерное свойство -- способность связываться с рецепторами на поверхности эритроцитов и агглютинировать их. Способность к гемагглютинации широко используют для определения количества вирусов.

Вирусы, не имеющие суперкапсида, называют "голыми". Как правило, они резистентны к действию эфира и более устойчивы к денатурации.

Матричные белки ( М-белки ) вирусов

Негликозилированные матричные белки (М-белки) формируют структурный слой на внутренней поверхности суперкапсида и способствуют взаимодействию его с белками нуклеокапсида, что важно на заключительных этапах самосборки вирионов.

Репродукция вирусов

Вирусы не способны к самостоятельному размножению. Синтез вирусных белков и воспроизведение копий вирусного генома -- необходимые условия для появления дочерней популяции -- обеспечивают биосинтетические процессы клетки-хозяина. При этом белковые макромолекулы и нуклеиновые кислоты образуются отдельно, после чего происходит сборка дочерних популяций. Другими словами, для вирусов характерен дизъюнктивный (разобщённый) тип репродукции, осуществляемый при взаимодействии вируса с инфицируемой клеткой.

Реализация репродуктивного цикла в существенной степени зависит от типа инфицирования клетки и характера взаимодействия вируса с чувствительной (могущей быть инфицированной) клеткой.


Подобные документы

  • Облигатные внутриклеточные паразиты. Морфология, строение вирусов. Сложно устроенные вирусы. Продуктивный тип взаимодействия вируса с клеткой. Представители однонитевых ДНК-вирусов. Культивирование, индикация вирусов. Внутриклеточная репродукция вирусов.

    презентация [2,4 M], добавлен 23.02.2014

  • Исследование понятия и основных особенностей ДНК-геномных вирусов. Изучение жизненного цикла вируса. Характеристика вируса папилломы человека. Описание болезней, вызываемых вирусом папилломы человека. Лабораторная диагностика папилломавирусной инфекции.

    реферат [94,2 K], добавлен 17.03.2014

  • Эволюционное происхождение. Свойства вирусов. Природа вирусов. Строение и классификация вирусов. Взаимодействие вируса с клеткой. Значение вирусов. Вирусные заболевания. Особенности эволюции вирусо на соременном этапе.

    реферат [299,2 K], добавлен 22.11.2005

  • Основные виды нуклеиновых кислот. Строение и особенности их строения. Значение нуклеиновых кислот для всех живых организмов. Синтез белков в клетке. Хранение, перенос и передача по наследству информации о структуре белковых молекул. Строение ДНК.

    презентация [628,3 K], добавлен 19.12.2014

  • Открытие вирусов, их размеры, особенности строения и жизненный цикл. Синтез компонентов вирусной частицы - нуклеиновой кислоты и белков капсида. Вирусы растений, животных и человека как возбудители различных заболеваний. Эволюционное развитие вирусов.

    контрольная работа [433,8 K], добавлен 15.03.2014

  • Исторические сведения об открытии микроорганизмов. Микроорганизмы: особенности строения и форма, движение, жизнедеятельность. Строение клетки, доклеточные формы жизни – вирусы. Экология бактерий, селекция микроорганизмов, их распространение в природе.

    реферат [37,3 K], добавлен 26.04.2010

  • Особенности применения метода ядерного магнитного резонанса (ЯМР) для исследования нуклеиновых кислот, полисахаридов и липидов. Исследование методом ЯМР комплексов нуклеиновых кислот с протеинами и биологических мембран. Состав и структура полисахаридов.

    курсовая работа [3,5 M], добавлен 26.08.2009

  • Нуклеотиды как мономеры нуклеиновых кислот, их функции в клетке и методы исследования. Азотистые основания, не входящие в состав нуклеиновых кислот. Строение и формы дезоксирибонуклеиновых кислот (ДНК). Виды и функции рибонуклеиновых кислот (РНК).

    презентация [2,4 M], добавлен 14.04.2014

  • История изучения нуклеиновых кислот. Состав, структура и свойства дезоксирибонуклеиновой кислоты. Представление о гене и генетическом коде. Изучение мутаций и их последствий в отношении организма. Обнаружение нуклеиновых кислот в растительных клетках.

    контрольная работа [23,2 K], добавлен 18.03.2012

  • Сведения о нуклеиновых кислотах, история их открытия и распространение в природе. Строение нуклеиновых кислот, номенклатура нуклеотидов. Функции нуклеиновых кислот (дезоксирибонуклеиновая - ДНК, рибонуклеиновая - РНК). Первичная и вторичная структура ДНК.

    реферат [1,8 M], добавлен 26.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.