Эффекты плотности и частоты отбора

Смеси генотипов в условиях конкуренции. Факторы среды, зависящие от плотности. Отбор, зависящий от частоты. Типы индивидуального отбора. Дизруптивный и уравновешивающий отбор. Факторы, благоприятствующие полиморфизму. Отбор на субиндивидуальных уровнях.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 26.08.2010
Размер файла 298,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Эффекты плотности и частоты отбора

Конкуренция

На процесс отбора оказывают влияние различные взаимодействия между особями. Самое обычное среди этих взаимодействий -- конкуренция за необходимое сырье, источники энергии или жизненное пространство. Конкуренция может происходить между представителями одного вида или между разными видами. Нас здесь интересует внутривидовая конкуренция.

Для эффективного действия отбора конкуренция необязательна. Селективное различие между видами по отношению к физическим факторам среды может проявляться и в слабо населенном местообитании, в котором все генотипы потенциально способны к размножению. Однако в условиях конкуренции отбор оказывает более интенсивное давление и его эффективность выше.

Это обобщение подтверждают результаты многочисленных селекционных экспериментов, проведенных, в частности, на Drosophila pseudoobscura. Селективные преимущества различных гомозигот и гетерозигот по инверсиям (ST/ST, ST/CH, ST/AR и т. п.) проявляются только в перенаселенных популяционных ящиках и не проявляются в малонаселенных (см. гл. 11).

Сукачёв (1928)* сравнивал жизнеспособность трёх линий одуванчика (Taraxacum officinale), размножающихся бесполым путем на экспериментальных делянках под Ленинградом. Линии были обозначены как биотипы А, В и С. Они выращивались в чистых открытых насаждениях (расстояния между растениями 18 см), в чистых сомкнутых насаждениях (расстояние между растениями 3 см) и в смешанных насаждениях (А, В и С). Естественную гибель растений в различных насаждениях измеряли по прошествии двух лет.

Нас здесь интересуют чистые насаждения двух типов. Жизнеспособность трёх линий, выраженная как процент особей, выживших к концу двухлетнего периода, представлена в табл. 13.1. Жизнеспособность понизилась в результате конкуренции у всех биотипов, но реакция их на конкуренцию была различной. Линия С оказалась наиболее жизнеспособной в открытых насаждениях. Однако в сомкнутых насаждениях, т. е. в условиях конкуренции, линия В превосходила две другие*. Очевидно, в слабо населенном местообитании отбор благоприятствует одному типу, а в густонаселенном -- другому.

Таблица 13.1. Относительная жизнеспособность трёх линий 

одуванчика в чистых насаждениях (Сукачёв, 1928*)

Линия

Выживание, %

открытое насаждение

сомкнутое насаждение

A

77

27

B

69

49

C

90

24

Приведенные выше результаты показывают, что генетически детерминированная способность выдерживать воздействие физических факторов среды -- не то же самое, что способность выиграть в жестокой конкуренции (Сукачёв, 1928*).

Аналогичные эксперименты, проведённые в дальнейшем на растениях и насекомых, подтвердили это заключение и привели к созданию концепции конкурентоспособности как особого контролируемого генами свойства организма. У ячменя (Hordeum sativum) и у мучных хрущаков (Tribolium castaneum и Т. confusum) разные генотипы различаются по степени конкурентоспособности (Sakai, Gotoh, 1955; Lerner, Но, 1961*). Эксперименты, проведённые на ячмене, показывают, что конкурентоспособность и общая мощность -- разные признаки.

У высших позвоночных способность к конкуренции нередко принимает форму агрессивного поведения. Агрессивное поведение обычно связано с конкуренцией, выражается более ярко, а иногда и исключительно в условиях скученности и представляет собой один из способов преодоления конкуренции (Wilson, 1971*).

Эксперименты, проведённые на двух видах аистника (Erodium), показали, что внутривидовая конкурентоспособность отличается от межвидовой (Martin, Harding, 1982*).

Смеси генотипов в условиях конкуренции

У пшеницы (Triticum aestivum) и у овса (Avena sativa) при совместном выращивании двух сортов в условиях конкуренции число растений при сборе урожая и общая урожайность оказались выше, чем при выращивании каждого сорта по отдельности (Gustafsson, 1951*). Аналогичным образом экспериментальные популяции Drosophila pseudoobscura, полиморфные по инверсиям, превосходят мономорфные популяции по общей биомассе мух, развившихся на данном количестве корма (Beardmore, Dobzhansky, Pavlovsky, 1960*).

Таблица 13.2. Относительная жизнеспособность трёх линий

одуванчика в сомкнутых насаждениях (Сукачёв, 1928*)

Линия

Выживание, %

чистое насаждение

смешанное насаждение

A

20--35

1--8

B

34--43

12--20

C

8--11

16--23

Кроме того, один и тот же генотип часто ведет себя очень по-разному в смысле конкурентоспособности в чистом и в смешанном сомкнутом насаждении. Генотип особи, успешно конкурирующей с другими особями того же генотипа, не обязательно выйдет победителем из конкуренции в полиморфной смеси генотипов. И наоборот, конкурент, относительно слабый в чистом сомкнутом насаждении, может превратиться в доминирующего члена смешанного насаждения, Густафссон (Gustafsson, 1951*) назвал это эффектом Монтгомери.

Эффект Монтгомери выявился в другой серии экспериментов, проведенных Сукачёвым (1928)* на Taraxacum. Он выращивал линии А, В и С на экспериментальных делянках в чистых и смешанных сомкнутых насаждениях и подсчитывал число цветущих корзинок на одно растение; этот признак служит хорошим показателем мощности и плодоносности растений. Полученные им результаты приведены в табл. 13.2. Как показывают эти данные, относительная конкурентоспособность генотипа С, самая низкая в чистом насаждении, в полиморфной смеси оказалась самой высокой.

Сходные результаты неоднократно наблюдались при односортовых и смешанных посевах ячменя, пшеницы, тимофеевки (Phleum pratense) и других злаков (Gustafsson, 1951*). Эксперименты с мономорфными и полиморфными популяциями Drosophila melanogaster и Tribolium castaneum (Lewontin, 1955; Sokal, Karten, 1964*) дали аналогичные результаты.

Факторы, зависящие от плотности

Действие некоторых факторов среды, играющих роль селективных сил, становится более выраженным по мере увеличения плотности популяции. Те факторы среды, действие которых усиливается с увеличением плотности популяции, называют факторами, зависящими от плотности; в отличие от них факторы, действие которых не коррелирует с плотностью популяции, называют факторами, не зависящими от плотности*.

Вообще, действие физических факторов среды (температуры, влажности, наводнений, вулканических извержений и т, п.) обычно не зависит от плотности, тогда как действие биотических факторов, как правило, зависит от плотности популяции.

Хорошим примером фактора, зависящего от плотности, служат инфекционные заболевания. По мере повышения плотности популяции заболеваемость и смертность увеличиваются, и на некотором уровне возросшей плотности может вспыхнуть эпидемия. Если же величина популяции уменьшается, то возбудитель болезни становится менее активным, а при крайней диспергированности популяции этот фактор может совершенно прекратить свое действие.

Конкуренция представляет собой фактор, зависящий от плотности. Действие растительноядных животных на популяцию растений или действие хищников на популяцию жертвы -- это также факторы, зависящие от плотности.

Обычно зависящие от плотности факторы оказывают на численность популяции стабилизирующее влияние. При слишком высокой плотности популяции такие факторы вызывают сокращение численности, но при истощении популяции они играют пермиссивную роль, создавая возможность для восстановления численности.

Зависящие от плотности факторы обычно проявляют свое селективное действие, когда плотность популяции достигает определённого порогового уровня или превышает его. Под влиянием болезнетворных организмов в популяции, достигшей известной плотности, начинается отбор на устойчивость к соответствующим заболеваниям, и с повышением плотности этот отбор усиливается. Иными словами, селективная ценность гена, определяющего устойчивость к тому или иному заболеванию, не постоянна, а изменяется с изменением плотности популяции. Селективная ценность данного гена может изменяться в широком диапазоне: от буквально нулевой в сильно диспергированной популяции она достигает положительного значения при пороговой плотности и обеспечивает высокое селективное преимущество при высоких плотностях популяции.

Отбор, зависящий от частоты

У насекомых и у растений селективная ценность данного гена или генотипа в ряде случаев варьирует в зависимости от его частоты. Эта ситуация известна под названием отбора, зависящего от частоты. Селективная ценность гена обычно находится в обратной зависимости от его частоты. Иными словами, данный ген или генотип обычно обладает более высоким селективным преимуществом, когда частота его невелика, чем при высокой частоте. Известны, однако, и такие примеры, когда низкая частота гена не выгодна в селективном отношении.

Хорошим примером селективной ценности, зависящей от частоты, служит подражательная окраска, которой обладают различные виды бабочек. Успех подражательной окраски в качестве средства защиты от птиц, уничтожающих бабочек, связан с тем, что подражающий вид относительно редок по сравнению с видом, служащим моделью. Насекомоядные птицы научаются избегать бабочек, служащих моделью, которых они узнают по внешнему виду после знакомства на опыте с их неприятными или токсичными свойствами. Подражающий вид извлекает пользу из своего сходства с моделью косвенным образом. Если, однако, численность подражающего вида сильно повышается, то он, на собственную беду, нарушает выработавшиеся у насекомоядных птиц реакции. Поэтому селективная ценность подражательной окраски велика, когда её обладатели встречаются редко, но снижается при увеличении их частоты.

В экспериментальных популяциях нескольких видов Drosophita, в том числе D. melanogaster, D. pseudoobscura, D. paulistorum и D. willistoni, сравнивался успех в спаривании у мутантных самцов и у самцов дикого типа. Оказалось, что успех спаривания у самцов определённого типа варьирует в зависимости от их частоты в экспериментальной популяции. Преимуществом обладают те самцы, которые встречаются редко, независимо от того, относятся ли они к мутантному или дикому типу (Ehrman, Spiess, 1969*).

Другими примерами зависящей от частоты селективной ценности у насекомых служат один из ферментных локусов и одна инверсия у Drosophila melanogaster, а также черный мутант у Tribolium castaneum (Kojima, Jarbrotigh, 1967; Nassar, Muhs, Cook, 1973; Sokal, Karten, 1964*). Среди аналогичных примеров у растений можно назвать ген, определяющий характер семенной оболочки у Phaseolus lunaius и различные типы венчика у Phlox drutnmondii (Harding, Allard, Smeltzer, 1966; Levin, 1972*).

Жесткий и мягкий отбор

Уоллес (Wallace, 1968; 1981*) различает два противоположных типа отбора -- жесткий и мягкий. При жестком отборе происходит сильный отбор на сохранение особей, обладающих данным признаком, и элиминация особей, лишенных его. Жесткий отбор производит абсолютное разделение. Мягкий отбор, напротив, носит умеренный и относительный характер. В ряде популяций, подвергающихся мягкому отбору, процесс отбора благоприятствует относительно более приспособленным особям в каждой популяции.

Эти типы отбора коррелируют с типами, описанными в двух предшествующих разделах. Мягкий отбор зависит от плотности и от частоты, а жесткий не зависит от этих факторов (Wallace, 1981*).

Типы индивидуального отбора

Естественный отбор на индивидуальном уровне принимает различные формы в зависимости от того, какие варианты элиминируются или сохраняются из поколения в поколение. Можно выделить четыре формы отбора: направленный, стабилизирующий, дизруптивный и уравновешивающий.

Направленный отбор

Этот тип отбора обсуждался в гл. 10 и 12. Направленный отбор вызывает прогрессивное, или направленное в одну сторону, изменение генетического состава популяции (рис. 14.1). Он происходит в тех случаях, когда популяция находится в процессе приспособления к новой среде или же когда

изменение популяции. Хорошим примером первой ситуации служит увеличение частоты меланистической формы Biston betularia и других бабочек при внезапном изменении среды, а именно -- её загрязнении промышленными отходами (гл. 12). Вторую ситуацию, в которой возникает направленный отбор, иллюстрируют постепенные изменения, происходящие в среде, как, например, изменения многих климатических факторов.

Стабилизирующий отбор

Совершенно иной характер носит стабилизирующий отбор. Если популяция хорошо приспособлена к данной среде, которая остается стабильной, то главное действие отбора состоит в элиминации плохо приспособленных и крайних вариантов, возникающих в результате мутагенеза, потока генов, расщепления и рекомбинации. Таким образом, сохраняются несомненно приспособленные генотипы, тогда как плохо приспособленные формы «выпалываются». Это и есть стабилизирующий отбор.

Действие стабилизирующего отбора графически представлено на рис. 14.1. Предполагается, что генетическая изменчивость популяции имеет нормальное распределение, т. е. по каждому изменчивому и измеримому признаку основная масса особей группируется вблизи среднего значения этого признака для данной популяции, а крайние значения наблюдаются лишь у немногих особей. Под действием стабилизирующего отбора эти особи, находящиеся на концах кривой нормального распределения, элиминируются из поколения в поколение. Преимущественное размножение особей, у которых значения признаков близки к среднему для данной популяции, приводит к постоянству модальных значений во времени. В отличие от этого при направленном отборе происходит элиминация крайних генетических вариантов на одной стороне кривой, в результате чего значение средней в ряду последовательных поколений смещается (рис 14.1).

Рис. 14.1. Воздействие отбора трёх разных типов на генетическую изменчивость в популяции.

Праут (Prout, 1962*) провел эксперимент по стабилизирующему отбору у Drosophila melanogaster. В качестве изменчивого признака он использовал время развития мух. В линии, подвергнутой стабилизирующему отбору, в каждом поколении отбирали особей, время развития которых приближалось к среднему значению. В результате такого стабилизирующего отбора в ряде поколений дисперсия времени развития в этой линии уменьшилась по сравнению с дисперсией в исходном поколении и в контрольных линиях, не подвергавшихся отбору.

Стабилизирующий отбор происходит везде и всюду, хотя заметить его трудно; это наиболее обычный тип отбора в природе. Мы уже приводили в качестве яркого примера направленного отбора березовую пяденицу (Biston beiularia), однако при этом нечего не было оказано о комплементарной роли стабилизирующего отбора в популяциях этой бабочки. До развития промышленности редкие меланистические мутанты элиминировались из популяции стабилизирующим отбором, который, вероятно, продолжался много веков. В измененной индустриальной среде, в которой обитают новые популяции, состоящие главным образом из меланистов, снова действует стабилизирующий отбор, устраняя появляющиеся время от времени светлые варианты.

Дизруптивный отбор

Дизруптивный отбор (известный также как разрушающий или разрывающий отбор) благоприятствует сохранению крайних типов и элиминации промежуточных. В результате он приводит к сохранению и усилению полиморфизма (рис. 14.1).

Рассмотрим вновь эксперимент Праута (Prout, 1962*) с отбором на время развития у Drosophila melanogaster. Одна линия дрозофилы была подвергнута дизруптивному отбору; для этого в каждом поколении скрещивали мух, вылуплявшихся раньше всех, с мухами, вылуплявшимися позже всех. Через ряд поколений это привело к увеличению дисперсии времени развития в сравнении с контрольными линиями, не подвергавшимися отбору.

Ряд экспериментов по дизруптивному отбору у Drosophila melanogaster провели Тудей и его сотрудники. В одном из таких экспериментов (Thoday, Boam, 1959*) производился отбор на число щетинок на теле*.

Отбор производился одновременно на большое число щетинок в группе «высоких» линий и на малое их число в группе «низких» линий. Этот дизруптивный отбор был направлен на то, чтобы разделить исходную популяцию на различные «высокие» и «низкие» субпопуляции. Но «высокие» и «низкие» линии постоянно скрещивались между собой, так что между ними всё время происходил обмен генами, действие которого противоположно действию дизруптивного отбора. Эксперимент продолжался таким образом до 36-го поколения.

В первых поколениях между «высокими» и «низкими» линиями не наблюдалось значительной дивергенции. Они начали дивергировать в 14-м поколении, а после 30-го поколения разошлись очень сильно. На рис. 14.2 представлены кривые изменения числа щетинок в одной «высокой» и одной «низкой» линиях, дивергировавших в результате отбора. Следует отметить, что «высокая» и «низкая» линии в этом эксперименте находятся в совершенно ином положении, нежели в описанном выше селекционном эксперименте с кукурузой (рис. 12.1); в эксперименте с кукурузой «высокая» и «низкая» линии были изолированы друг от друга, а в эксперименте с дрозофилой их скрещивали между собой. Как показал последний эксперимент, дизруптивный отбор может превалировать над потоком генов.

Эксперименты Стримса и Пиментела (Streams, Pimentel, 1961*) на Drosophila melanogaster интересны количественным подходом к взаимодействию между дизруптивным отбором и потоком генов. Эти авторы использовали четыре уровня потока генов -- 6, 20, 50 и 0% (в контрольных линиях) и дизруптивный отбор двух интенсивностей -- умеренный и сильный. Сильный дизруптивный отбор оказывал свое действие при 20%-ном потоке генов, но был неэффективен при 50%-ном потоке. Что касается умеренного дизруптивного отбора, то его действие не могло проявляться даже при слабом (6%-ном) потоке генов.

Рис. 14.2. Реакция на дизруптивный отбор по числу щетинок у Drosophila melanogaster в условиях максимального обмена генами. Объяснения см. в тексте. I -- «высокая» линия; II -- «низкая» линия. (Thoday, Boam, 1959.*)

Дизруптивный отбор в природе

Эффективность дизруптивного отбора в экспериментальных условиях установлена достаточно хорошо. Теперь следует выяснить, какова его роль в природных популяциях. Здесь мы стоим на менее твердой почве и нам приходится говорить о некоторых вероятностях и возможностях, а не о бесспорных фактах.

Одна из возможных в природе ситуаций, в которой, вероятно, вступает в действие дизруптивный отбор, возникает в тех случаях, когда хорошо дифференцированные полиморфные типы обладают явным селективным преимуществом по сравнению со слабо дифференцированными полиморфными типами. Примером служит половой диморфизм: самки и самцы с хорошо дифференцированными вторичными половыми признаками спариваются и размножаются более успешно, чем различные промежуточные типы (интерсексы, гомосексуалы и т. д.).

Вторая возможная ситуация возникает в тех случаях, когда полиморфная популяция занимает неоднородное местообитание (Levene, 1953*). Считается, что в таком местообитании полиморфные типы приспосабливаются к различным нишам или субнишам и соответственно живут в основном в этих особых нишах. Так, морфа А может обладать более высокой приспособленностью в субнише А, но более низкой -- в субнише В', тогда как морфа В процветает в субнише В', но не в А', Это предполагаемое соответствие между разными морфами полиморфной популяции и набором субниш в гетерогенном местообитании могло возникнуть в результате дизруптивного отбора.

Примером, который, по-видимому, подтверждает описанную выше модель, служит желтушка (Colias eurytheme). Самки этой североамериканской бабочки полиморфны по окраске крыльев: встречаются самки с оранжевыми и самки с белыми крыльями. Этот полиморфизм обусловлен единичным геном.

В середине лета в нескольких местностях в Калифорнии пики активности у белой и оранжевой форм наблюдаются в разное время дня: белая форма более активна рано утром и в позднее послеполуденное время, а оранжевая форма -- в полдень; по-видимому, эти две морфы различаются по предпочитаемым температуре и влажности. Кроме того, наблюдается и сезонная изменчивость частоты двух цветных морф в калифорнийских популяциях: осенью, с понижением температуры, частота белой морфы возрастает (Hovanitz, 1953; Remington, 1954*). Как показывают физиологические исследования, пигментация крыльев играет важную роль в регуляции температуры у Colias eurytheme (Watt, 1969*). Таким образом, создаётся впечатление, что полиморфизм окраски у этого вида способствует расширению диапазона температур и продолжительности сезона, в пределах которых его популяции сохраняют активность.

Третья ситуация, в которой проявляется действие дизруптивного отбора в природе, наблюдается у растений при некоторых особых условиях. Представим себе популяцию растений, которая, будучи прикреплена к определённому месту, свободно скрещивается и занимает участок с двумя зонами, различающимися экологически, например, по типу почвы или по рельефу местности. В таких случаях у двух частей данной популяции растений нередко развиваются разные комплексы приспособительных при знаков. И такая дифференциация сохраняется, несмотря на скрещивание между ними. Почти несомненно, что главным регулирующим фактором в подобной ситуации служит дизруптивный отбор.

Высокогорный вид сосны Pinus albicaulis встречается в горах Сьерра-Невада в Калифорнии на границе древесной растительности и непосредственно над ней. Популяции, растущие на склонах гор, вплоть до границы леса, состоят из прямостоячих деревьев -- обычной для этого вида формы роста. Выше границы древесной растительности этот вид представлен низкорослой стелющейся формой. Древовидная и стланиковая субпопуляции переходят одна в другую, и между ними происходит перекрёстное опыление при помощи ветра, о чем свидетельствует наличие особей промежуточного типа; однако в субальпийской и альпийской экологических зонах под влиянием дивергентных направлений отбора сохраняются соответственно различные формы роста. Аналогичные различия по обе стороны узкого пояса вдоль границы древесной растительности наблюдаются и у других высокогорных видов хвойных, а также у ив (Clausen, 1965*).

Другая группа примеров, иллюстрирующих действие такого же комплекса сил, относится к пастбищным злакам, произрастающим в районе свинцовых рудников в Уэльсе. В таких районах обычная для пастбищных лугов почва, не содержащая скольконибудь значительных количеств свинца, на отвалах резко переходит в почву с высоким содержанием свинца. Agrostis tenuis и другие виды злаков образуют в этом районе непрерывные популяции, область распространения которых захватывает районы с различными типами почвы. Генетическое единство таких популяций поддерживается благодаря перекрёстному опылению при помощи ветра. Тем не менее между субпопуляциями, растущими на пастбищных почвах и не переносящими свинец, и толерантными к свинцу субпопуляциями, растущими на отвалах, возникает слабая расовая дивергенция (Jain, Bradshaw, 1966; Antonovics, 1971*).

Уравновешивающий отбор

Гетерозиготы нередко превосходят соответствующие типы гомозигот по общей мощности или по тому или иному компоненту жизнеспособности, например по способности к конкуренции или по устойчивости к заболеваниям. Таким превосходством могут обладать генотипы, гетерозиготные по единичному гену или по целому блоку генов.

В тех случаях, когда гетерозигота Аа обладает селективным преимуществом по сравнению с одной или с обеими гомозиготами, отбор способствует сохранению в популяции обоих аллелей (А и а). В генофонде создаётся равновесная частота аллелей А и а, точный уровень которой определяется относительными селективными ценностями альтернативных типов. Однако, до тех пор пока частоты аллелей контролируются отбором, ни аллель A, ни аллель а не элиминируются. В популяции поддерживается состояние сбалансированного полиморфизма.

Отбор, благоприятствующий гетерозиготам, известен под названием уравновешивающего отбора (а также превосходства или преимущества гетерозигот).

При уравновешивающем отборе не происходит полного закрепления или элиминации альтернативных аллелей или блоков генов, как было описано выше; единицей, которой благоприятствует отбор, в данном случае оказывается гетерозиготная пара аллелей или сочетание генов. Это имеет известное отношение к вопросу об ожидаемых результатах направленного отбора в сбалансированной полиморфной системе. Полагают, что направленный отбор в сочетании с уравновешивающим приводит не к замене в генофонде одного гена или блока генов другим, а к ряду переходов от одной гетерозиготной комбинации к другой, например A1A2>A2A3>A3A4 (Lerner, 1954, р. 113--114*).

Сбалансированный полиморфизм, основанный на превосходстве гетерозигот, -- явление, которое распространено довольно широко. Среди животных оно наблюдается, например, у прямокрылых, кур, мышей, человека и разных видов дрозофилы; среди растений оно обнаружено у кукурузы (Zea mays), ячменя (Hordeum sativum), Arabidopsis и Oenothera. Наиболее подробно превосходство гетерозигот изучено у Drosophila pseudoobscura, на примере которой оно будет описано в следующем разделе.

Превосходство гетерозигот у Drosophila pseudoobscura

Дикий североамериканский вид Drosophila pseudoobscura известен своей изменчивостью по хромосоме III. У этого вида (как отмечалось в гл. 4) описано 16 типов хромосомы III, отличающихся друг от друга по инверсиям. Все типы инверсий, выявляемые цитологически в хромосомах слюнных желез личинок, получили названия (Стандарт, Эрроухед, Чирикауа, Тимберлайн, Пайкс-Пик и т. д.) и буквенные обозначения (ST, AR, CH, TL, РР и т. д.). Большая часть популяций полиморфна по некоторым типам инверсий, и в них встречаются различные возможные гомозиготы и гетерозиготы.

Инвертированные участки хромосомы различаются как по содержащимся в них генам, так и по своим цитологическим признакам. Популяция, полиморфная по инверсиям ST, CH и AR, содержит не только хромосомы трёх разных типов, но и три раз ных набора генов в инвертированных участках; поэтому генотипы ST/CH, ST/AR и CH/AR гетерозиготны не только по инверсиям, но и по генам. Инверсии предотвращают эффективную рекомбинацию генов в гетерозиготах по инверсиям. Следовательно, полиморфизм по инверсиям у D. pseudoobscura одновременно представляет собой полиморфизм по блокам генов, которые остаются интактными из поколения в поколение.

Таблица 14.1. Наблюдаемые и ожидаемые частоты гетерозигот и гомозигот по инверсиям в хромосоме III

(данные Epling, Mitchel, Mattoni, 1953*)

Тип

Наблюдаемые

частоты

Ожидаемые

частоты

ST/CH

0.232

0.168

0.232

0.168

Все гетерозиготы

0.830

0.724

ST/ST

0.134

0.184

Все гомозиготы

0.170

0.273

Добржанский и его школа изучали полиморфизм по инверсиям в природных популяциях D. pseudoobscura по всему ареалу этого вида. Наиболее обширные выборки в течение многих лет отбирали из некоторых популяций Сьерра-Невады и Сан-Джасинто (Калифорния). Кроме того, проводились многочисленные лабораторные эксперименты в популяционных ящиках с линиями мух, отловленных в тех же самых природных популяциях в Калифорнии.

В этих калифорнийских горных популяциях обычно встречаются инверсии ST, СН и AR; встречаются также, но с низкой частотой, инверсии TL, РР и SC. Нередко частота гетерозигот по инверсиям бывает выше той, которую следовало бы ожидать на основании равновесия Харди -- Вайнбарга. Действительную частоту различных типов инверсий в гаметном фонде определяют с помощью соответствующих методов взятия выборок из популяции; на основании полученных данных по формуле Харди -- Вайнберга вычисляют ожидаемую частоту гетерозиготных генотипов. Затем эту ожидаемую частоту сопоставляют с действительной частотой гетерозигот по инверсиям. При этом в определённое время года в природных популяциях постоянно обнаруживается статистически значимый избыток гетерозигот.

Так, в выборках, взятых в мае 1952 г. в горах Сан-Джасинто из одной популяции, полиморфной по пяти инверсиям, были обнаружены значительные различия между фактическими и ожидаемыми частотами гетерозигот и гомозигот по инверсиям (табл. 14.1). Данные табл. 14.1 показывают, что наблюдается устойчивый избыток гетерозигот и соответствующий недостаток гомозигот по сравнению с тем, чего следовало бы ожидать, исходя из формулы Харди -- Вайнберга.

Наблюдавшиеся отклонения от равновесия Харди -- Вайнберга можно объяснить на основании отбора в пользу гетерозигот. Один из способов проверки этой гипотезы состоит в том, чтобы сравнить частоты гетерозигот и гомозигот по инверсиям в выборке яиц, взятых из природной популяции, с их частотами в выборке взрослых мух. Оказалось, что соотношение гетерозиготных и гомозиготных генотипов в выборках яиц соответствует формуле Харди -- Вайнберга. Недостаток гомозигот в выборках взрослых особей был, вероятно, обусловлен дифференциальной смертностью в период развития от яйца до взрослых стадий, действующей в пользу гетерозигот (Dobzhansky, Levene, 1948*).

Параллельные данные о превосходстве гетерозигот были получены для искусственных популяций, выращенных в популяционных ящиках. Основателями этих искусственных популяций служили линии мух, взятые из природных популяций Сан-Джасинто и несущие хромосомы ST, СН и AR. Популяционные ящики содержали в тепле и допускали возникновение в них перенаселенности. На стадии яйца соотношение гомозигот и гетерозигот по инверсиям соответствовало формуле Харди -- Вайнберга. Однако на стадии взрослых особей в тех же самых искусственных популяциях наблюдался достоверный избыток гетерозигот по инверсиям (Dobzhansky, 1947a*).

Изучение развития и поведения мух показало, что более высокую приспособленность гетерозигот по инверсиям можно разложить на ряд различных компонентов: более высокая жизнеспособность на стадиях, предшествующих достижению половой зрелости; более высокая скорость развития; большая продолжительность жизни, плодовитость и быстрота нахождения брачного партнера (Moos, 1955; Dobzhansky, 1970, p. 137--138*).

Следует снова подчеркнуть, что превосходство гетерозигот проявляется только при определённых температуре, корме и плотности популяции; в отсутствие нужных условий, будь то природные или искусственные популяции, гетерозиготы по инверсиям теряют свое селективное преимущество перед гомозиготами.

Важно отметить, что природные популяции периодически действительно оказываются в таких условиях среды, которые приводят к проявлению превосходства гетерозигот. В этих популяциях, если не постоянно, то во всяком случае с перерывами, действует уравновешивающий отбор. Taкого прерывистого действия достаточно для постоянного сохранения сбалансированного полиморфизма. В прохладную погоду в начале лета (май и июнь) в природных популяциях возрастает частота хромосом AR и CH, а в жаркую летнюю погоду и осенью (с июля по сентябрь или октябрь) возрастает частота хромосом ST, однако эти изменения никогда не доходят до полного закрепления или элиминации (Dobzhansky, 1943; 1947b; 1948a*). Таким образом, уравновешивающий отбор способствует расширению сезонных границ популяции по сравнению с теми, какие, вероятно, могут быть у мономорфной популяции.

Факторы, благоприятствующие полиморфизму

Три типа отбора, обсуждавшиеся в этой и предшествующей главах, имеют непосредственное отношение к проблеме широкого полиморфизма, наблюдаемого в природных популяциях.

В пятидесятых годах была выдвинута гипотеза о том, что неоднородность среды должна способствовать полиморфизму: местообитание, в котором имеются многочисленные ниши и субниши, может предоставить условия, необходимые для существования, большему числу полиморфных типов, чем более однородная среда (da Cunha et al., 1950; da Cuhna, Dobzhansky, 1954; Dobzhansky, 1950b; Ludwig, 1950; Levene, 1953; обзоры см. Mayr, 1963; Hedrick et al., 1976; Lacy, 1982*). В пользу этой гипотезы свидетельствуют эмпирические данные по разным организмам, например по тропической Drosophila willistoni (da Cunha et al., 1950; 1959; da Cunha, Dobzhansky, 1954*), по питающейся грибами дрозофиле из восточной части США (Lacy, 1982*) и по средиземноморским моллюскам (Lavie, Nevo, 1981*).

Усиление полиморфизма в неоднородных средах сначала приписывали влиянию уравновешивающего отбора, и такое объяснение действительно в значительной мере справедливо, однако Левин (Levene, 1953*) показал, что в неоднородной среде полиморфизм может поддерживаться и за счет дизруптивного отбора.

Третий тип отбора, способствующий усилению полиморфизма, -- это отбор, зависящий от частоты (Clarke, 1979*). Такой отбор, благоприятствующий редким вариантам, обычно связан с хищничеством и паразитизмом. Поскольку эти экологические взаимодействия часто встречаются в природе, было высказано мнение, что отбор, зависящий от частоты, служит, возможно, главным фактором полиморфной изменчивости в природных популяциях (Clarke, 1979*).

Возникновение в популяциях нейтральных в селективном отношении аллелей служит четвертым источником полиморфной изменчивости (Kimura, Ohta, 1971; Kimura, 1979*). Такие селективно нейтральные аллели несомненно существуют. Однако вопрос о том, сколь часто они встречаются в природных популяциях, в настоящее время вызывает значительные разногласия. Мы вернемся к этому в одной из последующих глав.

Уровни отбора

Живой мир представляет собой иерархическую систему единиц организации -- от генов и участков хромосом до отдельных организмов и далее до популяций и видов. Единицы, образующие каждый из этих уровней, -- это в то же время и единицы размножения. На любом уровие популяция воспроизводимых единиц, если она обладает генетической изменчивостью, может претерпевать систематические изменения относительных частот составляющих её альтернативных типов. Отбор, который до недавнего времени рассматривался главным образом на индивидуальном уровне, может также происходить на различных субиндивидуальных и супраиндивидуальных уровнях*.

Отбор на субиндивидуальных уровнях

Отбор на уровне одного гена, до сих пор рассматривавшийся как чересчур упрощенная, но полезная абстракция, был, по-видимому, реальным и даже главным селективным процессом на ранних стадиях органической эволюции, когда преобладающей единицей организации были геноподобные частицы. В современном мире существует процесс, близкий к отбору на уровне гена, -- дифференциальное размножение вирусных частиц или бактериальных клеток, различающихся по одному вирусному или бактериальному гену.

Некоторые генетически контролируемые отклонения мейоза у Drosophila melanogaster приводят к тому, что одна из хромосом гомологичной пары включается в более эффективно функционирующие сперматозоиды, чем другая. Нарушенное расщепление хромосом в мейозе ведёт к повышению частоты хромосомы одного типа в гаметном фонде по сравнению с частотой её гомолога. Этот процесс известен под названием мейотического драйва. Подобные же изменения частот наблюдаются у генов, локализованных в этих двух гомологичных хромосомах, и у фенотипов, детерминируемых этими генами. В одном случае со отношение полов изменяется в сторону избытка самок, в другом -- происходит повышение частоты одной рецессивной летали (Sandler, Novitski, 1957; Hiraizumi, Sandler, Crow, 1960*). Мейотический драйв по существу представляет собой процесс дифференциальной репродукции гомологичных хромосом, т. е. отбор на уровне хромосом.

У цветковых растений мужские гаметы находятся в самостоятельной структуре -- мужском гаметофите, состоящем из пыльцевого зерна и пыльцевой трубки. Гетерозиготное растение продуцирует генетически различные классы пыльцы; в некоторых случаях пыльцевые зерна расщепляются по генетическим факторам, влияющим на жизнеспособность пыльцы, на её способность к прорастанию или на скорость роста пыльцевых трубок. Кроме того, пыльца обычно продуцируется и попадает на рыльце в больших количествах, чем это нужно для оплодотворения, так что между пыльцевыми зернами или пыльцевыми трубками возникает конкуренция. В тех случаях, когда пыльца расщепляется по факторам роста, в результате этой конкуренции некоторые классы мужских гамет оказываются более эффективными, чем другие при оплодотворении, и, следовательно, чаще вносят вклад в образование зародышей или эндосперма, т. е. происходит отбор на уровне гамет.

Допустим, что какой-то ген-маркер, детерминирующий определённый внешне заметный морфологический признак, сцеплен с геном, детерминирующим рост пыльцевой трубки. В таком случае среди потомков вместо ожидаемого менделенского расщепления по этому гену будет наблюдаться отклоняющееся соотношение: избыток среди семян или проростков морфологического типа, детерминируемого аллелем-маркером, привнесенным пыльцой, превосходящей в селективном отношении пыльцу другого класса, и снижение доли противоположного морфологического типа. Изменение соотношений при расщеплении, обусловленное низкой селективной ценностью некоторых классов пыльцы, хорошо известно у разных видов цветковых растений.

Хорошо проанализирован случай сцепленных генов Su (определяющего тип эндосперма) и Ga (контролирующего рост пыльцевой трубки) у кукурузы (Zea mays). Гетерозиготы Su/su обычно дают зерна, разделяющиеся по характеру эндосперма на два класса (крахмалистый и сахаристый эндосперм) в менделевских соотношениях. Допустим, что аллель su (сахаристый эндосперм) сцеплен с аллелем ga (медленный рост пыльцевой трубки) в гетерозиготе (Su Ga/su ga) и такая гетерозигота используется в качестве отцовской особи, так что сцепленный участок su-ga передается через пыльцу. В этом случае в следующем поколении наблюдается заметная нехватка зерен сахаристого типа (Mangelsdorf, Jones, 1926*).

Половой отбор

Половой отбор основан на селективной неравноценности особей одного пола у раздельнополых организмов (обычно у животных). Это особая форма индивидуального отбора, в которой участвуют представители только одного пола (обычно самцы) данной популяции.

Половой отбор начинается с «разделения труда» между гаметами и между их носителями, возникшего на ранних этапах эволюции полового размножения. Специализация яиц и в конечном счете особей женского пола была направлена на обеспечение питания и защиты зародыша, а сперматозоиды и в конечном счете особи мужского пола -- на нахождение яиц и их оплодотворение. Это разделение функций привело в самом начале к численному преобладанию сперматозоидов над яйцами, к большей подвижности сперматозоидов или самцов по сравнению с яйцеклетками или самками и к развитию у самцов более сильного полового влечения, чем у самок. Все это заложило основы для возникновения селективных различий между самцами.

Половой диморфизм у животных нередко выражается в различиях по двум группам признаков. Первичные половые признаки -- это признаки, непосредственно относящиеся к размножению. Здесь мы не будем их рассматривать. Вторичные половые признаки, имеющиеся у самцов, помогают им отыскивать брачных партнеров. К этим вторичным половым признакам и обращена теория полового отбора.

Вторичные половые признаки можно разделить на два обширных класса: 1) признаки, относящиеся к размерам, силе и разного рода придаткам (например, более крупные размеры самцов у морских львов или рога у самцов оленей); 2) украшения и демонстрационное поведение (например, яркое оперение селезней, яркие пятна на шее у самцов колибри, особые типы песен, брачное поведение). В «Происхождении человека и половом отборе» Дарвин (1871*) рассмотрел известные в его время примеры вторичных половых признаков у самцов животных, принадлежащих к широкому кругу групп, и предложил для их объяснения теорию полового отбора.

Дарвин представлял себе половой отбор как процесс, дополняющий более общий и более широко распространенный процесс естественного отбора. Последний, по теории Дарвина, создал адаптивные признаки данного вида в целом, в том числе изначальные приспособления, общие для обоих полов, а также первичные половые различия, непосредственно связанные с размножением. Естественный отбор в первоначальном: дарвиновском смысле не объяснял вторичные половые признаки. Такие признаки, как рога оленя или яркое оперение селезней, не представляют собой приспособлений, благоприятных для вида в целом; не являются они также необходимыми и для размножения. Однако они, по-видимому, повышают вероятность успешности спариваний для тех самцов, которые ими обладают. Теория полового отбора была введена для того, чтобы объяснить развитие таких специальных мужских признаков.

Дарвин описывает процесс, предложенный им в качестве объяснения, следующим образом (Darwin, 1871)*: «…половой отбор… зависит от преимуществ, относящихся исключительно к воспроизведению, которыми обладают одни особи перед другими особями того же пола и вида». Далее он объясняет (я здесь несколько перефразировал утверждение Дарвина, сохранив его терминологию): если оба пола ведут совершенно одинаковый образ жизни, но у самца органы чувств или органы передвижения значительно более развиты, чем у самки, то возможно, что самцам нередко удается приобрести эти признаки не потому, что они лучше приспособлены к выживанию в борьбе за существование, а потому, что они обладают известными преимуществами перед другими самцами при размножении. «В подобных случаях должен был вступать в действие половой отбор».

Дарвин (1871)* постулировал два типа полового отбора, чтобы объяснить две группы вторичных половых признаков. Такие признаки, как рога оленей, используемые в прямой конкуренции между самцами за самок, развились в результате отбора, который мы теперь называем «межсамцовым». Признаки, делающие самцов привлекательными для самок, такие, как брачный наряд и пение у птиц, возникли в результате того, что мы теперь называем отбором, определяемым «вкусами» самок. Общая теория полового отбора в настоящее время гораздо лучше разработана в той её части, которая относится к первому типу, т. е. к межсамцовому отбору.

Следует отметить, что эти два типа полового отбора необязательно исключают друг друга. Так, у полигинного бычка Cottus bairdi обнаружен половой отбор обоих типов (Downhower et al., 1983*).

Изучение полового отбора начиная с 1871 г. шло извилистым путем. Во времена Дарвина эта тема была предметом разногласий. Уоллес (Wallace, 1889*) допускал роль полового отбора в развитии признаков, необходимых самцам в драках, но не в развитии демонстрационных признаков. Затем эта проблема была предана забвению. Когда в начале современного периода эволюционных исследований она вновь выступила на сцену в работах Фишара (Fisher, 1930*) и Гексли (Huxley, 1938*), ситуация была совершенно иной: те же самые явления рассматривались с других альтернативных, точек зрения и теория полового отбора должка была дебютировать вновь. Этот второй дебют оказался удачным: в настоящее время половой отбор является предметом активных исследований и ему посвящена обширная литература*.

Для того чтобы оценить современное состояние проблемы естественного отбора, следует прежде всего ясно представить себе огромное разнообразие вторичных половых признаков, несущих самые разные функции в жизни животных. Возникновение всех этих признаков, по-видимому, нельзя отнести за счет отбора какого-то одного типа. Различия в общих размерах между самцами и самками могут быть обусловлены отбором, направленным на экологическую дивергенцию (см, часть V), а также половым отбором. Мощные рога и другое «оружие» самцов может служить для захвата территории или достижения доминирующего положения в сообществе, а также для завоевания самок. Разного рода украшения, демонстрации, песни и запах самцов могут служить стимуляторами при ухаживании и видоспецифичными опознавательными сигналами. В последнем случае они могли возникнуть в результате отбора, направленного на создание репродуктивной изоляции (см. часть V), а также полового отбора.

Возникновение всего обширного спектра вторичных половых признаков -- результат совместного действия различных селективных процессов, поэтому трудно выделить здесь эффекты одного только полового отбора.

В последние годы делаются попытки распространить концепцию полового отбора на двудомные растения. Эти попытки выражаются в истолковании известных фактов биологии размножения растений в терминах сильно расширенной концепции полового отбора. В частности, указывают на очень большое число пыльцевых зерен по сравнению с числом яйцеклеток и возникающую в результате конкуренцию между этими зернами (Stephenson, Bertin, 1983; Willson, 1983*). Однако такое положение вещей -- результат исходного разделения труда между самцами и самками; это непременное предварительное условие для процесса полового отбора, как уже упоминалось, а не его результат. Явление несовместимости у растений, некоторые типы пыльцы которых успешно прорастают лишь в определённом семязачатке, рассматривается как выбор со стороны особи женского пола (Stephenson, Bertin, 1983; Willson, Burley, 1983*). В этом случае концепция такого выбора расширяется, охватывая иммунологические реакции организмов, лишенных нервной системы или умственных способностей. Межсамцовый отбор теоретически возможен у двудомных растений. Однако эта проблема в настоящее время далека от решения из-за отсутствия критического подхода, а также необходимых данных.

Признаки самцов, связанные с драками между ними

Роль полового отбора ясно выражена в развитии признаков, связанных с драками между самцами и с явлением доминирования. Для полового отбора этого типа необходимо наличие трёх условий: 1) конкуренция между самцами за самок; 2) генотипические различия между самцами, определяющие их конкурентоспособность в борьбе за самок; 3) репродуктивное преимущество самцов, добившихся успеха, над другими самцами.

Первое условие имеется у млекопитающих и птиц с полигинной (полигамной) системой размножения. У полигинных видов самые сильные самцы собирают вокруг себя гаремы из самок и охраняют самих самок или территорию, на которой они находятся» отгоняя более слабых самцов, так что на долю последних остается мало самок или не остается вовсе.

Полигиния часто встречается у млекопитающих и иногда у птиц. Среди млекопитающих она наблюдается у оленей, крупного рогатого скота, овец, у большинства антилоп, у слонов, тюленей, морских львов, моржей и павианов; среди птиц -- у кур, фазанов и павлинов. У самцов этих животных хорошо развиты вторичные половые признаки в отличие от самцов родственных неполигинных групп. Так, у полигинных кур, фазанов и павлинов самцы гораздо крупнее, драчливее, и оперение у них наряднее, чем у самок, а у моногинных-- серой куропатки, грауса и тундряной куропатки -- различия между особями разного пола относительно невелики. У моржей и морских львов самцы очень крупные; самцов многих копытных украшают рога; у павианов самцы крупные и агрессивные. В отличие от этого у моногинных волков и некоторых моногинных видов обезьян, а также у ряда кошек, у которых детенышей выращивает в основном мать, и у колониальных, но неполигинных грызунов, самцы и самки почти не отличаются друг от друга по размерам и силе (Darwin, 1871, гл. 8*).

Поскольку признаки, связанные с драками между самцами, наблюдаются преимущественно в полигинных группах, можно считать, что они возникли в результате полового отбора. Корреляция между диморфизмом по общим размерам и системой спаривания выражена менее ясно, не говоря уже о многочисленных исключениях и осложнениях (Ralls, 1977*).

У млекопитающих и птиц наблюдается также и другая корреляция -- между системой спаривания и вкладом родителей в заботу о потомстве (Trivers, 1972; Zeveloff, Boyce, 1980*).

У птиц самцы и самки принимают более или менее одинаковое участие в различных аспектах заботы о потомстве, т. е. в постройке гнезда и выкармливании птенцов. Стратегия размножения, характерная для большинства птиц, делает необходимым сотрудничество обеих родительских особей. Это ведет к моногамии, которая широко распространена у птиц. При моногамии, когда у каждого самца есть брачный партнер, конкуренции между самцами за самок не возникает. Соответственно не развиваются и признаки, необходимые самцам в драках и для завоевания доминирующего положения.

Полигинные птицы, для которых характерно доминирование самцов, представляют собой исключение, подтверждающее правило.

У млекопитающих стратегия размножения основана, напротив, на преимущественной роли матери в заботе о потомстве, что обусловлено вынашиванием зародыша во чреве и выкармливанием детеныша собственным молоком. Вклад самцов в заботу о потомстве часто пренебрежимо мал. Свободные от этой заботы самцы получают возможность конкурировать за самок и устраивать гаремы. Это создаёт почву для полового отбора по признакам, связанным с доминированием самцов, которые часто встречаются у млекопитающих. Моногамные млекопитающие с их равноправием между полами -- исключение, подтверждающее правило.

Репродуктивное поведение у снежного барана и у благородного оленя

Половой отбор будет эффективным лишь в том случае, если победившие самцы оставят больше выживающих потомков, чем самцы, не достигшие успеха (условие 3, указанное в предыдущем разделе). Сведения об относительной успешности размножения отдельных самцов в природных условиях получить трудно и в литературе их немного. Однако в настоящее время таких данных становится больше, и мы приведем здесь два примера.

Гейст (Geist, 1971*) тщательно изучал репродуктивное поведение снежного барана (Оvis canadensis) в природе и в неволе. У половозрелых самцов, как это хорошо известно, имеются большие тяжелые рота и кости черепа сильно утолщены. В период гона между самцами происходят поединки за обладание самками. Поединки нередко бывают очень жестокими: побежденные животные получают серьезные раны, а иногда и гибнут. Эти наблюдения за поведением баранов и других жвачных во время гона не соответствуют общепринятым представлениям о том, что брачное поведение самцов обычно сводится к безобидному блефу и другого рода демонстрациям. В поединках между баранами безусловно имеют место демонстрации, символизирующие их притязания на доминирующее положение в иерархии, но демонстрация в случае необходимости подкрепляется дракой.

Самцы, вышедшие победителями из поединков, занимают доминирующее положение в своем стаде. Они отгоняют других самцов от самок, а сами свободно спариваются с самками. Система скрещивания у снежного барана не исключает спаривания самок с самцами, занимающими подчиненное положение, но она обеспечивает преимущественное участие в размножении доминантных самцов. Поэтому последние, вероятно, производят больше ягнят, чем самцы, занимающие подчиненное положение (Geist, 1971*).


Подобные документы

  • Естественный отбор как результат борьбы за существование, избирательное (дифференциальное) воспроизведение генотипов (или генных комплексов). Виды естественного отбора: дестабилизирующий, половой, групповой, направленный, стабилизирующий, дизруптивный.

    доклад [2,2 M], добавлен 19.06.2010

  • Естественный отбор как процесс, приводящий к выживанию и преимущественному размножению более приспособленных к данным условиям среды особей, обладающих полезными наследственными признаками. Его формы: движущий, стабилизирующий, половой и дизруптивный.

    презентация [716,0 K], добавлен 19.12.2009

  • Соперничество самцов как основной фактор определения результата внутриполового отбора. Объяснение межполового отбора и учение Дарвина, Фишера и Захави. Различия между полами - результат полового отбора. Признак полового размножения и половой диморфизм.

    курсовая работа [30,0 K], добавлен 08.08.2009

  • Искусственный отбор - выбор ценных в хозяйственном отношении животных и растений какой-либо породы или сорта и использование их для дальнейшего разведения. Теория искусственного отбора Дарвина и ее обоснование. Эволюция растений и домашних животных.

    презентация [872,5 K], добавлен 28.12.2009

  • Многообразие сортов культурных растений и пород домашних животных, выведение новых пород и сортов, творческая роль отбора. Борьба за существование и ее формы, сложные отношения между видами. Естественный отбор - движущая сила эволюции органического мира.

    реферат [21,7 K], добавлен 02.10.2009

  • Роль движущей и стабилизирующей форм отбора. Факторы и причины изменения генофонда. Понятие дрейфа генов в малой популяции и его последствия для нее. Эксперимент С. Райта. Популяционные волны (волны жизни) - периодические изменения численности особей.

    презентация [2,5 M], добавлен 21.10.2011

  • Характеристика и формы естественного отбора как элементарного эволюционного фактора. Основной механизм эволюции. Особенности связи между весом при рождении и выживаемостью младенцев в различных условиях. Сущность и особенности кроссовера ДНК предков.

    реферат [473,6 K], добавлен 13.12.2008

  • Виды и популяции, эволюционные явления. Современные представления о возникновении жизни, природа "живого" и "неживого". Концепция естественного отбора, теория Дарвина. Ошибочные представления об эволюции. Теория наследования приобретенных признаков.

    реферат [1,5 M], добавлен 19.09.2009

  • Неопределенная изменчивость в качестве предпосылки развития органической природы. Борьба за существование как пусковой механизм эволюции, нашедший отражение в разных типах понятий биологического соревнования. Проблема форм отбора в теории селектогенеза.

    реферат [49,6 K], добавлен 27.12.2016

  • Анализ взглядов на теорию Дарвина. Современные представления об эволюционном учении и его критика. Эмпирические предпосылки эволюционной теории развития живого. Принципы Дарвиновой теории отбора. Креационная модель возникновения и развития жизни.

    реферат [327,7 K], добавлен 22.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.