Пространство и время в физике
Коллизии развития и соперничества научных гипотез категории "пространство и время" в физике. Характерные особенности развития представлений о пространстве и времени в доньютоновский период. Свойства пространства и времени в классической механике Ньютона.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 30.07.2010 |
Размер файла | 22,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
19
РЕФЕРАТ
по курсу «Концепции современного естествознания»
по теме: «Пространство и время в физике»
Содержание:
1. Развитие представлений о пространстве и времени в доньютоновский период
2. Пространство и время в классической механике Ньютона
3. Дальнедействие и близкодействие. Развитие понятия «поля»
Список литературы
1. Развитие представлений о пространстве и времени в доньютоновский период
Пространство и время являются основными категориями в физике, ибо большинство физических понятий вводятся посредством операциональных правил, в которых используются расстояния в пространстве и время. В то же время пространство и время относятся к фундаментальным понятиям культуры, имеют длительную историю, важное место занимают как в учениях Древнего Востока, так и в мифологии, а позднее в науке Древней Греции. Большое влияние на формирование понятий пространства и времени как научных категорий сыграла пифагорейская школа. «Вселенная втягивает из беспредельного время, дыхание и пустоту», -- говорит Пифагор. Причем «пустота» у пифагорейцев не имеет такого строгого понятия, как у атомистов, это -- скорее, неоформленное, безграничное пространство. В этом беспредельном пространстве зародилась Единица, сыгравшая роль семени, из которого вырос весь космос. Вытягиваясь в длину, она порождает число 2, что в геометрической интерпретации означает линию; линия, вытягиваясь в ширину, порождает число 3 -- плоскость; плоскость, вытягиваясь в высоту, порождает число 4 -- объем. Таким образом, уже пифагорейцы, описывая космос, осознают (воспринимаемый нами с самого раннего детства как очевидный) факт трехмерности пространства, в котором мы живем.
Платон, развивая учение пифагорейцев о математическом начале мира, впервые в античной науке вводит понятие геометрического пространства. До Платона в античной науке пространство не рассматривалось как самостоятельная категория, отдельно от его наполнения. Платон же помещает между идеями и чувственным миром геометрическое пространство, рассматривая его как нечто среднее, «промежуточное» между ними. Пространство понимается им как «интеллигибельная материя». Если математические числа -- это чисто идеальные сущности, то всевозможные математические объекты -- сущности промежуточные, и получаются они путем соединения числа и материи. Сформировав впервые в истории науки философию объективного идеализма, признавая идеи -- первичными сущностями (бытием), Платон, тем не менее, считал, что идея (единое) не может не существовать, не быть познанной без соотнесенности с другим, с материей, представляющей собой множество чувственно воспринимаемых вещей. Таким образом, Платон рассматривает три реальности: бытие -- сфера идеального; возникновение -- сфера чувственных вещей и пространство -- не идеальное и не чувственное. Соответственно математика выполняет, роль посредника между сферами чувственного и идеального бытия; геометрические же объекты являются результатами сращивания идеи с интеллигибельной материей, то есть с пространством. Платон проводит классификацию математики, делит ее на четыре части: арифметику, геометрию, геометрию, изучающую тела, имеющие три измерения, и астрономию. Так что философия Платона также использует представление о трехмерности пространства. Познать природные элементы, по Платону, это значит познать их геометрически, то есть определить их пространственное образование. Поэтому и атомы Платона, соответствующие четырем стихиям -- огонь, воздух, вода и земля, -- различны, ибо представляют собой различные геометрические многоугольники: атомы земли имеют форму куба, огня -- форму тетраэдра (четырехгранник), воздуха -- форму октаэдpa (восьмигранник), воды -- форму икосаэдра (двадцатигранник). Учение Платона может быть рассмотрено как попытка геометризации мира. Характерно, что развитие современной физики своей важнейшей задачей имеет проблемы геометризации физики, на основе которой предполагается возможным построение единой теории всех физических взаимодействий. Речь об этом пойдет ниже. Здесь же уместно привести мнение одного из величайших физиков современности В. Гейзенберга: «...Современное развитие физики повернулось от философии Демокрита к философии Платона. В самом деле, именно в соответствии с убеждениями Платона, если мы будем разделять материю все дальше и дальше, мы, в конечном счете, придем не к мельчайшим частицам, а к математическим объектам, определяемым с помощью симметрии, платоновским телам и лежащим в их основе треугольникам. Частицы же в современной физике представляют математические абстракции фундаментальных симметрии».
Платоново-пифагорийская научно-исследовательская программа была развита в эллинистический период в работах Клавдия Птолемея, Аполлония, Архимеда и Евклида. В главном труде Евклида -- «Началах» -- излагаются основные свойства пространства и пространственных фигур.
В современной науке широко используется понятие, евклидова пространства как плоского пространства трех измерений. Систематическое изучение пространства и пространственных фигур греками было подчинено главной цели -- исследованию природы, в структуре которой воплощены геометрические принципы.
Следует отметить, что наряду с понятием «пространство» в Древней Греции были выработаны такие понятия, как «пустота» и «эфир». Эти понятия неразрывно связаны с представлениями о свойствах пространства, и принятие или неприятие их как основополагающих в структуре науки существенно влияет на ход развития самой физической науки, о чем свидетельствуют катаклизмы, происходившие в физике на протяжении всего ее развития, в особенности на рубеже XIX-XX веков.
Впервые соотношение противоположностей «бытия» и «небытия» рассматривается в философии Гераклита, предметом рефлексии они становятся в философии элеатов, представителями которой являются Парменид, Зенон, Ксенофан. В их учениях выкристаллизовывается прототип будущей пустоты Демокрита. В качестве первоначала всего сущего «пустота» впервые определяется в философии атомистов. Теория Левкиппа -- Демокрита -- это попытка обоснования возможности движения. Существование пустоты постулируется ими именно в целях решения проблемы движения: движение сводится к простейшему перемещению атомов в пустоте. В учении атомистов пустота входит в качестве первоначала на равных правах с атомами. Атомы, в отличие от пустоты, -- это полное и твердое сущее, лишенное каких-либо внутренних различий, и поэтому неделимое, неизменное, вечное. Первоначально «пустота» имела греческое название «kenon». После изложения теории атомизма в поэтически образной форме римским ученым и поэтом Лукрецием Каром в поэме «О природе вещей» в науке укрепился латинский перевод этого понятия -- «vacuum».
Одновременно в греческую науку входит и понятие «эфир», как нечто противоположного пустоте, «обнимающего все прочее». Так что понятия вакуума и эфира с самого своего возникновения соответствуют различным представлениям о состоянии мира.
В эпоху Возрождения достигается осознание взаимосвязи между механикой и геометрией, чего не было в философии древних греков. Это привело к представлению о геометрическом объекте, движущемся в пространстве с течением времени. Это, бесспорно, серьезный шаг в направлении возникновения физики как стройной системы знаний, в фундамент которой закладываются представления о пространстве и времени как исходных понятий науки. Однако каковы особенности и характерные черты этого пространства? Заполнено ли оно эфиром или является пустым? Вопрос этот не был праздным, решение его играло роль глубинной предпосылки построения в дальнейшем всего каркаса ньютоновской физики. Леонардо да Винчи и другие мыслители эпохи Возрождения вплотную подходили к формулированию принципа инерции, но не могли сделать последнего шага, так как не представляли себе движения в абсолютной пустоте, где движущееся тело не встречает никакого сопротивления. Шаг этот сделал Галилео Галилей. Не случайно историки науки связывают именно с именем Галилея возникновение физики как самостоятельной научной дисциплины, потому что именно Галилей применил научный метод исследования, в основе которого лежал научный эксперимент с характерной для него чертой -- идеализацией ситуации, позволяющей устанавливать точные математические закономерности явлений природы. Галилей объявил сопротивление среды несущественной стороной своих законов. Признание им существования пустоты позволило ему объяснить равные скорости падения различных тел и сформулировать принцип инерции. В своем труде «Диалог о двух главнейших системах мира -- птолемеевой и коперниковой» в «Дне втором» Галилей формулирует два основных принципа механики -- принцип инерции и принцип относительности.
По существу, эти принципы описывают свойства пространства Вселенной. Окончательную формулировку оба принципа получили в механике Ньютона. И это связано с тем, что Галилеем используется представление об инерциальных круговых движениях, на этом построена вся небесная механика «Диалогов». Представление о прямолинейном инерциальном движении было развито Декартом, однако он отрицал существование пустоты. Й лишь в механике Ньютона произошло объединение двух идей -- идеи пустого пространства и прямолинейного инерциального движения.
Галилей вплотную подошел к созданию динамики как части механики, описывающей причины изменения состояния движения тел; он впервые связывает понятие силы с ускорением, а не со скоростью, как это было принято до него. Однако, являясь приверженцем нового мышления, новой методологической установки, отличной от установок Аристотеля и его последователей, Галилей считал истинной целью естествознания не поиск причин, тем более не умозрительное выдумывание их, а строгое математическое описание их. «Сейчас неподходящее время для занятий вопросом о причинах ускорения в естественном движении (имеется в виду свободное падение тел. -- Авт.), по поводу которого различными философами было высказано столько различных мнений», -- говорит он устами Сальвиати в книге «Беседы и математические доказательства, касающиеся двух новых отраслей знаний». Зато он определяет кинематический закон равноускоренного движения, определяет, что путь, пройденный телом, прямо пропорционален квадрату времени, в течение которого тело движется. Жизнь и творчество Галилея подготовили как в методологическом, так и в научном плане почву для свершений Исаака Ньютона, положивших начало новой эре в науке в целом и не утративших своего непреходящего значения в наши дни. Однако для более полного представления о том, какую роль в физике Ньютона играют понятия пространства и времени, необходимо рассмотреть точку зрения на эти понятия еще одного выдающегося мыслителя Нового времени Рене Декарта.
Основная задача, поставленная Декартом, -- математизация физики, точнее, ее геометризация по типу евклидовой геометрии. Изучение физического мира возможно только с помощью математики. «Из всех, кто когда-либо занимался поиском истины в науках, только математикам удалось получить некие доказательства, то есть указать причины, очевидные и достоверные», -- говорит он в «Рассуждении о методе». Следовательно, и физика должна опираться на небольшое число аксиом, из которых дедуктивно выводится упорядоченная последовательность выводов, обладающих той же степенью достоверности, что и первичные аксиомы. Объективный мир, по Декарту, не что иное, как материализованное пространство или воплощенная геометрия. Из тождественности материи и пространства Декарт делает вывод о бесконечной делимости материи и, следовательно, о несуществовании неделимых атомов и пустоты. В мире не существует пустого пространства, ибо в этом случае существовала бы нематериальная протяженность. Протяженность материальна, следовательно, пространство заполнено субстанцией. Форма тел сводится к протяженности, масса сводится к геометрическому пространственному объему тела, индивидуальность которого проявляется только в движении. Разграничение собственно тела и пространства представляется следствием различных скоростей частей пространства. Итак, фундаментальными свойствами материи являются протяженность и движение в пространстве и во времени. И эти свойства могут быть строго описаны математически. «Дайте мне протяженность и движение, и я построю Вселенную», -- таков основной тезис Декарта. Отрицая пустоту, Декарт постулирует существование эфира. Позиция Декарта как геометра физики предпослала создание им новой области математики -- аналитической геометрии. Он вводит координатную систему, известную как декартова система координат, а также представление о переменной величине. Иными словами, в математику проникает движение, что само по себе подготавливает почву для возникновения дифференциального и интегрального исчисления.
Следует сказать, что Декарт выделяет два основных акта мышления, с помощью которых можно получать новое знание без риска впасть в заблуждение, -- это интуиция и дедукция. Опираться на интуицию надежнее всего, потому что интуиция -- это то, что запечатлено Богом в нашей душе. Бог является хорошим математиком, и при сотворении мира он, бесспорно, пользовался хорошо продуманным математическим планом. Именно поэтому интуиция -- более надежное знание, на основании которого с помощью дедукции возможно получение строгих и не менее достоверных выводов. Причем Бог не просто создал мир, но и каждое мгновение обеспечивает его существование. Конечно, доказательство существования Бога Декартом -- типичное явление для культуры того времени. Тем не менее, именно теологические посылки приводят Декарта к формулированию принципа инерции и закона сохранения количества движения, которые, согласно Декарту, являются проявлениями абсолютного совершенства Бога. Принцип инерции, согласно которому, «каждая частица материи продолжает находиться в одном и том же состоянии, пока столкновение с другими частицами не вынуждает ее изменить это состояние», и «каждая частица тела по отдельности всегда стремится продолжать свое движение по прямой линии», что является результатом, во-первых, неизменности Бога и, во-вторых, непрерывности действия бога. Из неизменности Бога следует и сохранение количества движения, ибо «если предположить, что с самого момента творения он вложил во всю материю определенное количество движения, то следует предположить, что он всегда сохраняет его в таких же размерах».
2. Пространство и время в классической механике Ньютона
Натурфилософия Ньютона представляет собой синтез различных методологических установок его предшественников в единую целостную концепцию: идея пустого пространства связывается с идеей инерциального прямолинейного движения (Галилей, Декарт); аристотелевская концепция непрерывного пространства и непрерывного времени связывается с платоновским идеалом описания движения как всеобщего отношения; в основу иерархического строения вещества кладется атом Демокрита, который в Новое время рассматривается уже как экспериментально исследуемая частица. Любая вещь считается составленной из атомов и может быть разложена на свои составляющие.
Представление о пустоте у Ньютона связывается с существованием абсолютного пространства: «Абсолютное пространство по самой своей сущности, безотносительно к чему бы то ни было внешнему остается всегда одинаковым и неподвижным». Ньютон определяет также и абсолютное, истинное математическое время: «Абсолютное, истинное математическое время само по себе и самой своей сущности, безо всякого отношения к чему-либо внешнему протекает равномерно и иначе называется длительностью». «Время и пространство представляют собой как бы вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве -- в смысле порядка положения. По самой своей сущности они есть места, приписывать же первичным местам движения нелепо. Вот эти-то места и суть места абсолютные, и только перемещения из этих мест составляют абсолютные движения...» Ньютон подчеркивает, что само по себе движение имеет относительный характер, «относительное движение тела может быть, и произведено и изменено без приложения сил к этому телу», то есть в зависимости от системы отсчета, относительно которой это движение рассматривается. При этом система отсчета должна обязательно либо покоиться, либо двигаться равномерно и прямолинейно по отношению к абсолютному пространству. В механике Ньютона работает принцип относительности Галилея, о чем речь пойдет несколько ниже. Понятие силы Ньютон вводит в качестве абсолютного элемента. Истинное абсолютное движение, в отличие от относительного, «не может ни произойти, ни измениться иначе, как от действия сил, приложенных непосредственно к движущемуся телу». Ньютон дает также динамическую трактовку массы тела как индивидуальной характеристики тела по отношению к нетождественному ему пустому пространству. То есть понятия «силы» и «массы» у Ньютона -- это как бы «надпространственные» понятия. Сам факт введения Ньютоном пространства пустого, постулирование им абсолютного пространства было продиктовано трудностями, возникшими при объяснении движения тел в неинерциальных системах отсчета, с невозможностью объяснения наличия сил инерции в системах отсчета, движущихся с ускорением, взаимодействием тел. (Вспомните, что вы чувствуете, если внезапно затормозится трамвай, в котором вы едете, или что вы испытываете, находясь на вращающейся карусели? В трамвае вам кажется, что вас кто-то толкает в направлении движения. На карусели возникает чувство, что вот-вот вас с карусели сбросит в направлении от центра. В обоих примерах вам кажется, что на вас действует сила, хотя вы не можете указать, результатом взаимодействия каких тел является эта сила. Ньютон сам проделывал опыт с вращающимся ведром с водой. При определенной скорости движения ведра при прохождении им верхней точки окружности дном вверх вода из ведра не только не выливалась, но и образовывала вогнутый мениск, стремясь как можно дальше отойти в направлении от центра окружности). Эту-то непонятную силу Ньютон назвал силой инерции и считал ее происхождение следствием ускоренного движения тел по отношению к пустому вместилищу -- абсолютному пространству. Введение же абсолютного времени, то есть времени, не зависящего от движения, основывается на постулате о мгновенном распространении взаимодействий в пустоте, что явилось основой построения Ньютоном теории тяготения. Следует сказать, что в доньютоновский период большинство попыток построения теории тяготения основывалось на использовании представления об эфире. Известно, что и Ньютон пытался объяснить тяготение наличием эфира. Однако в конце концов Ньютону удается построить стройную теорию, связывающую механику Галилея и законы движения планет Кеплера, основывающуюся на идее пустого пространства и мгновенной скорости передачи взаимодействий на любые, сколь угодно дальние расстояния. Тем самым Ньютон формулирует в науке принцип дальнедействия.
Механика Ньютона, развитая в работах Д'Аламбера, Лагранжа, Лапласа, Гамильтона, Якоби и др., получает стройную завершенную форму, основанную на принципах, определяющих научную картину мира того времени, называемую механистической научной картиной мира. В ряде ее принципов следующие:
«Себетождественность» физического объекта, «внеположенность» его в пространстве и во времени.
Детерминированность поведения физического объекта (строгая однозначная причинно-следственная связь между конкретными состояниями объекта).
Обратимость всех физических процессов.
Редукционизм и элементаризм. Механистическая концепция целого и части. Принципы эти являются следствием представлений о непрерывном пустом пространстве и непрерывном времени, в которых выделено индивидуальное тело. Себетождественность движущегося тела гарантируется непрерывным изменением координат и непрерывным изменением времени. Благодаря этому континуалистскому, берущему начало из физики Аристотеля, взгляду, позволяющему одновременно зарегистрировать существование тела и определить его скорость в каждой точке интервала между одним положением и другим, делается вывод о том, что перед нами одно и то же тело, само себе тождественное. Континуалистская методология явилась основой для возникновения дифференциального и интегрального исчислений в Новое время (Ньютон, Лейбниц). Из непрерывности состояний себетождественного физического объекта вытекает существование дифференциальных уравнений, с помощью которых, зная начальные условия, можно с абсолютной достоверностью предсказать все последующее движение тела. Интегрирование дифференциальных уравнений сводится к вычислению траекторий движения частицы, которые дают полное описание поведения частицы как в прошлом, в настоящем, так и в будущем, то есть характеризуются свойствами детерминированности и обратимости. Достаточно задания начальных условий и уравнений движения тела, чтобы получить полное описание движения частицы. Собственно, основной задачей механики является определение траектории движения тела, то есть установление строгой причинной зависимости координат (положения тела в пространстве) в зависимости от времени.
Траектория -- это линия, которую описывает тело в пространстве при своем движении. Подчеркнем, что в механике Ньютона движение тела происходит по строго определенным траекториям, то есть вследствие себетождественности, индивидуальности физического объекта мы всегда можем одновременно измерить и его координату, и его скорость.
Представления об иерархическом строении вещества и о себетождественности физического объекта сформировали механистическую концепцию части и целого в ньютоновской физике, в основе которой лежит принцип редукционизма и элементаризма. Можно выделить три основных момента этой концепции:
а) целое рассматривается как простое соединение элементов. Возможно разложение, разделение целого на его элементы, то есть редукция сложного к простому;
б) элементы целого рассматриваются как неизменяющиеся, простые, неделимые;
в) элемент внутри и вне целого один и тот же. Это формирует представление об объекте познания как самостоятельной сущности с присущими ему характеристиками и свойствами, не зависящими от условий познаний, а тем более от познающего его субъекта.
Заложенная Ньютоном в основание его физики идеология адекватно служила целям науки на протяжении длительного периода, вплоть до начала XX столетия. Пространство и время в его теории играют роль строительного каркаса, поддерживающего все стройное здание классической физики. Принятие Ньютоном пустоты формирует концептуальные основания физической науки. Абсолютное пространство и абсолютное время предстают в механике Ньютона как нечто, отличное от материи и, бесспорно, противоположное эфиру. Однако впоследствии этим понятиям предстояло «материализоваться» в теориях, исходивших как раз из представлений о «неподвижном» эфире. Следует сказать, что наука удерживала оба понятия -- и понятие пустого пространства, и понятие эфира вплоть до возникновения теории относительности Эйнштейна. Теория относительности, а впоследствии квантовая теория поля привели к отрицанию эфира и наполнили иным содержанием само понятие вакуума. Однако это оказалось возможным вследствие критического анализа и пересмотра основ ньютоновских принципов, с одной стороны, и теорий, опирающихся на концепцию эфира, с другой. Тем не менее, концепция эфира сыграла немаловажную роль в развитии такого физического понятия, как поле.
3. Дальнедействие и близкодействие. Развитие понятия «поля»
В механике Ньютона тела взаимодействуют на расстоянии, и это взаимодействие происходит мгновенно. Именно эта мгновенность передачи взаимодействий и обусловливает ненужность какой-либо среды и утверждает принцип дальнедействия. Известно, что Декартом развивалась противоположная точка зрения на природу взаимодействий, согласно которой материя взаимодействует с материей лишь при непосредственном соприкосновении. Таким агентом, передающим взаимодействия от тела к телу, являются частички эфира. Эфир трактуется Декартом как тончайшая жидкость безграничной протяженности, существующий повсюду, -- как в порах тел, так и вне их, как подвижный, текучий, непрерывный. Последователем Декарта стал голландский математик и физик Христиан Гюйгенс. Известны два альтернативных взгляда на природу света -- корпускулярная точка зрения, отстаиваемая Ньютоном, согласно которой свет -- поток частиц, корпускул. И точка зрения Гюйгенса о волновой природе света, согласно которой свет -- это волна, распространяющаяся в упругой механической среде, которая есть светоносный эфир. Наряду со светоносным эфиром, для объяснения электрических свойств тел Бенджамином Франклином вводится понятие электрического эфира, а Францем Эпинусом -- понятие о магнитной жидкости. Как писал Кельвин: «Многие труженики и мыслители помогли выработать в XIX веке понятие «пленума» -- одного и того же эфира, служащего для переноса света, теплоты, электричества и магнетизма». Тем не менее, идея абсолютного пустого пространства одерживает, благодаря авторитету Ньютона, победу над концепцией эфира вплоть до начала XIX века. И лишь работы Юнга и Френеля по изучению явлений интерференции и дифракции света (явления интерференции и дифракции сами по себе свидетельствуют именно о волновой природе света) приводят к возрождению концепции светоносного эфира и тут же наталкиваются на весьма серьезные затруднения, состоящие в установлении поперечности световых волн. Если световые волны понимать как упругие механические волны, распространяющиеся в эфире, то в случае их поперечности эфир должен быть твердым телом.
Гипотеза упругих колебаний эфира на повестку дня выносила вопрос: неподвижен ли сам эфир или же он движется? Если он движется, то увлекается ли движущимися телами? Для спасения эфира были предприняты попытки различных ученых, которые привели к трем концепциям природы эфира, высветив тем самым конкретные пути для разрешения вопроса о существовании эфира как такового. Первая из них определяла эфир как неподвижную среду, не увлекающуюся движущимися телами. Вторая гласила о полном увлечении эфира движущимися телами, вследствие чего различные слои эфира должны иметь различные скорости. И, наконец, третья точка зрения, высказанная Френелем, о частичном увлечении эфира движущимися телами. Проблемная ситуация в физической теории тотчас же стимулировала постановку экспериментов, в ряду наиболее блистательных из которых являются опыт Физо и опыт Майкельсона. Однако проблема казалась неразрешимой, ибо результаты опытов Физо свидетельствовали о частичном увлечении эфира, результаты опытов Майкельсона -- о полном увлечении эфира, явление же аберрации света указывает на то, что если эфир существует, то он неподвижен.
Хотя гипотеза эфира была устранена наукой XX века, она оставила несомненно важный след в формировании физических понятий. Ведь принятие эфира -- это, по существу, принятие точки зрения близкодействия -- передачи взаимодействия от одной точки эфира к другой, что привело в исследованиях Фарадея и Максвелла к выработке понятия поля.
Фарадей принимает электрическое действие на расстоянии, однако не на основе ньютоновского взаимодействия, а посредством силовых линий, которые соединяют друг с другом частицы. Таким образом, взаимодействие рассматривается через колебания высокого порядка в силовых линиях, приобретающих в теории Фарадея реальный статус. В механике Ньютона сила, а тем более линия действия силы не рассматривались в качестве материально протяженной субстанции, и новый взгляд Фарадея наполнил пустое пространство Ньютона непрерывной совокупностью материальных субстанций -- силовым полем (хотя в современной физической теории силовые линии не имеют того статуса, которое придавал им Фарадей, а служат для наглядной иллюстрации полей). Развивая взгляды Фарадея, Максвелл в своей работе «Динамическая теория поля» пишет: «Теория, которую я предлагаю, может быть названа теорией электромагнитного поля, потому что имеет дело с пространством, окружающим электрические и магнитные тела, и она может быть также названа динамической теорией, поскольку она допускает, что в этом пространстве имеется материя, находящаяся в движении, посредством которой и производятся наблюдаемые электромагнитные волны». Таким образом, у Максвелла мы находим констатацию существования поля как реальности и одновременно признание им материальной среды -- эфира. Иными словами, поле он рассматривает как возбужденное состояние эфира. В дальнейшем поле как реальность наделяется теми же характеристиками, что и вещество -- энергией, массой (введено Дж. Томсоном), импульсом (определенным из опытов по измерению давления света П.Н. Лебедевым). К началу XX века физика изучает материю в двух ее проявлениях -- веществе и поле. Обе эти модификации рассматриваются как равноправные, обе обладают такими характеристиками, как энергия, масса, импульс. Частицам вещества приписываются такие свойства, как дискретность, конечность числа степеней свободы, в то время как поле характеризуется непрерывностью распространения в пространстве, бесконечным числом степеней свободы. Структура электромагнитного поля резюмируется в семи уровнях Максвелла. Эти уравнения отличаются от уравнений механики. Уравнения механики применимы к областям пустого пространства, в которых присутствуют частицы. Уравнения же Максвелла применимы для всего пространства, независимо от того, присутствует там вещество (в том числе, заряженные тела), иными словами, позволяют проследить изменения поля во времени в любой точке пространства, то есть получить уравнение электромагнитной волны. Уравнения Максвелла позволяют описывать все известные электрические и магнитные явления. Тот факт, что семь уравнений Максвелла увязывают воедино большое число физических законов, да к тому же имеют простую изящную симметричную форму, по сей день вызывает истинное эстетическое восхищение физиков. Людвиг Больцман высказался по поводу уравнений Максвелла словами Фауста (Гете «Фауст»): «Начертан этот знак не бога ли рукой!». Исходя из своих уравнений, после ряда преобразований Максвелл устанавливает, что электромагнитные волны распространяются с той же скоростью, что и свет, и приходит к выводу о том, что свет -- это электромагнитная волна, что было позднее, уже после смерти Максвелла, экспериментально подтверждено Г. Герцем.
Поле возникает как развитие идеи эфира, утверждая принцип близкодействия, отвергая представления о пустоте, о вакууме. Интересно следующее обстоятельство: дальнейшая судьба этих понятий приведет к отрицанию существования эфира и свяжет представление о вакууме с наинизшим энергетическим состоянием уже квантованного поля (поля как совокупности виртуальных частиц). Идея же абсолютного пространства свяжется с представлением о неподвижном эфире как об абсолютной системе отсчета. Однако специальная теория относительности лишит эфир его основного механического свойства -- абсолютного покоя. Ибо, по словам Эйнштейна, «...введение «светоносного» эфира окажется измышлением, поскольку в специальной теории относительности не вводится «абсолютно покоящееся пространство», наделенное особыми свойствами». И эфир, изгоняясь из физической теории, унесет с собой концепцию дальнедействия и концепцию абсолютного пространства и абсолютного времени. Казалось бы, что все предвещало обратную картину! Вот таковы коллизии развития и соперничества различных научных гипотез, взаимовлияние их, когда каждая из соперниц вносит свое конструктивное зерно в противоположную точку зрения, обогащая ее и формируя общее русло идей и направлений в развитии науки.
Список литературы
1. Чанышев А.Н. Курс лекций по древней философии. М., 2008.
2 Азерников В.З. Неслучайные случайности. Рассказы о великих открытиях и выдающихся ученых. М., 2006.
3. Бернал Дж. Наука в истории общества. М., 2007.
4. Юкава X. Лекции по физике. М., 2006.
5. Александров Г.Ф. Концепции современного естествознания. М., 2007.
6. Кудрявцев П.С. Современное естествознание. Курс лекций. М., 2007.
Подобные документы
Понятие эмпирического и теоретического уровней, их различие и методы. Развитие представлений о пространстве и времени в доньютоновский период. Концепция абсолютного пространства и времени И. Ньютона. Понятие биоэтики. "Иерархия" потребностей человека.
контрольная работа [23,3 K], добавлен 27.01.2009Рассмотрение и изучение современных представлений о пространстве и времени. Эволюция базовых понятий пространства, Евклидова геометрия. "Декартовы координаты", положение в пространстве. История развития представлений о времени. Физическая теория времени.
реферат [27,1 K], добавлен 12.04.2009Понятие времени и его измерение, взгляды ученых различных эпох на данный параметр. Четырехмерное пространство и время Вселенной. Возможности путешествий во времени и исследование данной темы на современном этапе. Соотношение черных дыр и времени.
реферат [16,9 K], добавлен 09.04.2011Зарождение неклассического естествознания. Пространство и время в истории философии: гносеологический статус понятий, их отношение к материи. Субстанциальная и реляционная концепции. Пространство и время в классической и не классической картине мира.
реферат [24,5 K], добавлен 13.12.2010Классическая механика Ньютона - ядро классической физики. Работа ученых-физиков с идеальными моделями реальных объектов. Основные положения "лапласовского детерминизма". Пространство и время в классической физике. Типы естественнонаучной рациональности.
реферат [25,0 K], добавлен 25.03.2011Представления о пространстве и времени, формулирующиеся в теории относительности Эйнштейна. Основные закономерности развития биогеоценоза. Взаимодействие между компонентами как важнейший механизм поддержания целостности и устойчивости биогеоценозов.
контрольная работа [150,8 K], добавлен 13.04.2012Изучение понятий пространства (реального, концептуального, перцептуального) и времени как форм существования материи. Ознакомление с принципом относительности Галилея, законами Ньютона, космологической теорией Бруно и координационной системой Декарта.
контрольная работа [28,0 K], добавлен 25.04.2010Суть современных концепций относительности пространства и времени в специальной и общей теориях. Гиперхронологическое историческое пространство, ускорение исторического времени. Раскрытие понятий бифуркаций, фракталов, аттракторов, факторов случайности.
контрольная работа [466,4 K], добавлен 10.12.2009Категории пространства и времени, анализ концепции их относительности. Инвариантность пространственных и временных интервалов как отражение свойств симметрии физического мира. Эволюционная теория относительности. Теория относительности А. Эйнштейна.
реферат [35,2 K], добавлен 11.07.2013Общие представления о пространственных, временных и массовых характеристиках Вселенной. Свойства и развитие суждений о пространстве и времени по современным представлениям, математическое и экспериментальное обоснование их в рамках механики И. Ньютона.
контрольная работа [32,5 K], добавлен 13.07.2009