Симметрия в природе

Противоборство и единство двух великих начал - симметрии и асимметрии, во многом и определяющих гармонию природы, мудрость науки и красоту искусства. Симметрия пространства-времени и законы сохранения. Нарушение симметрии как источник самоорганизации.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 22.07.2010
Размер файла 55,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

20

Сибирский государственный аэрокосмический университет

имени академика М.Ф.Решетнева

Институт менеджмента и социальных технологий

Кафедра управления качеством и сертификации

КУРСОВАЯ РАБОТА

по дисциплине «Концепции современного естествознания»

Тема: Симметрия в природе

Зеленогорск

Содержание

Введение

1. История возникновения учения о симметрии

2. Понятие и виды симметрии

2.1 Понятие симметрии

2.2 Виды симметрии

2.3 Симметрия в искусстве

3. Симметрия и асимметрия

3.1 Симметрия пространства - времени и законы сохранения

3.2 Симметрия и асимметрия живого

3.3 Нарушение симметрии как источник самоорганизации

Заключение

Список использованной литературы

Введение

Организованность систем природы выражается словом порядок (устойчивость систем образования). Противоположность - это хаос. Для описания существующей в природе упорядоченности используют понятие - симметрия (соразмерность, равенство. Она обеспечивает устойчивость системы). Симметрия - смена дня и ночи, смена времен года. Пространственно-временная симметрия (неизменность действия законов природы для всех моментов времени). Отсюда вытекают законы сохранения величин.

Понятие симметрии встречается уже у истоков человеческого знания. На протяжении тысячелетий в ходе общественной практики и познания законов объективной действительности человечество накопило многочисленные данные, свидетельствующие о наличии в окружающем мире двух тенденций: с одной стороны, к строгой упорядоченности, гармонии, а с другой -- к их нарушению.

Люди давно обратили внимание на правильность формы кристаллов, цветов, пчелиных сот и других естественных объектов и воспроизводили эту пропорциональность в произведениях искусства, в создаваемых ими предметах, ввели понятие симметрия.

Его широко используют многие направления современной науки. Принцип симметрии играет важную роль в математике и физике, химии и биологии, технике и архитектуре, живописи и скульптуре, и даже в поэзии и музыке. Отметим, например, симметрию свойственную клиновому листу и бабочке, автомобилю и самолёту, атомной структуре молекул и кристаллов, зданий и бордюров, орнаментов и моделей одежды, ритмическому построению стихотворения и музыки. Таким образом, симметричность творений природы оказывает существенное влияние на творчество человека.

...Симметрия мира - одно из самых впечатляющих представлений современной науки. Движение вправо и влево, вверх и вниз; левое и правое вращение винта, положительное и отрицательное... Каждое понятие в нашем мире имеет свою противоположность.

Идея о том, что левое и правое равноправны, что симметрия между левым и правым есть то же самое, что симметрия относительно зеркальных отражений (ведь при отражении в зеркале правая рука превращается в левую), эта идея восходит еще к Лейбницу. С тех пор ученые убеждены, что физические законы не отдают предпочтения ни левому, ни правому.

Симметрия пространственных отражений говорит о том, что если существует некоторая частица, то обязательно должна существовать и частица, получаемая зеркальным отражением исходной. Если осуществляется некоторый процесс, то процесс, соответствующий его отражению в зеркале, также должен быть физически возможным.

Симметрия проявляется в многообразных структурах и явлениях неорганического мира и живой природы. В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.

А что такое кристалл? Твердое тело, имеющие естественную форму многогранника. Характерная особенность того или иного вещества состоит в постоянстве углов между соответственными гранями и ребрами для всех образов кристаллов одного и того же вещества.

Итак, не удивительно, что люди пришли к убеждению, что все в мире симметрично. И не только в мире, нас окружающем, но и во всей вселенной.

1. История возникновения учения о симметрии

Симметрия является фундаментальным свойством природы, представление о котором, как отмечал академик В.И. Вернадский, «слагалось в течение десятков, сотен, тысяч поколений». «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло ее в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но в известной мери и уверенностью человека в большей пригодности для практики правильных форм». Это слова другого нашего замечательного соотечественника, посвятившего изучению симметрии всю свою долгую жизнь, академика А.В.Шубникова.

Первоначальное понятие о геометрической симметрии как о гармонии пропорций, как о «соразмерности», что и означает в переводе с греческого слово «симметрия», с течением времени приобрело универсальный характер и было осознано как всеобщая идея инвариантности (т.е. неизменности) относительно некоторых преобразований. Таким образом, геометрический объект или физическое явление считаются симметричными, если с ними можно сделать что-то такое, после чего они останутся неизменными.

Например, пятиконечная звезда, будучи повернута на 72° (360°:5), займет первоначальное положение, а ваш будильник одинаково звенит в любом углу комнаты. Первый пример дает понятие об одном из видов геометрической симметрии - поворотной, а второй иллюстрирует важную физическую симметрию - однородность и изотропность (равнозначность всех направлений) пространства.

Благодаря последней симметрии все физические приборы (в том числе и будильник) одинаково работают в разных точках пространства, если, конечно, не изменяются окружающие физические условия. Легко вообразить, какая бы царила на Земле неразбериха, если бы эта симметрия была нарушена!

Таким образом, не только симметричные формы окружают нас повсюду, но и сами многообразные физические и биологические законы гравитации, электричества и магнетизма, ядерных взаимодействий, наследственности пронизаны общим для всех них принципом симметрии. «Новым в науке явилось не выявление принципа симметрии, а выявление его всеобщности»,-- писал Вернадский.

Пристальное внимание уделяли симметрии Пифагор и его ученики. Основное положение пифагорейской философии, согласно Аристотелю, состоит в том, «что число есть сущность всех вещей и организация вселенной в ее определениях представляет собою вообще гармоническую систему чисел и их отношений». Исходя из учения о числе пифагорейцы дали первую математическую трактовку гармонии, симметрии, которая не потеряла своего значения и в наши дни.

Взгляды Пифагора и его школы получили дальнейшее развитие в платоновском учении о познании. Особый интерес представляют взгляды Платона на строение мира, который, по его утверждению, состоит из правильных многоугольников, обладающих идеальной симметрией. Для Платона характерно соединение учения об идеях с пифагорейским учением о числе.

Действительно, еще Платон мыслил атомы четырех стихий -- земли, воды, огня и воздуха -- геометрически симметричными в виде правильных многогранников. И хотя сегодня «атомная физика» Платона кажется наивной, принцип симметрии и через два тысячелетия остается основополагающим принципом современной физики атома. За это время наука прошла путь от осознания симметрии геометрических тел к пониманию симметрии физических явлений.

Среди более поздних естествоиспытателей и философов, занимавшихся разработкой категории симметрии, следует назвать Р. Декарта и Г. Спенсера.

Р.Декарт писал: «Каково бы ни было то неравенство и беспорядок, которое, как мы можем предположить, были с самого начала установлены богом между частицами материи, почти все эти частицы должны по законам природы приблизиться к средней величине и среднему движению». Таким образом, по Декарту, бог, создав асимметричные тела, придал им «естественное» круговое движение, в результате которого они совершенствовались в тела симметричные.

Характерно, что к наиболее интересным результатам наука приходила именно тогда, когда устанавливала факты нарушения симметрии. Следствия, вытекающие из принципа симметрии, интенсивно разрабатывались физикам в прошлом веке и привели к ряду важных результатов. Такими следствиями законов симметрии являются прежде всего законы сохранения классической физики.

Понятия симметрии и асимметрии, которыми пользуются в частных науках, далеко не полно отражают существующую в реальном мире симметрию и асимметрию; они развиваются и обогащаются. Как показывает история науки, это понятия, с помощью которых можно объяснить многие явления и предсказывать существование новых, еще не познанных свойств природы.

Симметрия пронизывает буквально все вокруг, захватывая, казалось бы, совершенно неожиданные области и объекты. Дж. Ньюмена, который особенно удачно подчеркнул всеохватывающие и вездесущие проявления симметрии, говорил: «Симметрия устанавливает забавное и удивительное сродство между предметами, явлениями и теориями, внешне, казалось бы, ничем не связанными: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой физикой, скарабеями, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток морских ежей, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности...».

Леонардо да Винчи тоже не обошел своим вниманием и симметрию. Он рассмотрел равновесие шара, имеющего» опору в центре тяжести: две симметричные половины шара уравновешивают друг друга и шар не падает. Как художник он главное внимание уделял изучению законов перспективы и пропорций, с помощью которых выявляются художественные достоинства произведений искусства.

В науку симметрия вошла в 30-х гг. XIX в. в связи с открытием Гесселем 32 кристаллографических классов и появлением теории групп как области чистой математики. Кристаллы наделены наибольшей величиной симметрии из всех реальных объектов, они блещут своей симметрией. Кристаллы -- это симметричные тела, структура которых определяется периодическим повторением в трех измерениях элементарного атомного мотива.

Симметрия является основным предметом изучения кристаллографии. Она -- основной теоретический принцип и практический метод классификации кристаллов. Симметричной в кристаллографии считается фигура, которая делится без остатка на равные и одинаково расположенные части. Величина симметрии определяется наибольшим числом равных и одинаково расположенных частей фигуры, на которые она делится без остатка.

Э.Галуа предложил классифицировать алгебраические уравнения по их группам симметрии. Ф.Клейн предложил взять идею симметрии в качестве единого принципа при построении различных геометрий. Эта идея сделала очевидным тот факт, что принцип симметрии служит той единственной основой, которая может объединить все разрозненные части огромною здания современной математики. Клейн развил свою концепцию в физике и механике. Программа Клейна как задача поиска различных форм симметрии выходит за рамки не только геометрии, но и всей математики в целом, превращается в проблему поиска единого принципа для всего естествознания.

Главенствующую роль в теории играет плоскость симметрии. Недаром знаменитый русский кристаллограф Г.В. Вульф писал о плоскости симметрии как об «основном элементе симметрии».

Итак, в современном понимании симметрия -- это общенаучная философская категория, характеризующая структуру организации систем. Важнейшим свойством симметрии является сохранение (инвариантность) тех или иных признаков (геометрических, физических, биологических и т. д.) по отношению к вполне определенным преобразованиям. Математическим аппаратом изучения симметрии сегодня является теория групп и теория инвариантов.

2. Понятие и виды симметрии

2.1 Понятие симметрии

Одним из важных открытий современного естествознания является тот факт, что все многообразие окружающего нас физического мира связано с тем или иным нарушением определенных видов симметрий.

«Симметрия» (от греческого symmetria - «соразмерность») - понятие, означающее сохраняемость, повторяемость, «инвариантность» каких-либо особенностей структуры изучаемого объекта при проведении с ним определенных преобразований, «трансформаций». Если давать более академичное определение, то симметрия -- это структурная инвариантность относительно заданных трансформаций объекта. Причем, как теперь стало понятно, набор элементарных типовых трансформаций весьма невелик. К ним, прежде всего, относят повороты, переносы и отражения. Так, смотрясь в зеркало, мы получаем симметричное отображение, т.е. образ, в котором сохранено много общего с оригиналом. По принципам симметрии построены многочисленные орнаменты и узоры. Роскошные и разнообразные узоры симметрии характерны для живой природы: животных и растений. В искусстве свойство симметрии традиционно изучается с помощью такого специального понятия, как «гармония».

Слово «симметрия» имеет два значения. В одном смысле симметричное означает нечто весьма пропорциональное, сбалансированное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое.

Второй смысл этого слова - равновесие. Еще Аристотель говорил о симметрии как о таком состоянии, которое характеризуется соотношением крайностей.

«Симметричное обозначает нечто, обладающее хорошим соотношением пропорций, а симметрия - тот вид согласованности отдельных частей, который объединяет их в целое. Красота тесно связана с симметрией», - писал Г. Вейль в своей книге «Этюды о симметрии». Он ссылается при этом не только на пространственные соотношения, т.е. геометрическую симметрию. Разновидностью симметрии он считает гармонию в музыке, указывающую на акустические приложения симметрии.

Зеркальная симметрия в геометрии относится к операциям отражения или вращения. Она достаточно широко встречается в природе. Наибольшей симметрией в природе обладают кристаллы (например, симметрия снежинок, природных кристаллов), однако не у всех из них наблюдается зеркальная симметрия. Известны так называемые оптически активные кристаллы, которые поворачивают плоскость поляризации падающего на них света.

В общем случае симметрия выражает степень упорядоченности какой-либо системы или объекта. Например, круг более упорядочен и, следовательно, симметричен, чем квадрат. В свою очередь, квадрат более симметричен, чем прямоугольник. Другими словами, симметрия - это неизменность (инвариантность) каких-либо свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Например, окружность симметрична относительно любой прямой (оси симметрии), лежащей в ее плоскости и проходящей через центр, она симметрична и относительно центра. Операциями симметрии в данном случае будут зеркальное отражение относительно оси и вращение относительно центра окружности.

В широком смысле симметрия - это понятие, отображающее существующий в объективной действительности порядок, определенное равновесное состояние, относительную устойчивость, пропорциональность и соразмерность между частями целого.

Противоположным понятием является понятие асимметрии, которое отражает существующее в объективном мире нарушение порядка, равновесия, относительной устойчивости, пропорциональности и соразмерности между отдельными частями целого, связанное с изменением, развитием и организационной перестройкой. Уже отсюда следует, что асимметрия может рассматриваться как источник развития, эволюции, образования нового.

Симметрия может быть не только геометрической. Различают геометрическую и динамическую формы симметрии (и, соответственно, асимметрии).

К геометрической форме симметрии (внешние симметрии) относятся свойства пространства - времени, такие как однородность пространства и времени, изотропность пространства, эквивалентность инерциальных систем отсчета и т.д.

К динамической форме относятся симметрии, выражающие свойства физических взаимодействий, например, симметрии электрического заряда, симметрии спина и т.п. (внутренние симметрии). Современная физика, однако, раскрывает возможность сведения всех симметрий к геометрическим симметриям.

Калибровочные симметрии. Важным понятием в современной физике является понятие калибровочной симметрии. Калибровочные симметрии связаны с инвариантностью относительно масштабных преобразований. Под калибровкой, таким образом, первоначально понималось именно изменение уровня или масштаба. Так в СТО физические законы не изменяются относительно переноса (сдвига) системы координат. Траектории движения остаются прямолинейными, пространственный сдвиг остается одинаковым у всех точек пространства. Таким образом, здесь работают глобальные калибровочные преобразования.

Формы симметрии являются одновременно и формами асимметрии. Так геометрические асимметрии выражают неоднородность пространства - времени, анизотропность пространства и т.д. Динамические асимметрии проявляются в различиях между протонами и нейтронами в электромагнитных взаимодействиях, различие между частицами и античастицами (по электрическому, барионному зарядам) и т.д.

2.2 Виды симметрии

В древности слово симметрия употреблялось в значении гармония, красота. Действительно, в переводе с греческого это слово означает соразмерность, пропорциональность, одинаковость в расположении частей.

Осевая симметрия. Две точки А и В называются симметричными относительно прямой m, если эта прямая проходит через середину отрезка АВ и перпендикулярна к нему. Каждая точка прямой m считается симметричной самой себе.

Свойства осевой симметрии.

1. Для любой точки плоскости всегда можно построить симметричную ей точку относительно некоторой прямой.

2. Отрезок соединяющий симметричные точки, перпендикулярен оси симметрии и делится ею пополам.

3. Если отрезки АВ и СD симметричны относительно прямой m, то их длины равны.

4. Если точка А симметрична точке В относительно прямой m, то для любой точки С на этой прямой отрезки АС и ВС равны.

Центральная симметрия.

Две точки А и А1 называются симметричными относительно точки О, если О - середина отрезка АА1. Точка О считается симметричной самой себе.

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре. Точка О называется центром симметрии фигуры. Говорят также, что фигура обладает центральной симметрией.

Простейшими фигурами, обладающими центральной симметрией, является окружность и параллелограмм. Центром симметрии окружности является центр окружности, а центром симметрии параллелограмма- точка пересечения его диагоналей. Прямая также обладает центральной симметрией, однако в отличие от окружности и параллелограмма, которые имеют только один центр симметрии у прямой их бесконечно много - любая точка прямой является её центром симметрии. Примером фигуры, не имеющей центра симметрии, является треугольник.

В конформной (круговой) симметрии главным преобразованием является инверсия относительно сферы. Для простоты возьмём круг радиуса с центром в точке O. Конформная симметрия обладает большой общностью. Все известные преобразования симметрии: зеркальные отражения, повороты, параллельные сдвиги представляют собой лишь частные случаи конформной симметрии.

Главная особенность конформного преобразования состоит в том, что оно всегда сохраняет углы фигуры и сферу и всегда переходит в сферу другого радиуса.

Известно, что кристаллы какого-либо вещества могут иметь самый разный вид, но углы между гранями всегда постоянны.

Зеркальная симметрия. Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой. Достойно удивления, что такие сложные фигуры, как пятиконечная звезда или равносторонний пятиугольник, тоже симметричны. Как это вытекает из числа осей, они отличаются именно высокой симметрией. И наоборот: не так просто понять, почему такая, казалось бы, правильная фигура, как косоугольный параллелограмм, несимметрична. Сначала представляется, что параллельно одной из его сторон могла бы проходить ось симметрии. Но стоит мысленно попробовать воспользоваться ею, как сразу убеждаешься, что это не так. Несимметрична и спираль.

В то время как симметричные фигуры полностью соответствуют своему отражению, несимметричные отличны от него: из спирали, закручивающейся справа налево, в зеркале получится спираль, закручивающаяся слева направо.

Если вы поместите буквы перед зеркалом, расположив его параллельно строке, то заметите, что те из них, у которых ось симметрии проходит горизонтально, можно прочесть и в зеркале. А вот те, у которых ось расположена вертикально или отсутствует вовсе, становятся «нечитабельными».

Винтовая симметрия. В пространстве существуют тела, обладающие винтовой симметрией, т.е. совмещаемые со своим первоначальным положением после поворота на какой-либо угол вокруг оси, дополненного сдвигом вдоль той же оси. Если данный угол поделить на 360 градусов - рациональное число, то поворотная ось оказывается также осью переноса.

2.3 Симметрия в искусстве

Это волнующая тема, которая заслуживает особого разговора.

На определенном этапе своего развития человек начал задаваться вопросом: почему тот или иной предмет является красивым и что является основой прекрасного? Уже в Древней Греции родилось представление о том, что основой прекрасного является Гармония. Красота скульптуры, красота храма, красота картины, симфонии, поэмы... Что между ними общего? Разве можно сравнивать красоту храма с красотой ноктюрна? Оказывается можно, если будут найдены единые критерии прекрасного, если будут открыты общие формулы красоты, объединяющие понятие прекрасного самых различных объектов - от цветка ромашки до красоты обнаженного человеческого тела?  «Формул красоты» известно немало. Уже давно в своих творениях люди предпочитают правильные геометрические формы - квадрат, круг, равнобедренный треугольник, пирамиду и т.д. Из многих пропорций, которыми издавна пользовался человек при создании гармонических произведений, существует одна, единственная и неповторимая, обладающая уникальными свойствами. Эту пропорцию назвали - «золотым сечением» - она же является критерием гармонии и красоты.

Живопись. («Искусство живописи есть не что иное, как искусство выражать невидимое через видимое» Фромантес).

Идея гармонии, основанной на золотом сечении, не могла не коснуться греческого искусства. Природа, взятая в широком смысле, включала в себя и творческий мир человека, искусство, музыку, где действуют те же законы ритма и гармонии. Предоставим слово Аристотелю: «Природа стремится к противоположностям и из них, а не из подобных вещей, образует созвучие…Она сочетала мужской пол с женским. А не каждый из них с однородным, и таким образом первую общественную связь она образовала через соединение противоположностей, а не посредством подобного. Также и искусство, по-видимому, подражая природе, поступает таким же образом. А именно живопись делает изображения, соответствующие оригиналам, смешивая белые, черные, желтые и красные краски. Музыка создает единую гармонию, смешав в совместном пении различных голосов звуки высокие и низкие, протяжные и короткие. Грамматика из смеси гласных и согласных ... создала целое искусство».

Для анализа симметрии изображения лучше взять картину гениального итальянского художника Леонардо да Винчи «Мадонна Литта». Фигуры мадонны и ребенка вписываются в правильный треугольник, который вследствие своей симметричности особенно ясно воспринимается глазом зрителя. Благодаря этому мать и ребенок сразу же оказываются в центре внимания, как бы выдвигаются на передний план. Внутренняя симметрия картины хорошо ощущается.

Всякий раз, когда мы, восхищаемся тем или иным произведением искусства, говорим о гармонии, красоте, эмоциональности воздействия, мы тем самым касаемся одной и той же неисчерпаемой проблемы - проблемы соотношения между симметрией и асимметрией.

Скульптура. Понятие гармонии, симметрии являются основными принципами, лежащими в основе любого скульптурного произведения. Для реального отображения красоты человеческого тела основные правила золотого сечения должны  быть взяты за основу. Рассматривая статуи Аполлона Бельведерского и Венеры Медицейской, видно, что при делении общей высоты в указанном отношении линии деления проходят через естественные членения тела. Все размеры отдельных частей тела получаются путем деления целого по золотому сечению.

Архитектура.  Прекрасные образы симметрии демонстрируют произведения архитектуры. Большинство зданий зеркально симметричны. Это обусловлено их функциональной природой. Общие планы зданий, архитектура фасадов, оформление внутренних помещений, орнаменты, карнизы, колонны, потолки, если их рассматривать с точки зрения присутствующих в них пространственных закономерностей, можно описать той или иной группой симметрии материальных фигур.

Особенно интересно проявление симметрии в древнерусских постройках, в частности в деревянных церквах, которыми издавна славилась Россия. В XVII-XVIII вв. на Руси были распространены так называемые ярусные храмы, завершавшиеся поставленными друг на друга, уменьшающимися по величине срубами. Старая русская архитектура дает много и других примеров использования симметрии. Достаточно назвать колокольни, звонницы, сторожевые башни, внутренние опорные столбы. Более поздние каменные русские храмы, дворцы, садово-парковые ансамбли тоже несут на себе явный отпечаток симметрии.

От нее в первую очередь зависит впечатление, которое производит архитектурное сооружение. Сочетание различных объемов - высоких и низких, прямолинейных и криволинейных, чередование пространств - открытых и закрытых - вот основные приемы, которые использует зодчий, создавая архитектурные композиции. Впечатление от здания во многом зависит и от ритма, т.е. от четкого распределения и повторения в определенном порядке объемов зданий или отдельных архитектурных форм на здании (колонн, окон, рельефов и т.д.).

Как и в любом деле, абсолютизация одной идеи не могла привести ни к чему хорошему. Симметрия в искусстве не составила исключения. «Красота неправильная», асимметрия, стала пробивать себе дорогу в искусстве, ибо сведение красоты только к симметрии ограничивало богатство ее внутреннего содержания, лишало красоту жизни. Истинную красоту можно постичь только в единстве противоположностей. Вот почему именно единство симметрии и асимметрии определяет сегодня внутреннее содержание прекрасного в искусстве. Симметрия воспринимается нами как покой, скованность, закономерность, тогда как асимметрия означает движение, свободу, случайность.

Примером удивительного сочетания симметрии и асимметрии является храм Василия Блаженного на Красной площади в Москве. Эта причудливая композиция из десяти храмов, каждый из которых обладает центральной симметрией, в целом не имеет ни зеркальной, ни поворотной симметрии. Симметричные архитектурные детали собора кружатся в своем асимметричном, беспорядочном танце вокруг его центрального шатра: они то поднимаются, то опускаются, то, как бы набегают друг на друга, то отстают, создавая впечатление радости и праздника. Без своей удивительной асимметрии храм Василия Блаженного просто немыслим!

Музыка. Один из видных деятелей русской и советской музыкальной культуры Э.К.Розенов впервые применил закон «золотого сечения» в музыке. Анализируя «Хроматическую фантазию и фугу» И.С.Баха, ученый пришел к выводу, что «она, оказывается, сотворена по естественным законам природного формообразования, подобно человеческому организму, в котором совершенно также господствуют оба закона - закон золотого сечения и закон симметрии, с такими же мелкими художественными неточностями в индивидуальном строении живого тела, которыми оно отличается от мертвых форм отвлеченного или фабричного происхождения».

В мире, живом и неживом, все связано и все взаимообусловлено, все подчинено одним законам. Весь огромный звукоряд делится на три основные регистра: низкий, средний и высокий, и составляют его 88 звуков. Казалось бы, что их так немного. Но из этих 88 звуков созданы грандиозные симфонии, оратории, величайшие музыкальные творения. Небосвод Вселенной разделен тоже на 88 секторов, которые в свою очередь распределены между 12 уровнями - от низшего к высшему. Каждому уровню соответствует свой знак Зодиака. Таким образом, существует неразрывная связь космоса с музыкальной системой.

3. Симметрия и асимметрия

3.1.Симметрия пространства-времени и законы сохранения

Одной из важнейших особенностей геометрических симметрий является их связь с законами сохранения. Значение законов сохранения (законы сохранения импульса,  энергии, заряда и др.) для науки трудно переоценить. Дело в том, что понятие симметрии применимо к любому объекту, в том числе и к физическому закону. Вспомним, что согласно принципу относительности Эйнштейна, все физические законы имеют одинаковый вид в любых инерциальных системах отсчета. Это означает, что они симметричны (инвариантны) относительно перехода от одной инерциальной системы к другой.

Теорема Нетер. Наиболее общий подход к взаимосвязи симметрий и законов сохранения содержится в знаменитой теореме Э.Нетер. В 1918 г., работая в составе группы по проблемам теории относительности, доказала теорему, упрощенная формулировка которой гласит: если свойства системы не меняются относительно какого-либо преобразования переменных, то этому соответствует некоторый закон сохранения. Рассмотрим переходы от одной инерциальной системы к другой. Поскольку есть разные способы таких переходов, то, следовательно, есть различные виды симметрии, каждому из которых, согласно теореме Нетер, должен соответствовать закон сохранения.

Переход от одной инерциальной системы (ИСО) к другой можно осуществлять следующими преобразованиями:

1. Сдвиг начала координат. Это связано с физической эквивалентностью всех точек пространства, т.е. с его однородностью. В этом случае говорят о симметрии относительно переносов в пространстве.

2. Поворот тройки осей координат. Эта возможность обусловлена одинаковостью свойств пространства во всех направлениях, т.е. изотропностью пространства и соответствует симметрии относительно поворотов.

3. Сдвиг начала отсчета по времени, соответствующий симметрии относительно переноса по времени. Этот вид симметрии связан с физической эквивалентностью различных моментов времени и однородностью времени, т.е. его равномерным течением во всех инерциальных системах-отсчета. Смысл эквивалентности различных моментов времени заключается в том, что все физические явления протекают независимо от времени их начала (при прочих равных условиях).

4. Равномерное прямолинейное движение начала отсчета со скоростью V, т.е. переход от покоящейся системы к системе, движущейся равномерно и прямолинейно. Это возможно, т.к. такие системы эквивалентны. Такую симметрию условно называют изотропностью пространства-времени. Переход же осуществляется с помощью преобразований Галилея или преобразований Лоренца.

(Важно отметить, что физические законы не являются симметричными относительно вращающихся систем отсчета. Вращение замкнутой системы отсчета можно обнаружить по действию центробежных сил, изменения плоскости качания маятника и др. Кроме того, физические законы не являются симметричными и относительно масштабных преобразований систем - т.н. преобразований подобия. Поэтому законы макромира нельзя автоматически переносить на микромир и мегамир.)

Описанные выше 4 вида симметрии являются универсальными. Это означает, что все законы Природы относительно них инвариантны с большой степенью точности, а соответствующие им законы являются фундаментальными.  К этим законам относятся соответственно:

1. Закон сохранения импульса как следствие однородности пространства.

2. Закон сохранения момента импульса как следствие изотропности пространства.

3. Закон сохранения энергии как следствие однородности времени.

4. Закон сохранения скорости центра масс (следствие изотропности пространства-времени).

Как уже было сказано ранее, описанные виды симметрий относятся к геометрическим. Связь с законами сохранения обнаруживают и динамические симметрии. С динамическими симметриями связан закон сохранения электрического заряда (при превращении элементарных частиц сумма электрических зарядов частиц остается неизменной), закон сохранения лептонного заряда (при превращении элементарных частиц сумма разность числа пептонов и антилептонов не меняется) т.д.

Так закон сохранения электрического заряда вытекает из электромагнитной калибровочной симметрии. Ее суть состоит в том, что при масштабных преобразованиях силовые характеристики электромагнитного поля (напряженность электрического поля  и индукция магнитного поля B остаются неизменными. Из этого закона вытекает, в частности, устойчивость электрона - самой мелкой фундаментальной заряженной частицы, способной существовать в свободном состоянии. (По современным данным время жизни электрона не менее 1019 лет).

При рассмотрении действия тех или иных фундаментальных законов не следует забывать, что каждому виду симметрии соответствует своя асимметрия. Асимметричные условия исключают наличие резкой грани между законами и условиями их действия. Поэтому содержание законов всегда должно включать определенные моменты асимметричных условий.

3.2 Симметрия и асимметрия живого

Мелкие организмы, взвешенные в воде, имеют почти шарообразную форму. У организмов, живущих в морских глубинах и подверженных высокому давлению воды, уже иная симметрия: у них вращательная способность свелась к отдельным поворотам вокруг некоторой оси. Филогенетическая эволюция стремилась вызывать наследственное различие между правым и левым, однако ее действие сдерживалось теми преимуществами, которое животное извлекало из зеркально-симметричного расположения своих органов. Этим, по-видимому, можно объяснить, почему наши конечности более подчиняются симметрии, чем наши внутренние органы. Так, расположение сердца и закручивание кишечника человека почти всегда левосторонее.

Современное естествознание пришло еще к одному важному открытию, связанному с симметрией и касающемуся отличия живого от неживого. Дело в том, что «живые» молекулы, т.е. молекулы органических веществ, составляющих живые организмы и полученные в ходе жизнедеятельности, отличаются от «неживых», т.е. полученных искусственно, отличаются зеркальной симметрией. Неживые молекулы могут быть как зеркально симметричны, так и зеркально асимметричны, как, например, левая и правая перчатка. Это свойства зеркальной асимметрии молекул называется киральностью, или хиральностью (греч. cheiros - рука). Неживые киральные морекулы встречаются в Природе как в «левом» так и в «правом» варианте, т.е. они кирально нечистые. «Живые» молекулы могут быть только одной ориентации - «левой» или «правой», т.е. здесь говорят о киральной чистоте живого. Например, молекула ДНК, как известно, имеет вид спирали, и эта спираль всегда правая. У глюкозы, образующейся в организме - правовращающая форма, у фруктозы - левовращающая.

Следовательно, важнейшая способность живых организмов - создавать кирально чистые молекулы. По современным представлениям именно киральность молекул определяет биохимическую границу между живым и неживым.

3.3 Нарушение симметрии как источник самоорганизации

Взаимосвязь симметрии и асимметрии рассматривается современной наукой в различных аспектах, охватывающих саморазвитие материи на всех ее структурных уровнях. Так современное синергетическое видение эволюции Вселенной основано на идее о т.н. спонтанном нарушении симметрии исходного вакуума. Под исходным вакуумом понимают состояние материи до Большого Взрыва, когда вся материя была представлена физическим вакуумом. В настоящее время считается, что истинный физический вакуум - это состояние материи с наименьшей энергией. Идея спонтанного нарушения симметрии исходного вакуума означает отход от общепринятого представления о вакууме как о состоянии, в котором значение энергии всех физических полей равно нулю. Здесь признается возможность существования состояний с наименьшей энергией при отличном от нуля значении некоторых физических полей и возникает представление о существовании вакуумных конденсатов - состояний с отличным от нуля средним значением энергии. Спонтанное нарушение симметрии означает, что при определенных макроусловиях фундаментальные симметрии оказываются в состоянии неустойчивости, а платой за устойчивое состояние является асимметричность вакуума. (Для такого вакуума введен термин «ложный вакуум»). В качестве наглядной иллюстрации можно привести пример со спонтанным нарушением вращательной симметрии (см. рис.1). Та же идея справедлива и в случае не вращательной, а калибровочной симметрии.

В качестве одного из наиболее вероятных сценариев эволюции Вселенной, рассмотренный нами ранее, включает инфляционную стадию (раздувание) от «ложного вакуума» - вакуума, обладающего огромной энергией. Такой вакуум обладает стремление к гравитационному отталкиванию, обеспечивающему его расширение. «Ложный» вакуум представляет собой симметричное, но энергетически невыгодное, а следовательно, нестабильное состояние. В свете инфляционной теории эволюция Вселенной предстает как синергетический самоорганизующийся процесс. Если считать Вселенную замкнутой системой, то процессы самоорганизации могут быть рассмотрены как взаимодействие двух открытых подсистем - физического вакуума и всевозможных микрочастиц и квантов полей. Согласно этой теории в процессе расширения из «суперсимметричного» состояния Вселенная разогрелась до температуры, соответствующей Большому Взрыву. Дальнейшее ее развитие по мере падения температуры пролегало через критические точки бифуркации (ветвления), в которых происходили спонтанные нарушения симметрий исходного вакуума. Схематично этот процесс представляется в следующем (весьма упрощенном!) виде:

1-я бифуркация: нарушение симметрии (тождества) между бозонами и фермионами привело к разделению материи на вещество и поле;

2-я бифуркация: нарушение тождества между кварками и лептонами; симметрия Вселенной нарушается до симметрии, отвечающей сильным взаимодействиям и симметрии, отвечающей электрослабым взаимодействиям; нарушается также симметрия между веществом и антивеществом: частиц вещества рождается больше, и вся наша Вселенная оказывается построенной из вещества;

3-я бифуркация: спонтанное нарушение симметрии электрослабого взаимодействия, что обнаруживается нами в виде различия между электромагнитным и слабым взаимодействием.

4-я бифуркация: возникают протоны и нейтроны.

Дальнейшая эволюция Вселенной приводит к возникновению водорода, гелия, ионизованного газа, звезд, галактик и т.д.

Спонтанное нарушение симметрии вакуума выражается в том, что он отдает энергию на рождение микрообъектов, на приобретение их масс и зарядов, вследствие чего плотность энергии вакуума уменьшается.

Важным здесь является и то, что ход этой эволюции, выбор пути развития в моменты бифуркаций оказался именно таким, что в результате появилась именно такая Вселенная, какую мы наблюдаем, т.е. Вселенная, в которой оказалась возможной жизнь нашего типа и появление самого наблюдателя (антропный принцип).

Асимметрия и жизнь. Открытие киральной чистоты молекул биогенного происхождения проливает новый свет на возникновение жизни на Земле, которое могло быть вызвано спонтанным нарушением существующей до того зеркальной симметрии. Факторами возникновения асимметрии могли быть радиация, температура, давление, воздействие электромагнитных полей и др. Возможно, что жизнь на Земле зародилась в виде структур, схожих с генами современных организмов. Это мог быть акт самоорганизации материи в виде скачка, а не постепенной эволюции. В связи с этим говорят о Большом Биологическом Взрыве.

Исследования показывают, что в ходе развития жизни асимметрия все больше и больше вытесняет симметрию из биологических и химических процессов. Внешне симметричные полушария головного мозга различаются по своим функциям. Явно асимметричным признаком является разделение полов - достаточно «позднее приобретение» эволюции, причем каждый пол вносит в процесс воспроизведения свою генетическую информацию. Симметрия и асимметрия живого проявляются и в важнейших факторах эволюции. Так в устойчивости видов (наследственность) проявляется симметрия, а в их изменчивости - асимметрия.

Заключение

Сфера влияния симметрии (а значит и ее антипода - асимметрии) поистине безгранична. Природа - наука - искусство. Всюду мы видим противоборство, а часто и единство двух великих начал - симметрии и асимметрии, которые во многом и определяют гармонию природы, мудрость науки и красоту искусства.

Симметрия, проявляясь в самых различных объектах материального мира, несомненно, отражает наиболее общие, наиболее фундаментальные его свойства. Поэтому исследование симметрии разнообразных природных объектов и сопоставление его результатов является удобным и надежным инструментом познания основных закономерностей существования материи.

Симметрия, проявляясь в самых различных объектах материального мира, несомненно, отражает наиболее общие, наиболее фундаментальные его свойства.

Поэтому исследование симметрии разнообразных природных объектов и сопоставление его результатов является удобным и надежным инструментом познания основных закономерностей существования материи.

Можно надеяться, что на основе биологических законов сохранения, разнообразных инвариантов, симметрии законов живой природы относительно тех или иных преобразований рано или поздно удастся глубже проникнуть в сущность живого, объяснить ход эволюции, её вершины, тупики, предсказать неизвестные сейчас ветви, теоретически возможные и действительные числа типов, классов, семейств…организмов.

Список использованной литературы

1. Жёлудев И.С. Симметрия и её приложения. - М.: Энергоатомиздат, 1983.

2. Карпенков С.Х. Концепция современного естествознания: Учебник для вузов. - М.: ЮНИТИ, 2000.

3. «Концепции современного естествознания». Лекции для студентов заочного отделения УГАТУ. Уфа, 2005.

4. Сонин А.С. Постижение совершенства: симметрия, асимметрия, диссимметрия, антисимметрия. - М.: ЗНАНИЕ, 1997.

5. Трофимов В. Введение в геометрическом многообразии с симметриями М.: МГУ, 1999.

6. Урманцев Ю.А. Симметрия природы и природа симметрии. - М.: МЫСЛЬ, 1974.

7. Харитонов А.С. Феномен симметрии. - ЮНИТИ, 1999.

8. Хорошавина С.Г. Курс лекций «Концепция современного естествознания». Ростов н/Д: Феникс, 2000.

9. Шубников А.В. Избранные труды по кристаллографии. - М.: НАУКА, 1995.

10. www.numanities.edu.ru

11. www.nrc.edu.ru

12. www.toe-krsh.narod.ru


Подобные документы

  • Понятие симметрии - неизменности структуры, свойств, формы материального объекта относительно его преобразований. Симметрии, выражающие свойства пространства и времени, физических взаимодействий. Примеры симметрии в неживой природе, ее обратимость.

    презентация [312,0 K], добавлен 18.10.2015

  • Симметрия пространства – времени и законы сохранения, калибровочные симметрии. Связь с инвариантностью относительно масштабных преобразований. Открытие киральной чистоты молекул биогенного происхождения. Связь грани между законами и условиями их действия.

    реферат [15,6 K], добавлен 31.01.2009

  • Использование принципов симметрии в математике и физике, химии и биологии, технике и архитектуре, живописи и скульптуре, и даже в поэзии и музыке. Значение симметрии в познании природы. Симметрия на уроках геометрии. Внутренняя симметрия Вселенной.

    презентация [1,8 M], добавлен 07.01.2011

  • Понятие и типы симметрии, ее элементы и основные принципы. Формы и симметрия кристаллических и геологических образований. Граница между живой и неживой природой. Симметрия и ассиметрия в живой природе. Золотое сечение. Симметрия пространства и времени.

    реферат [257,8 K], добавлен 13.01.2012

  • Определение, сущность и сравнение симметрии и асимметрии. История возникновения категорий симметрии как одного из фундаментальных свойств природы, а также анализ ее места в познании и архитектуре. Общая характеристика асимметрии человеческого мозга.

    контрольная работа [30,6 K], добавлен 22.12.2010

  • Фундаментальные законы сохранения (закон сохранения энергии, закон сохранения импульса, закон сохранения момента импульса). Связь законов сохранения с симметрией пространства и времени. Симметрия как основа описания объектов и процессов в микромире.

    реферат [227,7 K], добавлен 17.11.2014

  • Понятие симметрии как неизменности (инвариантности) свойств и характеристик объекта по отношению к каким-либо преобразованиям (операциям) над ним. Значение законов сохранения (импульса, энергии, заряда) для науки. Изотропность пространства-времени.

    курсовая работа [19,5 K], добавлен 04.11.2011

  • Симметрия и ее значения: пропорциональное (сбалансированное) и равновесие. Симметрия природы в физике, ее фундаментальные теории. Законы сохранения: закон изменения и закон сохранения полной энергии, закон сохранения импульса, закон сохранения заряда.

    реферат [24,0 K], добавлен 05.01.2008

  • Иерархия естественно научных законов. Законы сохранения. Связь законов сохранения с симметрией системы. Фундаментальные физические законы, согласно которым при определенных условиях некоторые физические величины не изменяются с течением времени.

    реферат [30,5 K], добавлен 17.10.2005

  • Законы симметрии микромира и макромира. Связи законов сохранения и законов симметрии. Классический детерминизм и вероятностно-статистический детерминизм. Отличие живых систем от неживых. Экологические проблемы современности.

    шпаргалка [29,3 K], добавлен 10.09.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.