Фитогормоны и их влияние на прорастание семян

Изучение приемов, с помощью которых можно воздействовать непосредственно на растительный организм. Методы обработки растений или их семян регуляторами роста. Краткая характеристика фитогормонов, их основные классы и влияние на прорастание семян.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 28.06.2010
Размер файла 44,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

31

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Брянский государственный университет

Естественно-географический факультет

Кафедра ботаники

Курсовая работа

Тема:

«Фитогормоны и их влияние на прорастание семян»

Брянск 2010

Оглавление

Введение

1. Краткая характеристика фитогормонов

2. Главные классы гормонов растений

2.1 Ауксины

2.2 Гиббереллины

2.3 Цитокинины

2.4 Абсцизовая кислота

2.5 Этилен

2.6 Гормоны цветения

2.7 Дормины

2.8 Брассиностероиды

3. Влияние фитогормонов на прорастание семян

Заключение

Литература

Введение

В последнее время при возделывании различных сельскохозяйственных культур все большее внимание уделяется приемам, с помощью которых можно воздействовать непосредственно на растительный организм. К таким приемам относится обработка растений или их семян различными веществами, в частности регуляторами роста.

Не смотря на то, что растение обладает способностью синтезировать гормоны, во многих случаях добавление их извне оказывает на растение положительное действие. Влияние растительных гормонов или их синтетических заменителей проявляется особенно резко тогда, когда уровень содержания их в растении не высок.

В настоящее время общепризнанно, рост и развитие растений регулируется системой фитогормонов, включающей ауксины, гибберелины, кинины и ингибиторы. Каждая группа гормонов имеет свои специфические функции. Фитогормоны по-разному реагируют на различные питательные смеси.

1. Краткая характеристика фитогормонов

Важнейшими представителями эндогенных регуляторов роста растений являются фитогормоны. Это вещества, которые синтезируются в растениях, транспортируются по ним в малых концентрациях и способны вызывать ростовые или формативные эффекты.

Они обладают тремя общими основными свойствами:

1. Гормоны синтезируются в одном из органов растения (молодые листья, почки, верхушки корней и побегов) и транспортируются в другие места, где активируют процессы онтогенеза и роста.

2. Гормоны синтезируются и функционируют в растениях в микро количествах.

3. Гормоны могут вызывать характерные морфологические изменения.

Следовательно, этим веществам можно дать другое, более обобщенное, определение. Фитогормоны - это вещества, действующие в ничтожных количествах, образующиеся в одних органах и оказывающие регулярное влияние на какие-либо физиологические процессы в других органах растения.

Работы многих других ученых (Чайлахян, Саркисова, Полевой, 1982) показали, что система гормональной регуляции во многом определяет характер протекания таких важнейших физиологических процессов, как рост, формирование новых органов, переход растений к цветению и формированию пола цветков, старение листьев, переход в состояние покоя и выход из него почек, клубней, луковиц и т.д.

Процессы роста и морфогенеза тоже являются физиологическими программами, только медленно протекающими. Учитывая выше сказанное, можно дать еще одно определение фитогормонам. Фитогормоны - соединения, с помощью которых осуществляется взаимодействие клеток, тканей и органов и которые необходимы в малых количествах для запуска и регуляции физиологических и морфогенетических программ.

Общим условием для действия любого фитогормона является наличие в клетках специфичных рецепторов. Все фитогормоны вызывают у компетентных клеток сравнительно быстрые физиологические реакции, связанные, очевидно, с мембранами и более медленные изменения, зависящие от синтеза белков и нуклеиновых кислот.

Работы многих ученых показали, что фитогормоны участвуют в регуляции обмена веществ на всех этапах жизни растений -- от развития зародыша до полного завершения жизненного цикла и отмирания. Они определяют характер роста и развития растений, формирования новых органов, габитуса, цветения, старения вегетативных частей, перехода к покою и выхода из него и т.п.

2. Главные классы гормонов растений

Гормоны растений можно объединить в несколько главных классов в зависимости либо от их химической природы, либо от оказываемого ими действия.

2.1 Ауксины

Ауксины - гормоны, вырабатываемые в апикальных меристемах побегов. Для растения вцелом ауксиновый сигнал означает, что побег интенсивно растет и необходимо обеспечивать его потребности, и каждая клетка растения в зависимости от своего положения выполняет эту задачу.

Самый первый эффект ауксинов - аттрагирующий (от латинского "attractio" - "привлечение"). Клетки меристемы "привлекают" к себе питательные вещества.

Аттрагирующий механизм ауксинов не установлен, но наиболее вероятным представляется следующий сценарий событий. Способность клетки к поглощению многих веществ зависит от электрохимического потенциала на мембране. Так, сахароза проникает в клетку через мембрану вместе с Н+-ионом, и чем выше концентрация протонов снаружи от клетки (и чем ниже она внутри), тем больше сахарозы клетка может захватить. Активизация работы Н+-помпы идет на усиление трансмембранного тртанспорта веществ. Таким образом, клетки, нуждающиеся в питательных веществах, создают более сильный перепад концентраций протонов на мембране, увеличивающий их поглотительную способность. Кроме сахарозы, клетки апикальной меристемы аттрагируют аминокислоты, нуклеотиды, неорганические ионы, воду и другие вещества.

Аттрагирующий эффект проявляется в зоне активных делений клеток.

Совместно с цитокининами ауксины вызывают деления клеток, которые также происходят в определенных клетках апекса побега.

В лежащей ниже зоне ауксин вызывает растяжение клеток. Механизм растяжения также активизируется через Н+-помпу.

Клеточная стенка - очень прочное экстрацеллюлярное образование. В общих словах при растяжении происходит снижение прочности клеточной стенки, силы тургорного и осмотического давления приходят в дисбаланс. Протопласт, не сдерживаемый клеточной стенкой, полглощает воду, образует крупные вакуоли и за счет этого объем протопласта увеличивается, а клеточная стенка растягивается.

С растяжением клеток в субапикальном районе связаны более сложные явления - тропизмы. Главная задача растягивающихся клеток - правильно ориентировать растущую верхушку побега в пространстве. При боковом освещении ауксины перераспределяются на теневую сторону, вызывая неравномерное растяжение и наклон в сторону света. Это явление называют фототропизмом (или, что то же самое, гелиотропизмом). Если побег изменил положение в пространстве (наклонился, повален ветром и т.д.), то ауксины перераспределяются на физически нижнюю сторону. Субапикальная зона изгиба стремится вновь направить рост по вертикали. Это явление получило название гравитропизма (или геотропизма). Обычно для побегов характерен отрицательный геотропизм - побег растет по направлению от центра Земли. Корни обладают положительным геотропизмом (к центру Земли).

Кроме того, иногда наблюдается диагеотропный (плагиотропный) рост - перпендикулярно силе тяжести. В качестве примера можно привести рост боковых ветвей ели, подземных корневищ многих растений.

У некоторых растений имеется тигмотропизм (ростовое движение в сторону прикосновения). Это особенно важно для вьющихся лиан, которым необходима опора для роста (вьюнок, фасоль, ипомея, горец вьюнковый, повилика и др.).

Ниже зоны растяжения начинается дифференцировка. Клетки проводящей системы и механических тканей приобретают жесткие клеточные стенки, за счет лигнификации.

После лигнификации клетки теряют способность к растяжению. Более того, если окружающие клетки начнут растягиваться, это может привести к разрыву проводящих сосудов, восстановить которые невозможно. Все это объясняет, почему после полной дифференцировки сосудов изменение направления роста невозможно.

Ауксин важен для регуляции процессов, происходящих в зоне дифференцировки. Его потоками определяется положение будущих пучков проводящей ткани. Под действием ауксина формируются проводящие пучки (преимущественно ксилема), посокльку стеблю необходим приток питательных веществ от корня. На этот процесс помимо ауксина влияет концентрация сахарозы. В опытах с каллусной кльтурой in vitro при низких концентрациях сахарозы (менее 2%) на фоне ауксина формируется ксилема, привысоких - флоэма.

Ауксин влияет на расположение листьев на растении. Каждый молодой лист пока он растет служит источником ауксинов. В апикальной меристеме побегов возникают зоны, которые станут примордиями листьев. В них более активен синтез ауксина. Для окружающих клеток это значит, что место занято, закладывать новый лист рядом уже нельзя. Если нарушить транспорт ауксина из примордия листа в окружающие клетки (например, сделать надрез), то следующий лист закладывается у края надреза. Мутанты с нарушением транспорта ауксина, образуют листья в беспорядке, часто несколько соседних примордиев сливаются воедино, образуя уродливые органы. Нарушаются все ярусы листьев, начиная от семядольных (число которых может доходить до 6 при норме 2) заканчивая органами цветка. Аналогичный эффект можно вызвать добавляя ингибиторы транспорта ауксинов (ТИБК, НФК и др).

Как и меристема побега, меристема листа "привлекает" к себе питательные вещества, обеспечивает себя правильной сетью жилок. Направление закладки сосудистых элементов в листьях также находится под контролем ауксинов, и рассогласуется при нарушениях транспорта ауксина.

В пазухах листьев создаются благоприятные условия для закладки и развития боковых побегов (почек). Однако, у большинства растений боковые побеги не развиваются пока главный побег активно растет. Подавление роста боковых почек в пользу апикальной меристемы получило название апикального доминирования.

Если удалить верхушку побега, рост боковых побегов активизируется. Однако, достаточно наложить на срез агаровый блок с ауксином, боковые почки так и не пробудятся. Растение воспринимает агар с ауксином так же, как активно растущую верхушку побега, и считает новые побеги излишними. Дефицит ауксина, напротив, говорит растению о повреждении верхушки и необходимости ее чем-то заменить. При недостатке ауксинов в растении апикальное доминирование снимается и боковые почки должны пойти в рост.

Случаи утраты верхушки побега в природе довольно часты. Это может быть как абиотическое повреждение (верхушку обломило ураганом, в нее попала молния или она погибла от заморозков), болезнь или нападение вредителей (насекомых, травоядных или человека). При утрате верхушки растение регенерирует побеговую систему за счет снятия апикального доминирования.

Чтобы снять апикальное доминирование не обязательно удалять верхушку, достаточно изменить ее направление роста. Этим приемом часто пользуются садоводы в интенсивном плодоводстве. Если главный вертикальный побег яблони согнуть и подвязать к опоре в горизонтальном направлении, то довольно быстро на нем проснется боковая почка, которая продолжит вертикальный рост. Это же явление наблюдается у роз и шиповника, когда главный побег склоняется к земле под собственной тяжестью и, естественно, изменяет направление роста. Считается, что в зоне перегиба создается механическое напряжение, что приводит к усиленному синтезу этилена, замедлению транспорта ауксинов и к более интенсивному их окислению.

С апикальным доминированием в горизонтальной плоскости можно привести аналогичные примеры. Так, у растений, образующих горизонтальное подземное корневище, часто наблюдаются две фазы роста. Первая - летняя - рост в горизонтальном направлении. Верхушка плагиотропного побега не дает расти боковым горизонтальным корневищам. На следующей стадии - зимой - происходит "разворот" и почка на верхушке побега ориентируется вертикально. Весной из нее начнет развиваться вертикальный побег. Этот "разворот" позволяет снять апикальное доминирование с боковых почек на корневище и начинают расти новые боковые горизонтальне звенья, которые питаются за счет вертикального надземного побега. В силу экстремальных обстоятельств "разворот" апикальной меристемы может случиться и раньше. Например, в случае утраты растением надземной части, когда корневищу приходится образовывать новые надземные побеги с листьями и цветками.

Описанная форма роста характерна для зверобоя продырявленного, тысячелистника, некоторых кислиц, вербейника обыкновенного, купены, отчасти - картофеля и топинамбура.

Цветение - еще один фактор, снимающий апикальное доминирование. Если побег образует верхушечный цветок или соцветие, то ниже начинают расти боковые побеги.

В зоне вторичного утолщения у большинства деревьев умеренных широт возникает кольцо активно делящихся клеток - камбий. Для работы камбия также необходим ауксин, который поступает в камбий через флоэму. Чем интенсивнее растет побег, тем сильнее утолщается нижележащая ось и наоборот. Как мы отмечали, для делений клеток необходимы одновременно ауксины и цитокинины, причем ауксин обеспечивает закладку преимущественно ксилемы.

Ауксин влияет и на корневую систему. Поскольку большое количество ауксинов является сигналом о росте побегов, для обеспечения их роста растение должно образовать побольше корней. Обработка ауксинами вызывает закладку придаточных корней на стебле и боковых корней на главном корне (ризогенез).

Этим эффектом часто пользуются в сельском хозяйстве, обрабатывая трудноукореняемые черенки растворами ауксинов.

2.2 Гиббереллины

Гиббереллины вырабатываются в основном в фотосинтезирующих листьях (однако, могут ситнезироваться и в корнях). Действуют гиббереллины прежде всего на интеркалярные меристемы, расположенные в непосредственной близости от узлов, к которым прикреплены листья.

Наиболее яркий эффект наблюдается при обработке гиббереллинами интеркалярных меристем злаков: растения сильно вытягиваются, механическая прочность соломины понижается и стебель полегает. Кроме того, при действии гиббереллинов у риса и кукурузы не может образоваться фертильная пыльца. Именно поэтому при болезни баканоэ рис практически не давал урожая.

Если пронаблюдать за ростом ветки яблони, липы или других деревьев, выяснится, что апикальная меристема активна только во второй половине лета, когда закладываются почки с листьями и цветками на следующий сезон. Часто апикальная меристема останавливает рост в еще закрытой почке. Рост ветки начинается весной: почка набухает и из нее образуется длинный побег. Весенний рост целиком происходит за счет интеркалярных меристем.

Почки растений не одинаковы. Так, почки каштана, тополя, яблони,березы покрыты почечными чешуями (или катафиллами). Эти чешуи - видоизмененные листья, которые не занимаются фотосинтезом. Междоузлия между почечными чешуями остаются короткими, и в основании побега остается так называетмое почечное кольцо (близко расположенные рубцы от почечных чешуй). Затем начинаются фотосинтезирующие листья, и чем больше площадь листа, тем длиннее междоузлие под ним. Это означает, что крупный зеленый лист производит гиббереллина больше, чем меньший по площади, и подает более мощный сигнал в интеркалярную меристему. Клетки активнее делятся и растягиваются там, где больше гиббереллина, и междоузлие под крупным листом оказывается длиннее. Нефотосинтезирующие почечные чешуи практически не вырабатывают гиббереллина. Поэтому их незачем разделять в пространстве и нет необходимости создавать листовую мозаику. Интеркалярная меристема не работает, образуется почечное кольцо из сближенных рубцов от почечных чешуй.

У крушины, дёрена, облепихи почечных колец не бывает. Их почки прикрыты листьями, которые весной становятся хорошо развитыми зелеными листьями. Они передают гиббереллиновый сигнал вставочным меристемам, за счет растяжения междоузлий возникает листовая мозаика.

Ясень укрывает свои почки катафиллами, однако весной катафиллы зеленеют. (По форме они сильно отличаются от типичных фотосинтезирующих листьев). Вставочные меристемы получают от них слабый сигнал, и расстояния между рубцами несколько увеличивается.

Несколько сложнее физиологический ответ на гиббереллин у розеточных растений. В начале сезона они образуют прикорневую розетку листьев. Несмотря на крупные размеры листьев, междоузлия между ними не увеличиваются. Гиббереллиновый сигнал направляется к верхушке побега, и когда он превышает некоторый порог, эта меристема начинает образование соцветий. В соцветиях розеточных растений листья уступают в размерах прикорневым, но междоузлия на цветущем побеге гораздо длиннее. Это обусловлено гибберелиновыми сигналами, поступающими в интеркалярные меристемы из ниже лежащих листьев розетки.

Биосинтез гиббереллинов можно подавить с помощью некоторых ретардантов (один из таких агентов - паклобутразол). Паклобутразол широко используется при выращивании растений. Слишком большая высота иногда бывает нежелательной. Например, крупные цветки на коротких цветоножках (т.е. в плотных соцветиях) смотрятся более эффектно, чем на длинных. Если при выращивании высокорослых сортов вовремя провести обработку ретардантом, то получатся "искусственные карлики". Так, из Голландии часто поставляют "карликовые" хризантемы, каланхоэ, горечавки и др. растения. Они пользуются большим спросом, однако после продажи ретарданты перестают действовать и рост растений нормализуется.

Один из самых ранних эффектов, вызываемых гиббереллинами - это мобилизация запасных питательных веществ при прорастании семян. Лучше всего этот процесс изучен у злаков (ячменя, ржи, пшеницы), поскольку имеет важное практическое значение для производителей пива.

Зерновка злаков состоит из зародыша, эндосперма и семенной кожуры. Запас питательных веществ сосредоточен в эндосперме в виде крахмала. К моменту созревания зерна крахмалистый слой уже не содержит живых клеток. На периферии эндосперма остается лишь тонкий слой живых клеток, богатых запасными белками - алейроновый слой. Зародыш злаков контактирует с эндоспермом щитком. При прорастании щиток выделяет гиббереллин. Он означает, что зародыш "проснулся", ему нужны питательные вещества. Гиббереллины диффундируют через зону с крахмальными зернами к алейроновому слою эндосперма. В живых клетках алейронового слоя начинается синтез матричных РНК для ферментов, разрушающих крахмал - амилаз. (Промоторы генов амилаз содержат консенсус, который узнают специфические транскрипционные факторы GAMyb, индуцированные гиббереллинами).

Белковые гранул (алейрон) растворяются: запасной белок разрушается до отдельных аминокислот. Аминокислоты служат строительным материалом для синтеза амилаз. Эти ферменты поступают из алейронового слоя к крахмальным зернам. Крахмал разрушается до мальтозы и глюкозы, а эти сахара впитывает щиток и передает остальным тканям зародыша. Вот таким длинным путем осуществляется аттрагирующий эффект гиббереллинов.

Процесс разрушения крахмала в семенах злаков очень важен для пивоварения. Чтобы получить пиво, семена ячменя проращивают, выжидают, когда крахмал разрушится, а затем вываривают проростки в кипящей воде. Экстракт упаривают и получают темную сладкую массу - солод. Качество солода зависит от жизнеспособности зародышей и от того, насколько хорошо они вырабатывают гиббереллины. Чем ниже всхожесть семян, тем хуже солод.

Теперь благодаря открытию гиббереллинов можно получать качественный солод из плохо прорастающих семян - достаточно их обработать слабым раствором гиббереллинов, как начнется разрушение крахмала. Причем даже наличие зародыша оказывается не обязательным: обломки семян также пригодны для производства солода. Сильно ускорился и сам процесс получения солода. Если в старину на это уходило более недели, то сейчас достаточно двух-трех дней.

Еще один пример аттрагирующего действия гиббереллинов - стимуляция развития бессемянных плодов. Особенно это важно при выращивании бескосточковых сортов винограда. Если применить гиббереллин, ягоды получаются более крупными и урожай возрастает.

Гиббереллины стимулируют прорастание не только семян злаков, но и других растений. У подсолнечника и тыквы эти гормоны запускают разрушение запасных жиров и их окисление до сахаров, у бобовых мобилизуют гранулы запасных белков и т.д. Именно поэтому рекомендуют обрабатывать гиббереллином семена, клубни и луковицы перед посадкой: увеличивается % прорастания, рост становится более активным.

С помощью гиббереллина можно вызвать изменение пола у растений. В 1970-х годах под руководством М.Х.Чайлахяна были проведены исследования на огурцах и конопле. Огурцы образуют как мужские, так и женские цветки на одном растении, а конопля относится к типично двудомным растениям (мужские и женские цветки на разных экземплярах). Обработка гиббереллинами вызывала увеличение % мужских растений у конопли и усиливала закладку мужских цветков на огурцах. Гормоном-антагонистом в этих экспериментах выступал цитокинин, который вызывал образование женских цветков.

Однако, опыты, проведенные в США на кукурузе показали обратный эффект: при обработке ГК3 за 8-9 дней до мейоза в мужской метелке образовались женские цветки и семена, а обработка за 3 дня до мейоза приводила к мужской стерильности у кукурузы. Мужскую стерильность можно вызывать гиббереллином также у риса.

Иногда проявление пола зависит не только от вида, но и от генетической линии, к которой принадлежит растение. Например, обработка гиббереллинами томатов дикого типа вызывала образование избыточного числа гнезд в завязях (стимулировала женское развитие). У мутантов томата stamenless, лишенных тычинок, гиббереллин вызывал нормализацию андроцея, т.е. стимулировал развитие мужской сферы в цветке.

2.3 Цитокинины

Цитокинины оказались во многом похожими на первую из известных групп растительных гормонов - на ауксины, однако были и существенные отличия. Главное - у цитокининов совершенно иная точка синтеза. Если ауксины синтезируются в апексе побега, то цитокинины - биохимический "маркер" кончика корня. Ауксин транспортируется по растению сверху вниз и активно, а цитокинин - снизу вверх и пассивно.

Аттрагирующий эффект. Кончик корня для своего роста нуждается в питательных веществах. Минеральных солей и воды у корня в достатке, поэтому необходимо "притягивать" продукты фотосинтеза: сахара, аминокислоты и др. Этот эффект проявляется в зоне деления (т.е. в апикальной меристеме) корня.

Иногда цитокинины называют гормонами "омоложения" растительных тканей. Если обработать цитокинином лист, готовящийся к листопаду, он еще долго будет оставаться зеленым. Этот эффект был настолько впечатляющим, что физиологи растений считали "омоложение" - главным эффектом цитокининов. Однако при более внимательном рассмотрении окажется, что это - всего лишь аттрагирующий эффект. В норме перед листопадом все белковые молекулы листа разрушаются и в виде аминокислот отправляются на зимнее хранение в корень. К моменту листопада в тканях листа почти не остается азота, который был бы доступен метаболизму. Оттекают из осеннего листа и другие органические вещества, следовательно, мы имеем дело не столько со старением, сколько с запрограммированной гибелью листа от истощения (заметим, что вечнозеленые листья тропических растений обычно остаются живыми в 3-5 раз дольше, чем листья растений умеренных широт). Зимой большая листовая поверхность опасна, поэтому происходит листопад, а питательные вещества депонируются в корне.

Если ввести в лист радиоактивный глицин и обработать одну из частей листа цитокинином, метка быстро соберется в обработанной половине листа. Нормальная физиологическая реакция состоит в том, чтобы передать питательные вещества ближе к корню (т.е. источнику цитокининов). Так как в эксперименте источником цитокининов оказалась соседняя половина листа, метка переместилась именно туда.

Таким образом, цитокинин не омолаживает лист, а просто не дает ему погибнуть от истощения, притягивая и удерживая в тканях питательные вещества.

Цитокинин и дифференцировка клеток. В зоне дифференцировки корня цитокинины способствуют образованию проводящей системы. Поскольку корень нуждается в продуктах фотосинтеза, которые по растению разносит флоэма, цитокинины (гормоны корневого благополучия) вызывают образование преимущественно элементов флоэмы.

Цитокинин рассматривается тканями как запрос на фотоассимиляты. Если ткань в принципе способна образовать хлоропласты, то даже в темноте под действием цитокинина можно добиться синтеза хлорофилла. Так, в семялодях тыквы происходит дифференцировка фотосинтезирующих тканей, в клетках пластиды превращаются в хлоропласты.

Распространяется цитокинин вверх с ксилемным током. Поскольку ксилема - мертвая ткань, она не может обеспечить ни активного транспорта, ни полярности: для этого нужны живые мембраны. В отличие от ауксинов, цитокинины транспортируются пассивно и неполярно.

О том, что цитокинины содержатся в ксилеме, догадывался еще Скуг. Если сердцевинную паренхиму стебля не отделять от слоя ксилемы, то некоторое время клетки паренхимы могли делиться (это наблюдение было сделано еще до открытия цитокининов).

В зоне вторичного утолщения цитокинины стимулируют работу камбия и образование новых флоэмных элементов.

Повышенная концентрация цитокининов говорит растению о благополучном развитии корневой системы. Это означает, что нет необходимости в новых корнях. Т.е. цитокинины подавляют рост боковых корней.

С другой стороны, нужны побеги, которые образуют новые листья и позволят лучше снабжать растущие корни. Под действием цитокининов начинают расти боковые почки на побегах. Таким образом, цитокинины снимают апикальное доминирование, вызванное ауксинами.

Заметим, что ауксины и цитокинины - антагонисты в процессе регуляции развития боковых почек. Однако, в другом процессе - клеточных делений - они синергисты (т.е. их совместное действие усиливаеся).

Традиционно упоминается реакция устьичных клеток на цитокинин: если вода поступает в лист из корня (т.е. обогащена цитокининами), устьица открываются. Если вода поступает из других органов, она бедна цитокининами (богата абсцизовой кислотой) и происходит закрывание устьиц.

Цитокинины способствуют росту бессемянных плодов. Ситуация очень напоминает соответствующий эффект ауксина. В молодом зародыше очень рано появляется корневой полюс, который начинает синтезировать цитокинины. Плод с семенами, естественно, содержит больше цитокининов, чем бессемянный. При добавлении цитокининов извне, растение считает, что в бессемянном плоде зародыши есть и проявляется аттрагирующий эффект.

2.4 Абсцизовая кислота

Абсцизовая кислота появляется в клетке в ответ на изменение состояния воды. В обычных условиях это изменение вызывается тремя факторами:

1. Подсушиванием.

2. Повышением концентрации веществ в клетке.

3. Охлаждением.

Во всех трех случаях вода оказывается для клетки менее доступной, т.е. наблюдается водный дефицит.

Для нормальной жизнедеятельности все молекулы клетки должны находится в определннных условиях оводнения. Белки и нуклиновые кислоты удерживают воду с помощю водородных связей. Кроме того в клетке поддерживается определенная ионная сила, которая также важна для поддержания конформации белков и нуклиновых кислот.

Нехватка воды и повышениие концентрации ионов могут привести к денатурации биологически активных молекул. При повторном увлажнении вернуть им активность сложно. Поэтому клетка должна принять меры, чтобы ДНК, РНК и белки сохраняли свою структуру (конформацию). Этим и обусловленны эффекты АБК на клеточном уровне.

В клетке повышается конценрация осмотически активных веществ. В ответ на абсцизовую кислоту повышается уровень аминокислоты оксипролина, сахарозы и других низкомолекулярных веществ. Осмотическое давление увеличивается, а это препятствует потере воды. Если в окружающей среде есть вода, она начинает активнее поступать в клетку. Кроме этого в клетках появляется небольшой белок, способный образовать особенно много водородных связей с водой. Известно, что вода из водяных "шуб", в которые одеты макромолекулы, испаряется очень неохотно. Маленький белок названн осмотином. В клетках можно увидеть даже появление гранул, состоящих из этого белка.

В ответ на АБК в клетке синтезируются полиамины (спермидин, путресцин). Эти вещества обладают положительным зарядом за счет протонированных атомов азота. Молекулы ДНК и РНК заряженны отрицательно, поэтому они легко ассоциируются с молекулами полиаминов. Комплексы нуклиновых кислот с полиаминами более устойчивы как к изменению ионной силы, так и к обезвоживанию. Синтез новых ДНК и РНК под действием АБК прекращается, клетка переходит в состояние покоя.

Не менее вреден для растительной клетки холод. Вода начинает кристаллизоваться, нарушая структуру мембран. Поэтому главная задача клетки при охлаждении - не допустить кристаллизации воды. Кроме того, существует эффект вымораживания солей: вещества растворенные в воде не включаются в состав кристалов льда, и в незамерзшей части раствора их концентрация повышается, т.е. увеличивается ионная сила (как при засухе). Похожие проблемы вызывают похожие "ответные действия" на стресс: останавливается синтез белков, ДНК и РНК, накапливаются полиамины, оксипролин, сахара и осмотин. Сахара и осмотин припятствуют образованию кристаллов льда в переохлажденной клетке: твердая вода становится аморфной, лед не повреждает мембраны. Биосинтез окрашенных соединений - антоцианов - также зависит от уровня АБК в растениях. При понижении температуры уровень АБК повышается, растения приобретают красную или фиолетовую окраску, хотя физиологический смысл этой реакции оастется не понятным.

Мутантные растения с нарушенным синтезом АБК, быстро гибнут при легкой засухе и при слабых заморзках. Хотя все защитные механизмы имеются, они не включаются без абсцизовой кислоты. Если перед неблагоприятным воздействием в мутантное растение ввести АБК, его устойчивость повышается.

Что бы бороться с водным дифицитом, нужно прежде всего закрыть устьица. Действительно, АБК в течении 10-15 минут закрывает устичные щели у самых различных растений. Водный диффицит может наблюдаться не в листе а в корнях. Тогда корень подает сигнал через АБК и устьица закрываются. В сильную засуху растение сбрасывает старые (нижние) листья, стремясь избавится от лишней испаряющей поверхности. Только в этом случае АБК отвечает за листопад. Повторим, что осенний листопад у растений умеренных широт находится под контролем этилена.

При водном дефиците должны остановиться процессы роста (ведь на 95-98 % органы растений состоят из воды). Действительно, АБК угнетает растяжение клеток, вызванное ауксином и приостанавливает транспорт самого ауксина.

Абсцизины могут появляться в ответ на увеличение концентрации некоторых веществ снаружи от клетки. Это могут быть сахара, которые образуются в листьях активно растущих веток. Действительно, в молодых ветках яблони содержание АБК повышенно. Ветка в середине лета впадает в состояние физиологического покоя, мы не наблюдаем видимого роста (т.е. растяжения клеток под действием ауксина или гибберелина). Но клеточные деления все равно происходят. Меристемы продолжают работать. В результате на насыщенном АБК побеге развиваются почки - побеги будущего года. Из физиологического покоя растение сложно вывести внешними факторами. Высокий уровень АБК не дает транспортироваться ауксинам из апикальной почки, поэтому нет апикального доминирования: боковые почки развиваются в пазухах всех листьев.

АБК продолжает действовать на почки в течении всего лета. Заканчивается ее действие у разных растений в разное время. У деревьев умеренной зоны действие АБК прекращается в зимние месяцы. У конского каштана действие АБК прекращается осенью, поэтому в теплую осень почки, освободившиеся от абсцизинов, открываются и деревья повторно цветут. У других растений высокое содержание АБК держится до заморзков, а то и до января-февраля. Только тогда АБК может начать разрушаться.

Разрушению АБК препятствует низкая температура воздуха. Физиологи говорят, что наступила фаза вынужденного покоя. Вынуждают покоится растение неблагоприятные внешние факторы (низкая температура или недостаток воды). Как только их действие ослабеет, АБК разрушается и начинается видимый рост. Поэтому во второй половине зимы почки охотно распускаются если перенести растения в теплое помещение.

2.5 Этилен

Выделение этилена тесно связано с механическим воздействием на клетки растений. Возьмем пример ответа проростка гороха, который наблюдал Нелюбов. Пока росток не достиг поверхности, нужно защищать нежные клетки верхушечной меристемы от повреждения. Поэтому происходит изгиб и образование апикальной петельки. Сквозь почву растет не меристема, а более прочный нижележащий участок.

Когда на пути проростка появляется механическое препятствие (камень), проросток выделяет больше этилена, рост в длину приостанавливается и начинается утолщение. Проросток стремится преодолеть препятствие, усилив давление. Если это удалось, концентрация этилена падает и рост в длину восстанавливается. Но если препятствие слишком крупное, то продукция этилена еще больше усиливается. Проросток отклоняется от вертикали и огибает камешек.

В воздушной среде концентрация этилена падает, проростки разгибают апикальную меристему и начинается развитие листьев.

Формирование и созревание плодов.

Начало жизни плода лежит еще в цветке, точнее в завязи. На поверхности рыльца попадают пыльцевые зерна, они начинают прорастать и механически давят на проводниковую ткань столбика, что бы достичь семязачатков, спрятанных в глубине пестика. Естественно, что при прорастании пыльцы ткани столбика начинают выделять этилен.

Разные части цветка по-разному отвечают на сигнал этилена. Так, все органы, привлекавшие насекомых-опылителей либо отмирают, либо меняют окраску. В считанные часы после опыления лепестки ипомеи теряют тургор и увядают. У листочков околоцветника лилии в основании активизируется отделительный слой, и они опадают (сравните с явлением листопада). У медуницы меняется рН (кислотность) вакуолярного сока и цветки из розовых превращаются в синие. У белокрыльника (Calla palustris) этилен вызывает изменение цвета покрывала соцветия с белого на зеленый. В дальнейшем растение использует покрывало как дополнительный источник фотоассимилятов для развивающихся плодов. (Заметим, что в одних случаях этилен вызывает разрушение хлорофилла, пожелтение и опадание листьев, тогда как в других, способствует усилению фотосинтеза).

Тычинки при действии этилена увядают, а завязи начинают активно расти, привлекая новые питательные вещества.

Особенно важен этилен на последнем этапе созревания сочных плодов. Здесь "играют" практически все рассмотренные эффекты. Плод останавливается в росте (как и проросток наткнувшийся на препятствие), клетки плода начинают выделять в апопласт пектиназы - плоды становятся мягкими. Кроме того, образуются физиологически активные фрагменты пектина - олигосахарины (см. далее). В ножках плодов активизируется отделительный слой и образуется раневая перидерма (как при листопаде), меняется рН - плоды становятся менее кислыми, а так же меняется их окраска с зеленой на более желтую или красную (как у лепестков некоторых растений).

Заметим, что раньше других созревают и опадают поврежденные плоды. Механический стресс вызывают птицы, личинки насекомых или фитопатогенные грибы. Как в случае листьев, растение стремится отбросить некачественный плод, чтобы остальные плоды оказались по возможности здоровыми.

Созревание плодов под действием этилена - это такая же упреждающая физиологическая реакция, как листопад. Сочные плоды распространяются птицами и млекопитающими, которые повреждают плоды при поедании, и растение заранее продуцирует этилен.

Свойство ускорять созревание плодов было обнаружено у этилена давно, еще в 20-е годы и с тех пор его широко используют. При транспортировке важно, чтобы плоды оставались прочными и зелеными. Для этого их перевозят в проветриваемой таре, оберегая плоды от механических повреждений, вызывающих синтез этилена. Кроме того, биосинтез этилена замедляется при пониженной температуре и при высокой концентрации углекислоты в воздухе. В принципе можно было бы применять и ингибиторы биосинтеза этилена, если бы не их токсичность для человека. Единственное место применения ингибиторов - хранение срезанных цветов. В Голландии цветы ставят не в обычную воду, а в специальный раствор, который помимо минеральных солей, продуктов фотосинтеза и антисептиков содержат ингибиторы синтеза этилена. С помощью таких добавок торговцам удается сохранять букеты свежими в течении многих дней.

Чтобы этилен не образовывался в плодах, получают мутанты с нарушенным биосинтезом этилена. Уже получены сорта томатов, созданные на основе таких мутантов. Эти томаты можно очень долго хранить и перевозить на далекие расстояния. Незадолго до продажи их обрабатывают этиленом и плоды быстро созревают. Однако, такая технология заметно снижает вкусовые качества плодов.

Существует поговорка, что одно гнилое яблоко портит целую бочку. Это действительно так. Гнилое яблоко служит источником этилена, который вызывает размягчение тканей у остальных яблок. Более того, каждый плод начинает вырабатывать свой этилен по мере созревания и в бочке начинается "цепная реакция" производства этилена.

2.6 Гормоны цветения

Гормонами цветения считают флориген и верналин. Предположение о существовании особого фактора цветения высказал в 1937 русский исследователь М.Чайлахян. Позднейшие работы Чайлахяна позволили сделать вывод, что флориген состоит их двух главных компонентов: гиббереллинов и еще одной группы факторов цветения, названных антезинами. Для зацветания растений необходимы оба этих компонента.

Предполагается, что гиббереллины необходимы длиннодневным растениям, т.е. таким, которым для зацветания требуется достаточно длительный светлый период суток. Антезины же стимулируют цветение короткодневных растений, зацветающих лишь тогда, когда длина дня не превышает определенного допустимого максимума. По-видимому, антезины образуются в листьях.

Гормон цветения верналин (выявленный И.Мельхерсом в 1939) необходим, как полагают, двулетним растениям, нуждающимся на протяжении некоторого времени в воздействии низких температур, например зимних холодов. Он образуется в зародышах прорастающих семян или в делящихся клетках верхушечных меристем взрослых растений.

2.7 Дормины

Дормины - это ингибиторы роста растений: под их воздействием активно растущие вегетативные почки возвращаются в состояние покоя. Это один из последних открытых классов фитогормонов. Они были обнаружены почти одновременно, в 1963 и 1964, английскими и американскими исследователями. Последние назвали главное выделенное ими вещество «абсцизин II». По своей химической природе абсцизин II оказался абсцизовой кислотой и идентичен дормину, открытому Ф.Вейрингом. Возможно, он также регулирует опадение листьев и плодов.

Синтетические ретарданты. Под действием некоторых синтетических фитогормонов, созданных в последние полвека, укорачиваются междоузлия растений, стебли становятся более жесткими, а листья приобретают темно-зеленую окраску. Повышается устойчивость растений к засухе, холоду и загрязнению воздуха. У некоторых культурных растений, например у яблонь или азалий, эти вещества стимулируют зацветание и тормозят вегетативный рост. В плодоводстве и при выращивании цветов в теплицах широко применяются три таких вещества - фосфон, цикоцел и алар.

2.8 Брассиностероиды

Они взаимодействуют не только с ауксинами, но и с гиббереллинами, усиливая растяжение клеток.

При повреждении биосинтеза брассиностероидов проростки заметно уменьшаются в длине. Кроме того, без брассиностероидов растения неспособны удерживать апикальную петельку в согнутом состоянии, семядоли преждевременно раскрываются, биосинтез хлорофилла идет в темноте. Все эти реакции не характерны для растений, выращенных без света. Поэтому обсуждают участие брассиностероидов при передаче световых сигналов (см. ниже) и "перекрестный разговор" путей фоторецепции и брассиностероидов.

Интересно, что брассиностероиды регулируют процессы клеточной дифференцировки. У мутантов bri 1 нарушено формирование столбчатого мезофилла. Кроме того, уменьшено количество проводящих элементов ксилемы. Как и в случае растяжения, акусины запускают процесс дифференцировки ксилемных элементов. В этом процессе можно выделить три стадии: 1) первичная экспрессия генов, приводящая к накоплению фенилаланин-аммикалиазы (ФАЛ) и гидроскилазы коричной кислоты (ГКК); 2) остановка экспрессии этих генов и переориентация актиновых филаментов; 3) вторичный запуск синтеза ФАЛ и ГКК с дальнейшей сильной лигнификацией и программированной гибелью клеток. Оказалось, что переход от стадии 2 к стадии 3 невозможен без брассиностероидов.

Однако действие на корневую систему брассиностероидов и ауксинов заметно различается: если ауксины стимулируют образование боковых корней, то брассиностероиды ингибируют их образование.

В больших дозах брасииностероиды сдерживают рост и повышают устойчивость к неблагоприятным внешним факторам (перегреву, заморозкам, засухе, инфекции). Этими эффектами пользуются в сельском хозяйстве. Препарат "Эпин", который содержит эпибрассинолид, помогает вырастить более крепкие и здоровые растения.

3. Влияние фитогормонов на прорастание семян

Фитогормоны обладают полифункциональным действием и, конечно же, их активность влияет на всхожесть семян.

1)Ауксины.

Роль ауксинов в процессах прорастания недостаточно ясна. Лаквилл (Великобритания, 1952) показал, что по мере выхода семян яблони из покоя в них возрастает содержание аукси-ноподобных веществ, однако Николаева (СССР, 1967) установила, что находящиеся в состоянии покоя семена бересклета содержат значительные количества индолилуксусной кислоты (ИУК, одно из соединений класса ауксинов), и содержание ИУК уменьшается по мере выхода семян из покоя. Обнаружить ИУК в семенах яблони ей не удалось.

У многих видов растений экзогенное («наружное») применение ауксинов задерживает прорастание семян, что является одним из оснований для использования аналогов ауксинов в качестве гербицидов против сорняков.

2)Гиббереллины.

На многих объектах было установлено увеличение содержания гиббереллинов в семенах по мере их выхода из состояния покоя. Гиббереллины в растении существуют в большом количестве форм, из них наиболее тесно связаны с прорастанием семян гиббереллины А3, А4, А7.

При нарушении покоя семян персика при стратификации (искусственном проращивании во влажном и охлажденном субстрате) наблюдается увеличение содержания гиббереллинов А3 и А4, однако начиная с середины стратификационного периода отмечается лишь рост содержания формы А3.

При стратификации семян яблони в середине этого процесса отмечается возрастание концентрации гиббереллина А4, однако в конце она падает до начального уровня. Уровень активности гиббереллина А, изменяется незначительно и несколько уменьшается на последней стадии.

В ряде работ показано ускорение прорастания многих видов семян в результате их экзогенной обработки гиббереллином. Гиббереллин А3 ускоряет прорастание семян многих видов капусты, баклажана, нериллы, антирринума, примулы, кальцеолярии и т. д. Обработка гиббереллином А3 семян сельдерея неэффективна, а гиббереллинами А4 и А, -- ускоряет их прорастание. У семян салата действие гиббереллина А3 было примерно в 6 раз слабее, чем гиббереллина А4.

3) Цитокинины.

Цитокинины нельзя отнести к числу гормонов, существенно влияющих на покой семян, однако, действуя вместе с другими фитогормонами, они уже играют важную роль в процессах, связанных с покоем и прорастанием семян. Существует большое количество данных, свидетельствующих о том, что содержание в семени цитокининов, как и гиббереллинов, возрастает по мере окончания периода покоя, хотя характер изменений в содержании обоих фитогормонов на этой стадии несколько различается. Установлено, что к середине стратификационного периода содержание цитокининов, как и гиббереллинов, увеличивается, однако на последнем этапе оно вновь снижается до первоначального уровня.

В отличие от гиббереллинов, экзогенное применение цитокининов реже прерывает период покоя. Они оказывают довольно сильное стимулирующее действие на прорастание семян яблони и арахиса. Наиболее сильное стимулирующее действие цитокининов на семена салата отмечается при высокой температуре в темноте. При температурах ниже 25°С на их прорастание сильнее влияет гиббереллин, но при повышенных температурах эффект от применения того или иного цитокинина оказывается более значительным. Цитокинины также обладают лучше выраженной, чем у гиббереллинов, способностью уменьшать ингибирующее действие абсцизовой кислоты (АБК) в семенах салата и других культур. Синергизм (однонаправленный эффект) от совместного действия цитокинина и гиббереллина наблюдается и при индукции ими прорастания семян сельдерея в темноте при высокой температуре. Другими словами, добавление к гиббереллину цитокинина значительно ускоряет прорастание семян этой культуры, между тем эффекта от обработки одними цитокининами или же гиббереллинами здесь не наблюдается.

Эффективность действия разных цитокининов различна. Она также зависит и от вида семян. Например, среди природных цитокининов зеатин, зеатин рибозид и дигидрозеатин не оказывают влияния на прорастание семян сельдерея, а 6-изопентенил аденин и его рибозид имеют эффект средней силы. Среди синтетических цитокининов действие кинетина характеризуется средней силой, а бензиладенин и бензиладенин рибозид наиболее эффективны.

4) Этилен.

С помощью методов так называемой газовой хроматографии установлено, что многие семена в процессе прорастания способны вырабатывать этилен. Обработка веществами, нарушающими состояние покоя, усиливает выделение этилена.

Этилен экзогенного происхождения также существенно ускоряет прорастание многих видов семян. Создание жидких препаратов, содержащих соли 2-хлорэтилфосфоновой кислоты (СЕРА, этрел и другие) и выделяющих при контакте с растительными клетками этилен, сделало реальным их применение в растениеводстве.

Обработка этиленом или СЕРА ускоряет прорастание семян салата, клевера подземного, арахиса, земляники и пр.

5) Другие вещества.

Фузикокцин, который недавно был выделен итальянскими учеными из гриба Fusicoccum amygdali оказывает положительное действие на рост клеток, вместе с этим установлено и его стимулирующее действие на прорастание семян редиса, салата и др.

Прорастание семян ускоряют нитратные соединения, тиомочевина, перекись водорода и т. д. Повышению всхожести семян также способствует увеличение содержания кислорода в атмосфере.

С другой стороны, имеются многочисленные данные о том, что снижение концентрации кислорода в атмосфере ведет к прерыванию периода покоя у семян.

6) Стимуляторы с органическими растворителями. Многие гормоны растений с трудом растворяются в воде. Поэтому сейчас зачастую для стимуляторов и ингибиторов берут органические растворители, такие, как ацетон, дихлорметан и т. д., хорошо растворяющие большинство гормональных препаратов. Обработанные ими семена легко поддаются сушке. Особенно удобен этот прием для обработки крупных семян бобовых культур (сои или гороха), где применение водных растворов нежелательно из-за возможного набухания семян. Органические растворители находят применение и при дезинфекции семян пестицидами. Имеются также сведения о том, что хранение семян в органических растворителях удлиняет время их жизнеспособности, по сравнению с хранением в сухих условиях.

В органических растворителях достаточно надежно в течение длительного времени можно сохранять и пыльцу. Промывание старой пыльцы такими соединениями способствует ее лучшему прорастанию в связи с вымыванием из нее ингибиторных веществ.

Все это свидетельствует о перспективности дальнейших исследований по изучению способов хранения семян в органических растворителях и методов экстракции веществ, ингибирующих прорастание из старых семян.

Заключение

Чем дальше развивается экспериментальная ботаника, тем глубже она позволяет заглянуть внутрь растения и понять, как регулируется его жизнь. Сегодня преподавание ботаники в школе не может ограничиться описанием внешних признаков растений, оно должно основываться на разъяснении внутренних систем, регулирующих формирование этих признаков. К таким системам относятся фитогормоны. Их изучение дает ключ к пониманию регуляции роста и развития, а также многих других процессов в жизни растений. Исследование свойств фитогормонов легло в основу нового направления физиологии растений -- культуры изолированных клеток, тканей и органов. Фитогормоны находят существенное применение в сельском хозяйстве и биотехнологии. Новейшие достижения в области изучения механизма действия фитогормонов привели к открытию рецепторов некоторых из них, хотя в этом направлении еще предстоит большая работа, необходимая для выяснения систем рецепции и передачи гормональных сигналов в клетках растений. Это нужно как для разработки теоретических основ регуляции жизни растений, так и для практического применения научных результатов в генной инженерии, биотехнологии и сельском хозяйстве.

Литература

1. Ахиярова Г.Р., Веселов Д.С. Гормональная регуляция роста и водного обмена при засолении.//Тезисы участников 6-ой Пущинской школы-конференции молодых ученых «Биология - наука XXI века», 2002

2. Верзилов В.Ф. Регуляторы роста и их применение в растениеводстве. - М.: Наука, - 1971

3. Войников В. К., Рудиковский А. В., Побежимова Т. П., Варакина Н. Н. Физиологический стресс и стрессовые белки растений.//Второй съезд Всесоюзного общества физиологов растений: Тезисы докладов II ч., - М., - 1992., - 316 с.

4. Гамбург К.З. Регуляторы роста и рост растений. - М.: Наука, - 1964

5. Дерфлинг К. Гормоны растений. - М.: Мир, - 1985

6. Кулаева О.Н. Гормональная регуляция физиологических процессов у растений на уровне синтеза РНК и белка. - М., - 1982

7. Кулаева О.Н. Как регулируется жизнь растений.// Соросовский образовательный журнал, - 1995., №1

8. Лебедев С. И. Физиология растений. - 3-е изд., перераб. и доп. - М.: Агропромиздат, 1988, - с. 519

9. Лосева А. С., Петров-Спиридонов А. Е. Устойчивость растений к неблагоприятным факторам среды. - М.: - изд-во МСХА, - 1983., - 47 с.

10. Николаева М. Г. Физиология глубокого покоя семян. Л., 1967. 206 с.

11. Овсянникова Е.Н. Особенности гормональной регуляции ростовых процессов у растений огурца.//Физиологические основы ростовых процессов, - М.: МОПИ, - 1986.

12. Полевой В. В. Физиология растений: Учеб. для биол. спец. вузов. - М.: Высш. шк., 1989, - с. 428-430.

13. Полевой В.В. Фитогормоны. - Л.: ЛГУ, - 1982


Подобные документы

  • Почему прорастание семян у разных растений происходит при разных температурах. Какое значение имеет промораживание семян растений. Что задерживает тепло в атмосфере. Продолжительность вегетационного периода. Определение температуры тела растения.

    презентация [345,8 K], добавлен 11.04.2013

  • Прорастание (всхожесть) как переход от состояния покоя к росту зародыша и развитию из него проростка. Живой зародыш семени. Благоприятные условия прорастания семени растений. Значение воды и питательных веществ. Глубина заделки семян, влияние света.

    презентация [2,4 M], добавлен 01.11.2011

  • Способы размножения растений: вегетативное и половое. Факторы, влияющие на прорастание семян. Способы размножения луковичных растений. Характеристика регуляторов роста ("Эпин экстра", "Циркон", "Флоравит 3Р") и их влияние на рост и развитие растений.

    дипломная работа [3,7 M], добавлен 17.06.2017

  • Характеристика микробиологических и физических стимуляторов и их роль в жизнедеятельности растений. Биологические особенности подсолнечника, характеристика семян сорта "Пионер". Определение влияния стимуляторов на прорастание, рост и развитие семян.

    курсовая работа [172,8 K], добавлен 13.09.2015

  • Строение и биология прорастания семян хурмы. Способы предпосевной обработки семян. Биология и морфология хурмы молодого возраста, корневая система сеянцев. Отношение хурмы в молодом возрасте к факторам среды (свету, почве, влаге, к температуре).

    контрольная работа [1,7 M], добавлен 18.01.2016

  • Приспособление к автохории в процессе эволюции цветковых растений. Приспособление растений к зоохории и гидрохории. Распространение семян с помощью птиц. Основные агенты активного растаскивания диаспор. Распространение семян через несколько звеньев.

    курсовая работа [3,6 M], добавлен 20.05.2013

  • Вещества, задерживающие прорастание из плодов и семян и их роль в расселении растений. Корневые выделения и их роль в аллелопатии. Природа аллелапатически активных веществ. Физиологическое и биохимическое действие аллелопатически активных веществ.

    реферат [24,5 K], добавлен 25.02.2016

  • Классификация масличных плодов и семян по морфологическим признакам. Особенности размножения цветковых растений. Типы соцветий у масличных растений. Причины разнокачественности плодов семян. Структурные элементы клеток масличных растений, ткани семян.

    реферат [25,9 K], добавлен 21.10.2013

  • Влияние температуры на особенности прорастания и всхожести семян эфемеров в лабораторных и полевых условиях. Определение минимальной, оптимальной и максимальной температуры прорастания семян эфемерных растений Донбасса, их таксономический анализ.

    магистерская работа [83,3 K], добавлен 19.11.2015

  • Углеводный обмен при прорастании семян. Превращения углеводов при формировании семян и плодов. Локализация и распределение по органам фитогормонов. Способы ускорения созревания плодов. Возможность приспособления растений к неблагоприятным условиям.

    контрольная работа [106,9 K], добавлен 05.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.