Законы наследственности Менделя. Концепции проихождения жизни

Три закона наследственности Менделя. Законы и принципы экологии. Коэволюция человека и биосферы. Концепция диссипативных структур Пригожина. Концепция происхождения жизни по принципу "живое – от живого", космического происхождения жизни (панспермия).

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 24.05.2010
Размер файла 26,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Санкт-Петербургский государственный университет информационных технологий механики и оптики

Кафедра экономической теории и бизнеса

Домашняя работа по дисциплине

«Концепции современного естествознания»

Выполнил

студент гр. 1060

Санкт-Петербург 2008

Содержание

1 Концепции происхождения жизни

2. Три Закона наследственности Менделя

3.Законы и принципы экологии

4 Коэволюция человека и биосферы

5. Концепция диссипативных структур Пригожина

1. Концепция происхождения жизни

Вопрос о сущности жизни волновал людей с древних времен. Первой попыткой решения этого вопроса, было создание концепции анимизм, которая провозглашает душу исходным началом жизни и всей природы. Из анимизма возникла концепция креационизм, согласно которому Бог создал весь мир. Значит мир имеет сверхъестественное происхождение. Еще одной концепцией произошедшей от анимизма является витализм, в соответствии с которым жизнь и все ее проявления объясняются нематериальным, сверхъестественным, иррациональным и по сути неизменным началом- жизненной силы.

Концепция самопроизвольного происхождения.

Вначале в науке вообще не существовало проблемы возникновения жизни, потому что учеными античного мира допускалась возможность постоянного зарождения живого из неживого. Великий Аристотель не сомневался в самозарождении лягушек. Философ Плотин в 3-ем веке до новой эры утверждал, что живые существа самозарождаются в земле в процессе гниения. Эта идея самопроизвольного зарождения организмов, видимо, представлялась многим поколениям наших далеких предков очень убедительной, так как просуществовала, не меняясь, долгие века, вплоть до 17-го века.

Концепция происхождения жизни по принципу «живое - от живого» (биогенез)

В 17-ом веке опыты врача Франческо Реди показали, что без мух черви в гниющем мясе не обнаружатся, а если прокипятить органические растворы, то микроорганизмы в них вообще зарождаться не смогут. И только в 60-х гг. 19-го века французский ученый Луи Пастер в своих опытах продемонстрировал, что микроорганизмы появляются в органических растворах только потому, что туда раньше был занесен зародыш.

Таким образом, опыты Пастера имели двоякое значение

1. Доказали несостоятельность концепции самопроизвольного зарождения жизни.

2. Обосновали идею о том, что все современное живое происходит только от живого.

Концепция космического происхождения жизни (панспермия)

Примерно в тот же период, когда Пастер продемонстрировал свои опыты, немецкий ученый Г. Рихтер разработал теорию занесения живых существ на Землю из космоса. Он утверждал, что зародыши могли попасть на Землю вместе с космической пылью и метеоритами и положить начало эволюции живого, которая породила все многообразие земной жизни. Эта концепция называлась концепцией панспермии. Ее разделяли такие ученые, как Г. Гельмгольц, С. Аррениус, что способствовало ее широкому распространению в научных кругах. Но она не получила научного доказательства, так как примитивные организмы или зародыши должны были бы погибнуть под действием ультрафиолетовых лучей и космического излучения.

Гипотеза А.И. Опарина.

Идея возникновения жизни на Земля путем синтеза из неорганической природы А.И. Опарина, где он экспериментально доказал, что органические вещества могут образовываться абиогенным путем при действии электрических зарядов, тепловой энергии, ультрафиолетовых лучей на газовые смеси, содержащие пары воды, аммиака, метана и др. Под влиянием различных факторов природы эволюция углеводородов привела к образованию аминокислот, нуклеидов и их полимеров, которые по мере увеличения концентрации органических веществ в первичном бульоне гидросферы способствовали образованию коллоидных систем, так называемых коацерватов, которые, выделяясь из окружающей среды и имея неодинаковую внутреннюю структуру, по-разному реагировали на внешнюю среду. Превращению углеродистых соединений в химический период эволюции способствовала атмосфера с ее восстановительными свойствами, которая потом стала приобретать окислительные свойства, что свойственно атмосфере и в настоящее время.

Гипотеза Опарина способствовала конкретному изучению происхождения простейших форм жизни. Она положила начало физико-химическому моделированию процессов образования молекул аминокислот, нуклеиновых оснований, углеводородов в условиях предполагаемой первичной атмосферы Земли.

2. Три закона наследственности Менделя

Основные законы наследуемости были описаны чешским монахом Грегором Менделем.

Мендель занимался селекционированием гороха, и именно гороху, научной удаче и строгости опытов Менделя мы обязаны открытием основных законов наследуемости: закона единообразия гибридов первого поколения, закона расщепления и закона независимого комбинирования.

1. Закон единообразия гибридов первого поколения.
Данный закон утверждает, что скрещивание особей, различающихся по данному признаку (гомозиготных по разным аллелям), дает генетически однородное потомство (поколение F1), все особи которого гетерозиготны. Все гибриды F1 могут иметь при этом либо фенотип одного из родителей (полное доминирование), как в опытах Менделя, либо, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения F1, могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и aа) все их потомки одинаковы по генотипу (гетерозиготны - Аа), а значит, и по фенотипу.

2. Закон расщепления.

Этот закон называют законом (независимого) расщепления. Суть его состоит в следующем. Когда у организма, гетерозиготного по исследуемому признаку, формируются половые клетки - гаметы, то одна их половина несет один аллель данного гена, а вторая - другой. Поэтому при скрещивании таких гибридов F1 между собой среди гибридов второго поколения F2 в определенных соотношениях появляются особи с фенотипами, как исходных родительских форм, так и F1.

В основе этого закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), которое обеспечивает образование у гибридов F1 гамет двух типов, в результате чего среди гибридов F2 выявляются особи трех возможных генотипов в соотношении 1АА: 2 Аа: 1аа. Иными словами, «внуки» исходных форм - двух гомозигот, фенотипически отличных друг от друга, дают расщепление по фенотипу в соответствии со вторым законом Менделя.

Однако это соотношение может меняться в зависимости от типа наследования. Так, в случае полного доминирования выделяются 75% особей с доминантным и 25% с рецессивным признаком, т.е. два фенотипа в отношении 3:1. При неполном доминировании и кодоминировании 50% гибридов второго поколения (F2) имеют фенотип гибридов первого поколения и по 25% - фенотипы исходных родительских форм, т. е. наблюдается расщепление 1:2:1 .

3. Закон независимого комбинирования.

Этот закон говорит о том, что каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг от друга, в результате чего среди потомков первого поколения (т.е. в поколении F2) в определенном соотношении появляются особи с новыми (по сравнению с родительскими) комбинациями признаков. Например, в случае полного доминирования при скрещивании исходных форм, различающихся по двум признакам, в следующем поколении (F2) выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1. При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два - новые. Данный закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом. Так, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения (F 1) 4 типов гамет (АВ, Ав, аВ, ав), а после образования зигот - к закономерному расщеплению по генотипу и, соответственно, по фенотипу в следующем поколении (F2).

3. Законы и принципы экологии

Как и всякая отрасль науки, экология имеет свои законы и принципы, которые характеризуют взаимоотношение, различных элементов экосистемы и, в конечном итоге, все процессы в биосфере.

Закон совокупного действия естественных факторов (закон Митчерлиха--Тинемана--Бауле):

Объем урожая зависит не от отдельного, пусть даже лимитирующего фактора, а от всей совокупности экологических факторов одновременно. Частицу каждого фактора в совокупном действии ныне можно подсчитать. Закон имеет силу при определенных условиях - если влияние монотонное и максимально обнаруживается каждый фактор при неизменности других в той совокупности, которая рассматривается.

Закон минимума (сформулированный Ю. Либихом):

Стойкость организма определяется самым слабым звеном в цепи ее экологических потребностей. Если количество и качество экологических факторов, близко к необходимому организму минимуму, он выживает, если меньше этого минимума, организм гибнет, экосистема разрушается.

Поэтому во время прогнозирования экологических условий или выполнение экспертиз очень важно определить слабое звено в жизни организмов.

Закон толерантности (закон Шелфорда):

Лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору. Соответственно закону любой излишек вещества или энергии в экосистеме становится его врагом, загрязнителем.

Закон физико-химического единства живого вещества (сформулированный В. Вернадским):

Все живое вещество Земли имеет единую физико-химическую природу. Из этого явствует, что вредное для одной части живого вещества вредит и другой его части, только, конечно, разной мерой. Разность состоит лишь в стойкости видов к действию того ли другого агента. Кроме того, через наличие в любой популяции более или менее стойких к физико-химическому влиянию видов скорость отбора за выносливостью популяций к вредному агенту прямо пропорциональная скорости размножения организмов и дежурство поколений. Через это продолжительное употребление пестицидов экологически недопустимое, так как вредители, которые размножаются значительно более быстро, более быстро приспосабливаются и выживают, а объемы химических загрязнений приходится все более увеличивать.

Закон генетического разнообразия:

Все живое генетическое разное и имеет тенденцию к увеличению биологической разнородности.

Закон имеет важное значение в природопользовании, в особенности в сфере биотехнологии (генная инженерия, биопрепараты), если не всегда можно предусмотреть результат нововведений во время выращивания новых микрокультур через возникающие мутации или распространение действия новых биопрепаратов не на те виды организмов, на которые они рассчитывались.

Закон исторической необратимости:

Развитие биосферы и человечества как целого не может происходить от более поздний фаз к начальным, общий процесс развития однонаправленный. Повторяются лишь отдельные элементы социальных отношений (рабство) или типы хозяйничанья.

Закон пирамиды энергий (сформулированный Р. Линдеманом):

С одного трофического уровня экологической пирамиды на другого переходит в среднем не более 10 % энергии.

По этому закону можно выполнять расчеты земельных площадей, лесных угодий с целью обеспечения население продовольствием и другими ресурсами.

Закон дивергенции (сформулированный Ч. Дарвином):

Филогенез любой группы организмов ведет к разделению ее на различные филогенетические ветви, идущие в разные адаптивные направления.

Законы Коммонера:

1) все связано со всем;

2) все должно куда-то деваться:

3) природа “знает” лучше;

4) ничто не дается даром.

Первый "Закон" экологии Коммонера обращает внимание на всеобщую связь процессов и явлений в природе и близок по смыслу к закону внутреннего динамического равновесия: изменение одного из показателей системы вызывает функционально-структурные количественные и качественные перемены, при этом сама система сохраняет общую сумму вещественно-энергетических качеств.

Второй "Закон" экологии Коммонера также близок к выше рассмотренному, а также закону развития природной системы за счет окружающей ее среды, особенно первому его следствию.

Третий "Закон" экологии Коммонера говорит о том, что, пока нет абсолютно достоверной информации о механизмах и функциях природы, мы, подобно человеку, незнакомому с устройством часов, но желающему их починить, легко вредим природным системам, пытаясь их улучшить. Он призывает к предельной осторожности.

Четвертый "Закон" экологии Коммонера вновь касается тех проблем, которые обобщает закон внутреннего динамического равновесия и закон развития природной системы за счет окружающей ее среды. Коммонер так разъясняет свой четвертый “3акон” экологии: “...глобальная экосистема представляет собой единое целое, в рамках которого ничего не может быть выиграно или потеряно и которое не может являться объектом всеобщего улучшения: все, что было извлечено из нее человеческим трудом, должно быть возмещено. Платежа по этому векселю нельзя избежать: он может быть только отсрочен”.

Принцип соответствия:

Жизнедеятельность организма ограничена соответствием условий его жизни его генетическим возможностям адаптироваться к этим условиям, а также их изменениям.

Принцип эмерджентности:

Эмержентность заключающееся в том, что свойства системы как целого не являются простой суммой свойств, слагающих ее частей или элементов. У каждого последующего уровня иерархической структуры появляются эмерджентные, качественно новые, отсутствующие у предыдущего уровня данной структуры

Принцип множественности экосистем:

Множественность конкурентно взаимодействующих экосистем обязательна для поддержания надёжности биосферы.

Перечисленные мною законы и принципы экологии не представляют исчерпывающий перечень. Они помогают раскрыть суть процессов протекающих в биосфере нашей планеты.

4. Коэволюция человека и биосферы

Термин «коэволюция» был предложен в 1964 г. экологами, для которых коэволюция -- взаимное приспособление видов.

Виды образуют мутуалистические ассоциации, эволюция которых собственно и называется коэволюцией. Любой вид вносит изменения в окружающую среду, но эти изменения не носят характера взаимного приспособления друг к другу, или коэволюции. Воздействие (адаптация) идет в одном направлении, обеспечивая повышение уровня приспособляемости вида к условиям среды. Каждый вид оказывает то или иное воздействие на биотические факторы (на другие виды), что вызывает у других видов адаптивные реакции. Вид и биотическая среда могут следовать по пути коэволюции.

В этой связи выделяются два вида коэволюции:

1) мутуалистическую (взаимовыгодную);

2) немутуалистическую, при которой один из факторов обладает пагубным действием (отношение «эксплуатация -- защита»).

Примером первого типа коэволюции может быть развитие специализированных цветков и их опылителей -- животных. Примерами второго типа коэволюции могут быть взаимоотношения между хищником и жертвой, хозяином и паразитом, хозяином и патогеном и др. Взаимоотношение между двумя эволюирующими видами также включает определенный «шаг», чтобы один эволюирующий вид «догнал» происходящие в другом виде изменения.

Э. Янч говорил о коэволюции макро- и микроструктур, где важное место занимает возникновение симбиоза и организм -- элемент одного микроуровня -- становится элементом макроуровня (биогеоценозом). Янч рассматривает процессы коэволюции с разных точек зрения -- от коэволюции макро- и микромира до социокультурной коэволюции. Янч вычленяет различные фазы в коэволюции макро- и микро¬косма: химическую -- биологическую -- социобиологическую -- экологическую и социокультурную эволюции.

Обычную, широко распространенную точку зрения на отношения культурной и биологической эволюции хорошо выразил американский биолог В. Грант. Он писал: «Культурная эволюция обладает собственной движущей силой, отличной от движущих сил органической эволюции. И культурную эволюцию можно считать совершенно самостоятельным процессом, хотя на практике она взаимодействует с эволюцией органической». Современный человек, по его словам, это «продукт совместного действия органической и культурной эволюции». «Культурная эволюция добавляет еще один слой, или, если угодно, ряд слоев, к природе человека. Двойственная конституция -- частью биологическая, а частью культурная -- закладывается в человечество процессом его эволюционного развития». Если до недавнего времени биологическая и культурная эволюции считались разделенными во времени (культурная эволюция касается верхнего слоя стратифицированной конституции человека и началась тогда, когда закончилась биологическая эволюция), то в последние десятилетия начало осознаваться взаимодействие между биологической и культурной эволюцией.

Прежде всего было отмечено, что в ходе культурной эволюции естественный отбор продолжал действовать и биологическая эволюция не прекращалась. На следующем этапе эволюционисты стали говорить о непрерывном взаимодействии между биологической и культурной эволюцией, что находит свое выражение в отборе на способность к обучению и восприятию культуры. Теперь уже способность к обучению связывается не только с размерами мозга, соответственно чему и строилась градация видов, но и сама способность к обучению дифференцируется в соответствии с мотивацией, адаптированностью, видоспецифическим поведением.

Если генетики анализируют роль мутаций в эволюции человека, дрейф и поток генов, а антропологи, изучая эволюцию человека обращают преимущественное внимание на филогению антропоидов и на факторы эволюции, то поворот к изучению взаимодействия органической и культурной эволюции позволил рассмотреть не только роль индивидуального, но и социально-группового отбора, раскрыть роль генетической компоненты и в индивидуальной изменчивости, и в межрасовых различиях в поведении, наметить в социобиологии пути раскрытия «генно-культурной коэволюции».

Поворот к анализу взаимодействия органической и культурной эволюции связан прежде всего с социобиологией. Концепция «генно-культурной эволюции» проводила мысль о том, что существует «усложненное, обворожительное взаимодействие, в котором культура порождена и оформлена биологическими императивами, в то время как биологические черты одновременно изменены генетической эволюцией в ответ на культурные новшества».

Поворот социобиологии к идее коэволюции существенно модифицировал и объяснительные схемы эволюционной эпистемологии, которая все более и более обращается к коэволюции как своему концептуальному базису. В исследованиях Ч. Ламсдена, А. Гушурста были введены понятия «культурген» (информационный патерн, соответствующий множеству артефактов, поведенческих образцов и ментальных конструкций, выявляемых в культурной антропологии) и «эпигенетические правила», которые характеризуют генетически врожденную часть стратегии индивида по овладению культурой. Эпигенетические правила, будучи генетически обусловленными, объясняют своеобразие видения цвета, остроту слуха, память, способности к языкам, вычислению, письму, предпочтения ребенка в выборе определенных цветов, невербальной коммуникации, наличие определенных фобий и др.

Механизмы генно-культурной коэволюции не ограничиваются выявлением связей между генами и внешним поведением, а должны включать в себя эмерджентные структуры сознания и проникновение культуры в систему эпигенетических правил. Тем самым связь между генами и культурой оказывается весьма опосредованной и включает по крайней мере два уровня -- уровень клеточного развития в нервной системе и уровень когнитивного развития.

Можно с уверенностью сказать, что идея коэволюции станет в XXI веке парадигмой не только биологии, но и социальных, и гуманитарных наук, поскольку она задает новый вектор в изучении взаимодействия человека и природы, исследовании бытия человека в мире. Залогом этого являются не только тенденции в эволюционной биологии, но и ряд попыток к осознанию взаимодействия двух эволюирующих процессов, уже предпринятых в социальных науках. А. Тойнби обращает внимание на разнообразие человеческих обществ и связей между ними, видит в природном (экологическом) вызове один из важнейших факторов и генезиса, и роста, и гибели цивилизаций.

5. Концепция диссипативных структур Пригожина

Еще в 40-е годы Людвиг фон Берталанфи назвал живые структуры открытыми системами, чтобы подчеркнуть их зависимость от непрерывных потоков энергии и ресурсов. Он ввел термин Fliessgleichgewicht («текучее равновесие»), чтобы отразить сосуществование равновесия и потока, структуры и изменения - во всех формах жизни. Теперь экологи изображают экосистемы в виде схем потоков, отмечая пути прохождения энергии и материи в различных пищевых сетях. Такие исследования показывают, что круговая переработка является ключевым принципом экологии. Будучи открытыми системами, все организмы в экосистеме производят отходы, но то, что является отходами для одного вида, служит пищей для другого, поэтому все отходы непрерывно перерабатываются и экосистема в целом, в самом общем итоге, существует без отходов.

Понимание живых структур как открытых систем было важным новым подходом, который, однако, не решил загадку сосуществования структуры и изменения, порядка и рассеяния, пока Илья Пригожий не сформулировал свою теорию диссипативных структур. Как Берталанфи объединил понятия потока и равновесия для описания открытых систем, так и Пригожий объединил «диссипацию» (рассеяние) и «структуру», чтобы выразить две кажущиеся противоречивыми тенденции, которые сосуществуют во всех живых системах. Однако концепция диссипативных структур Пригожина идет гораздо дальше теории открытых систем, поскольку включает также представление о точках неустойчивости, в которых могут возникать новые структуры и новые формы порядка. Теория Пригожина связывает главные характеристики живых форм в последовательную концептуальную и математическую модель, которая предполагает радикальный пересмотр многих фундаментальных идей, касающихся структуры - переносит акцент от устойчивости к неустойчивости, от порядка к неупорядоченности, от равновесия к неравновесным состояниям, от бытия к становлению.

Ключ к пониманию диссипативных структур лежит в осознании того, что они поддерживают себя в устойчивом состоянии, далеком от равновесия. Эта ситуация настолько отличается от феномена, описываемого классической наукой, что мы сталкиваемся с трудностями традиционного языка. Словарные определения понятия «устойчивый» включают «фиксированный», «не колеблющийся» и «неизменный» - все они неадекватно описывают диссипативные структуры. Живой организм характеризуется непрерывным потоком и изменениями в обмене веществ, включающем тысячи химических реакций. Химическое и тепловое равновесие наступает тогда, когда все эти процессы прекращаются. Другими словами, организм в состоянии равновесия - это мертвый организм. Живые организмы непрерывно поддерживают себя в далеком от равновесия состоянии, которое, по сути, есть состояние жизни. Сильно отличаясь от равновесия, это состояние, тем не менее, сохраняет устойчивость в течение продолжительных периодов времени, что означает, как и в случае вихря, что поддерживается одна общая структура, несмотря на непрекращающийся поток и изменение компонентов. Пригожин понял, что классическая термодинамика - первая наука, трактующая сложные системы, - не подходит для описания далеких от равновесия систем из-за линейной природы ее математической структуры. Близко к состоянию равновесия - в диапазоне классической термодинамики - находятся процессы типа потока, однако они слабы. Система всегда развивается в сторону стационарного состояния, в котором генерация энтропии (или беспорядка) сведена к минимуму. Другими словами, система минимизирует свои потоки, функционируя предельно близко к состоянию равновесия. В этом диапазоне потоковые процессы могут быть описаны линейными уравнениями. Чем дальше от равновесия, тем потоки становятся сильнее, увеличивается выработка энтропии, и тогда система больше не стремится к равновесию. Наоборот, здесь уже могут встретиться неустойчивости, ведущие к новым формам порядка, которые отодвигают систему все дальше и дальше от состояния равновесия. Другими словами, вдали от равновесия диссипативные структуры могут развиваться в формы все более возрастающей сложности.

Наличие точек бифуркации, в которых система может пойти по любому из нескольких различных направлений, предполагает, что неопределенность является еще одной характеристикой теории Пригожина. В точке бифуркации система может сделать «выбор» - этот термин здесь используется метафорически - между несколькими возможными направлениями, или состояниями. Какое направление она выберет, будет зависеть от истории системы и различных внешних условий и никогда не может быть предсказано. В каждой точке бифуркации существует неустранимый элемент случайности.

Концептуальный сдвиг в науке, предложенный Пригожиным, означает переход от детерминированных, обратимых процессов к неопределенным, необратимым. Поскольку необратимые процессы играют значительную роль в химии и жизни, при всем том, что взаимозаменяемость будущего и прошлого является неотъемлемой частью физики, похоже, что пригожинский пересмотр концепций должен рассматриваться в более широком контексте - том самом, который обсуждался в начале этой книги в связи с глубокой экологией как часть сдвига научной парадигмы от физики к наукам о жизни.

Концептуальный сдвиг, предполагаемый теорией Пригожина, включает несколько тесно взаимосвязанных идей. Описание диссипативных структур, которые существуют вдали от равновесия, требует нелинейного математического аппарата, способного моделировать множественные взаимосвязанные циклы обратной связи. В живых организмах, это каталитические циклы (т. е. нелинейные, необратимые химические процессы), которые приводят к точкам неустойчивости через повторяющуюся самоусиливающуюся обратную связь. Когда диссипативная структура достигает такой точки неустойчивости, называемой точкой бифуркации, в теории появляется элемент неопределенности. В точке бифуркации поведению системы свойственна непредсказуемость. В частности, здесь могут спонтанно возникнуть новые структуры высшего порядка и сложности. Таким образом, самоорганизация, спонтанное возникновение порядка, служит результатом комплексного эффекта неравновесия, необратимости, циклов обратной связи и неустойчивости.

Радикальный характер подхода Пригожина очевиден и вытекает из того факта, что к этим фундаментальным идеям редко обращались в традиционной науке, и часто с ними были связаны негативные коннотации. Это следует из самого языка, на котором их описывали. Неравновесный, нелинейность, неустойчивость, неопределенность и т. п. - все это негативные формулировки. Пригожий убежден в том, что этот концептуальный сдвиг, подразумеваемый теорией диссипативных структур, не только критичен для понимания учеными природы жизни, но также помогает нам более полно интегрировать себя в природу.

Многие из ключевых характеристик диссипативных структур - чувствительность к малым изменениям в окружающей среде, важность предыдущей истории в критических точках выбора, неопределенность и непредсказуемость будущего - представляются революционными концепциями с точки зрения классической науки, однако служат интегральной частью человеческого опыта. Поскольку диссипативные структуры - это базовые структуры всех живых систем, включая и человеческие существа, это, очевидно, не должно вызывать удивления.

Вместо того чтобы быть машиной, природа в целом оказывается более подобной человеку - непредсказуемая, чувствительная к окружающему миру, подверженная влиянию малейших отклонений. Соответственно, адекватный подход к природе с целью изучения ее сложности красоты состоит не в господстве контроле, но в уважении, кооперации и диалоге. Действительно, Илья Пригожий и Изабель Стенгерс снабдили свою популярную книгу «Порядок из хаоса» подзаголовком «Новый диалог человека с Природой».

Используемая литература

1. Аль-Ани Н. М. «Концепции современного естествознания», Политехника издательство, 2008 г.;

2. Потеев М. И. «Концепции современного естествознания», Питер, 1999 г.


Подобные документы

  • Истоки генетики. Первые идеи о механизме наследственности. Естественный отбор. Изучение теории пангенезиса Ч. Дарвина. Законы единообразия гибридов первого поколения и независимого комбинирования признаков. Значение работ Менделя для развития генетики.

    реферат [34,7 K], добавлен 26.11.2014

  • Генетика и эволюция, классические законы Г. Менделя. Закон единообразия гибридов первого поколения. Закон расщепления. Закон независимого комбинирования (наследования) признаков. Признание открытий Менделя, значение работ Менделя для развития генетики.

    реферат [22,1 K], добавлен 29.03.2003

  • Вопросы происхождения и сущности жизни издавна стали предметом интереса человека в его стремлении разобраться в окружающем мире. Гипотезы возникновения жизни. Доказательство родства человека и животных. Эволюция человека. Теории появления человека.

    реферат [33,0 K], добавлен 05.06.2008

  • Общее понятие про креационизм. Характеристика концепций: божественное сотворение всего живого; многократное самозарождение жизни. История возникновения панспермии как концепции. Вариант возникновения жизни на Земле как следствия химических процессов.

    контрольная работа [192,5 K], добавлен 02.05.2009

  • Законы, условия выполнения законов Менделя. Закон Т. Моргана. Аллельные и неаллельные гены, группы крови и их определение. Совместимость эритроцитов. Использование данных о группе крови. Хромосомная теория наследственности Т. Моргана.

    презентация [207,3 K], добавлен 23.03.2011

  • Классические законы Менделя. Первый, второй, третий закон. Условия существования законов. Признание законов. Значение работы Менделя для развития генетики. Опыты Менделя послужили основой для развития современной генетики – науки.

    реферат [21,3 K], добавлен 17.12.2004

  • Подходы к решению вопроса о сущности жизни: механицизм и витализм. Единство химического состава и различие в соотношении элементов в живом и неживом. Обмен веществ как признак живого организма. Концепции происхождения жизни и развития биосферы Земли.

    реферат [27,3 K], добавлен 14.01.2010

  • Сущность естественнонаучных теорий происхождения жизни на Земле, их распространенность и популярность на современном этапе, содержание и основные положения. Истоки происхождения креационизма, концепция Опарина и этапы перехода от неживой материи к живой.

    реферат [21,3 K], добавлен 18.04.2009

  • Две точки зрения на проблему происхождения жизни. Идея о вечности жизни, инициированная результатами опытов Ф. Реди (XVII в.), провозгласившим принцип: все живое из живого. Формирование Солнечной системы. Механизм, инициирующий звездообразование.

    реферат [674,2 K], добавлен 25.03.2016

  • Характер происхождения жизни, основные функции живого вещества. Привнесение на Землю живого вещества из глубин космоса. Доказательства реального существования всепроникающего биологического поля. Многообразие видов на Земле. Человек как часть биосферы.

    контрольная работа [48,1 K], добавлен 19.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.