Концепции возникновения жизни
Характеристика концепций возникновения жизни. Концепция происхождения жизни А.И.Опарина. Современные концепции происхождения жизни. Сущность и определение жизни. Появление жизни на земле. Признаки живых организмов - целостность и самовоспроизведение.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 01.03.2010 |
Размер файла | 39,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Оглавление
Введение
1. Концепции возникновения жизни
2. Концепция происхождения жизни А.И.Опарина
3. Современные концепции происхождения жизни
4. Сущность и определение жизни
5. Появление жизни на земле
Заключение
Список литературы
Введение
Одним из наиболее трудных и в тоже время интересных в современном естествознании является вопрос о происхождении жизни. Он труден потому, что, когда наука подходит к проблемам развития как создания нового, она оказывается у предела своих возможностей как отрасли культуры, основанной на доказательстве и экспериментальной проверке утверждений.
Учёные сегодня не в состоянии воспроизвести процесс возникновения жизни с такой же точностью, как это было несколько миллиардов лет назад. Даже наиболее тщательно поставленный опыт будет лишь модельным экспериментом, лишённым ряда факторов, сопровождавших появление живого на Земле. Трудность методологическая - в невозможности проведения прямого эксперимента по возникновению жизни (уникальность этого процесса препятствует использованию основного научного метода).
Жизнь на Земле представлена громадным разнообразием форм, которым присуща возрастающая сложность строения и функций. Всем живым организмам свойственны два признака: целостность и самовоспроизведение. В ходе индивидуального изменения (онтогенеза) организмы приспосабливаются к внешним условиям, а смена поколений приобретает эволюционно-исторический характер (филогенез). Организмы выработали способность к относительной независимости от внешней среды (автономность). Одно из главных свойств всякого живого организма -- обмен веществ. Наряду с ним существенными признаками жизни являются раздражимость, рост, размножение, изменчивость, наследственность. Всякий живой организм как бы стремится к главному -- воспроизведению себе подобных.
1. Концепции возникновения жизни
Существует пять концепций возникновения жизни:
Жизнь была создана Творцом в определённое время - креационизм.
Жизнь возникла самопроизвольно из неживого вещества (её придерживался ещё Аристотель который считал, что живое может возникать и в результате разложения почвы).
Концепция стационарного состояния в соответствии с которой жизнь существовала всегда.
Концепция панспермии - внеземного происхождения жизни;
Концепция происхождения жизни на Земле в историческом прошлом в результате процессов подчиняющихся физическим и химическим законам.
Согласно креационизму возникновение жизни относится к определённому событию в прошлом которое можно вычислить. В 1650 г. архиепископ Ашер из Ирландии вычислил что Бог сотворил мир в октябре 4004 г. до н.э., а в 9 часов утра 23 октября и человека. Это число он получил из анализа возрастов и родственных связей всех упоминаемых в Библии лиц. Однако к тому времени на Ближнем Востоке уже была развитая цивилизация, что доказано археологическими изысканиями. Впрочем, вопрос сотворения мира и человека не закрыт, поскольку толковать тексты Библии можно по-разному.
Аристотель на основе сведений о животных, которые поступали от воинов Александра Македонского и купцов-путешественников, сформулировал идею постепенного и непрерывного развития живого из неживого и создал представление о «лестнице природы» применительно к животному миру. Он не сомневался в самозарождении лягушек, мышей и других мелких животных. Платон говорил о самозарождении живых существ из земли в процессе гниения.
С распространением христианства идеи самозарождения были объявлены еретическими, и долгое время о них не вспоминали. Гельмонт придумал рецепт получения мышей из пшеницы и грязного белья. Бэкон тоже считал, что гниение - зачаток нового рождения. Идеи самозарождения поддерживали Галилей, Декарт, Гарвей, Гегель, Ламарк.
В 1688 г. итальянский биолог Франческо Реди серией опытов с открытыми и закрытыми сосудами доказал, что появляющиеся в гниющем мясе белые маленькие черви - это личинки мух, и сформулировал свой принцип: всё живое - из живого. В 1860 г. Пастер показал, что бактерии могут быть везде и заражать неживые вещества, для избавления от них необходима стерилизация, получившая название пастеризации.
Теория панспермии (гипотеза о возможности переноса Жизни во Вселенной с одного космического тела на другие) не предлагает никакого механизма для объяснения первичного возникновения жизни и переносит проблему в другое место Вселенной. Либих считал, что «атмосферы небесных тел, а также вращающихся космических туманностей можно считать как вековечные хранилища оживлённой формы, как вечные плантации органических зародышей», откуда жизнь рассеивается в виде этих зародышей во Вселенной.
Подобным образом мыслили Кельвин, Гельмгольц и др. в начале нашего века с идеей радиопанспермии выступил Аррениус. Он описывал, как с населённых другими существами планет уходят в мировое пространство частички вещества, пылинки и живые споры микроорганизмов. Они сохраняют свою жизнеспособность, летая в пространстве Вселенной за счёт светового давления. Попадая на планету с подходящими условиями для жизни, они начинают новую жизнь на этой планете.
Эту гипотезу поддерживали многие, в том числе русские учёные академики Сергей Павлович Костычев (1877-1931), Лев Семёнович Берг (1876-1950) и Пётр Петрович Лазарев (1878-1942).
Для обоснования панспермии обычно используют наскальные рисунки с изображением предметов, похожих на ракеты или космонавтов, или появления НЛО. Полёты космических аппаратов разрушили веру в существование разумной жизни на планетах солнечной системы, которая появилась после открытия Скиапарелли каналов на Марсе (1877). Но пока следов жизни на Марсе не найдено.
В конце 60-х годов вновь возрос интерес к гипотезам панспермии. Так, геолог Б.И.Чувашов (Вопросы философии. 1966) писал, что жизнь во Вселенной, по его мнению, существует вечно.
При изучении вещества метеоритов и комет были обнаружены многие «предшественники живого» - органические соединения, синильная кислота, вода, формальдегит, цианогены. Формальдегид, в частности, обнаружен в 60% случаев в 22 исследованных областях, его облака с концентрацией примерно 1 тысяча молекул в куб.см заполняют обширные пространства. В 1975 г. предшественники аминокислот найдены в лунном грунте и метеоритах. Сторонники гипотезы занесения жизни из космоса считают их «семенами», посеянными на Земле.
В представлениях о зарождении жизни в результате физико-химических процессов важную роль играет эволюция живой планеты. По мнению многих биологов, геологов и физиков, состояние Земли за время её существования всё время изменялось. В очень давние времена Земля была горячей планетой, её температура достигала 5-8 тысяч градусов. По мере остывания планеты тугоплавкие металлы и углерод конденсировались и образовывали земную кору, которая не была ровной из-за активной вулканической деятельности и всевозможных подвижек формирующегося грунта. Атмосфера первичной Земли сильно отличалась от современной. Лёгкие газы - водород, гелий, азот, кислород, аргон и другие - не удерживались пока недостаточно плотной планетой, тогда как их более тяжёлые соединения оставались (вода, аммиак, двуокись углерода, метан). Вода оставалась в газообразном состоянии, пока температура не упала ниже 100оС.
Химический состав нашей планеты сформировался в результате космической эволюции вещества солнечной системы, в ходе которой возникли определённые пропорции количественных соотношений атомов. Поэтому современные данные о соотношении атомов химических элементов оказываются важными. Космическое обилие кислорода и водорода выразилось в обилии воды и её многочисленных окислов. Относительно более высокая распространённость углерода явилась одной из причин, определивших большую вероятность возникновения жизни. Обилие кремния, магния и железа способствовало образованию в земной коре и метеоритах силикатов. Источниками сведений о распространённости элементов служат данные о составе Солнца, метеоритов, поверхностей Луны и планет. Возраст метеоритов примерно соответствует возрасту земных пород, поэтому их состав помогает восстановить химический состав Земли в прошлом и выделить изменения, вызванные появлением жизни на Земле.
Научная постановка проблемы возникновения жизни принадлежит Энгельсу, считавшему, что жизнь возникла не внезапно, а сформировалась в ходе эволюции материи. В этом же ключе высказался и К.А.Тимирязев: «Мы вынуждены допустить, что живая материя осуществлялась так же, как и все остальные процессы, путём эволюции… Процесс этот, вероятно, имел место и при переходе из неорганического мира в органический» (1912).
2. Концепция происхождения жизни А.И.Опарина
Одним из главных препятствий, стоявших в начале нашего века на пути решения проблемы возникновения жизни, было господствовавшее тогда в науке и основанное на повседневном опыте убеждение в том, что органические вещества в природных условиях возникают только биогенно, то есть путем их синтеза живыми существами. Считалось, что представить себе естественное возникновение даже простейших организмов из неорганических веществ (углекислоты, воды, азота и т.д.) совершенно невозможно. Поэтому так важно было появление концепции А.И. Опарина, вступившей в противоречие с общепринятым тогда мнением. Он выступил с утверждением, что монополия биотического синтеза органических веществ характерна лишь для современной эпохи существования нашей планеты. В начале же своего существования, когда Земля была безжизненной, на ней осуществлялись абиотические синтезы углеродистых соединений и их последующая предбиологическая эволюция. Совершалось постепенное усложнение этих соединений, формирование из них индивидуальных фазовообо-собленных систем, превращение их в протобионты, а затем и в первичные живые существа.
Книга Опарина «Происхождение жизни» была опубликована еще в 1924 г., хотя пик исследований опаринской школы приходится на 50 - 60-е годы. Появление жизни он стал рассматривать как единый естественный процесс, который состоял из протекавшей в условиях ранней Земли первоначальной химической эволюции, перешедшей постепенно на качественно новый уровень - биохимическую эволюцию. По его мнению, этот процесс с самого начала был неразрывно связан с геологической эволюцией Земли. Поэтому Опарин предположил и экспериментально доказал, что под действием электрических разрядов, тепловой энергии, ультрафиолетовых лучей на газовые смеси, содержащие пары воды, аммиака, циана, метана и др., появились аминокислоты, нуклеотиды и их полимеры, которые по мере увеличения концентрации органических веществ в «первичном бульоне» гидросферы Земли способствовали возникновению коллоидных систем, так называемых коацерватных капель.
Согласно гипотезе Опарина, возникновение и развитие химической эволюции произошло в ходе образования и накопления в первичных водоемах исходных органических молекул. Весь дальнейший процесс ему представлялся следующим образом. Органические вещества сталкивались в сравнительно неглубоких местах первичных водоемов, прогреваемых Солнцем. Солнечное излучение доносило в то время до поверхности Земли ультрафиолетовые лучи, которые в наше время сдерживаются озоновым слоем атмосферы. В свою очередь ультрафиолетовые лучи обеспечивали энергией протекание химических реакций между органическими соединениями. Таким образом, в некоторых зонах первичных водоемов протекали случайные химические реакции. Большая их часть быстро завершилась из-за недостатка исходного сырья. Но в хаосе химических реакций произвольно возникали и закреплялись реакции циклических типов, обладавшие способностью к самоподдержанию. Результатом этих реакций и стали коацерваты - пространственно обособившиеся целостные системы. Существенной их особенностью была способность поглощать из внешней среды различные органические вещества, что обеспечивало возможность первичного обмена веществ со средой. А уже функционировавший «естественный отбор» способствовал «выживанию» наиболее устойчивых коацерватных систем. Иными словами, первичная клеточная структура, описанная Опариным, представляла собой открытую химическую микроструктуру и уже была наделена способностью к первичному метаболизму (обмену веществ), хотя еще не имела системы для передачи генетической информации на основе функционирования нуклеиновых кислот.
В ходе развивавшегося «естественного отбора» возникли важнейшие свойства жизни, отличающие ее от предыдущего этапа развития. Возникшие целостные многомолекулярные системы, фазовообособленные от окружающей среды определенной границей раздела, сохраняют с ней взаимодействие по типу открытых систем. Только такие системы, черпающие из внешней среды вещества и энергию, могут противостоять нарастанию энтропии и даже способствовать ее уменьшению в процессе своего роста и развития, что является характерным признаком всех живых существ.
Естественный отбор сохранял те целостные системы, в которых более совершенной была функция обмена веществ (еще один характерный признак жизни), способствовавшая быстрому росту системы и ее динамической устойчивости в данных условиях существования, этим и объясняется целесообразность строения живых объектов, то есть приспособленность внутримолекулярного и надмолекулярного строения частей к выполняемым ими функциям и приспособленность организма в целом к существованию в данных условиях внешней среды.
Выживающие в ходе естественного отбора системы имели специфическое строение белково- и нуклеоподобных полимеров, которые и обусловили появление третьего качества живого - наследственности, специфической для живого формы передачи информации.
Органическая химия знает примеры реакций такого типа. Их отбор и выживание следует рассматривать как возможный качественный скачок, создавший предпосылки для перехода от химической к биологической эволюции. Вместе с отбором и совершенствованием циклических комплексов происходил отбор и совершенствование участвующих в этих реакциях органических молекул.
Популярность концепции Опарина в научном мире очень велика. Его ученики и последователи и сегодня продолжают исследования в этом направлении. Но у этой концепции есть как сильные, так и слабые стороны.
Сильной стороной концепции является достаточно точное соответствие ее теории химической эволюции, согласно которой в процессе добиологической (абиогенной) эволюции материи зарождение жизни - закономерный результат. Убедительным аргументом в пользу этой концепции является также возможность экспериментальной проверки ее основных положений. Это касается не только лабораторного воспроизведения предполагаемых физико-химических условий первобытной Земли, но и коацерватов, которые имитируют доклеточный предок жизни и его функциональные способности.
Слабой стороной концепции А.И. Опарина является допущение возможности самовоспроизведения коацерватных структур в отсутствие молекулярных систем с функциями генетического кода. Существование этих систем объяснялось наличием у них свойств открытых микросистем, выживающих за счет вовлечения в них ферментов, находящихся в готовом виде в окружающей среде. А это значит, что в рамках концепции Опарина не удается решить главную проблему - о движущих силах саморазвития химических систем и перехода от химической эволюции к биологической, раскрыть причину таинственного скачка от неживой материи к живой. Возможно, эта проблема будет решена в концепции открытых каталитических систем Руденко, о которой речь шла выше.
3. Современные концепции происхождения жизни
Ученые-биологи, занимающиеся сегодня решением вопроса о происхождении жизни, самым сложным считают характеристику структурных и функциональных особенностей протобиологической системы, то есть доклеточного предка. Трудность решения этого вопроса объясняется хорошо известным фактом: для саморепродукции нуклеиновых кислот - основы генетического кода - необходимы ферментные белки, а для синтеза белков - нуклеиновые кислоты. Поэтому предметом дискуссии издавна служили два взаимосвязанных вопроса. Первый: что было первичным - белки или нуклеиновые кислоты? Второй: если признать, что оба эти класса биополимеров возникли не одновременно, а последовательно, то на каком этапе и как произошло их объединение в единую систему, способную к функциям передачи генетической информации и регуляции биосинтеза белков?
Рассматривая ответы на вопрос о первичности белков или нуклеиновых кислот, все существующие гипотезы и концепции можно разделить на две большие группы - голобиоза и генобиоза.
Рассмотренная нами концепция Опарина относится к группе голобиоза - методологического подхода, основанного на идее первичности структур типа клеточной, наделенной способностью к элементарному обмену веществ при участии ферментного механизма. Появление нуклеиновых кислот в ней считается завершением эволюции, итогом конкуренции протобионтов. Эту точку зрения можно еще назвать субстратной.
Сторонники генобиоза исходят из убеждения в первичности молекулярной системы со свойствами первичного генетического кода. Эту группу гипотез и концепций можно также назвать информационной. Примером этой точки зрения может служить концепция Дж. Холдейна, согласно которой первичной была не структура, способная к обмену веществ с окружающей средой, а макромолекулярная система, подобная гену и способная к саморепродукции, а потому названная им «голым геном».
Вплоть до 1980-х годов имело место четко выраженное противостояние гипотез голобиоза и генобиоза. Оно обрело форму дискуссии при обсуждении вопроса, что старше - голый ген или белковый протобионт, или в иной терминологии - генетическая репродукция или метаболизм. В новых категориях эта дискуссия стала известной в 80-е годы как противостояние двух концепций, каждая по-своему трактующих характер доклеточного предка - информационной (генетической) и субстратной (обменно-метаболической).
Очень привлекательной гипотезой, принадлежащей к направлению голобиоза, была концепция английского биохимика П. Деккера. Согласно ей, структурной основой предка - биоида - были жизнеподобные неравновесные диссипативные системы, то есть открытые микросистемы с мощным ферментативным аппаратом. Это означает, что он был подвержен дарвиновской эволюции благодаря переходам (мутациям) из одной стадии (вида) к другой, более устойчивой, приобретающей все новые биты (единицы измерения) информации.
Примеров подобного рода моделей, построенных на идеях гипотезы голобиоза, можно было бы приводить довольно много. Объединяют их два главных момента. Первый - признание первичности белковой субстанции, способной к автокатализу, близкому к ферментативному. И второй - отсутствие даже упоминания о наличии в протеиноидных структурах молекулярных систем с функциями генетического кода: появление генетического механизма матричного типа на основе макромолекул нуклеиновых кислот считается вторичным событием в эволюции протеиноидных структур.
Нужно отметить, что эта гипотеза не имела всеобщего признания. Некоторые исследователи, сознавая слабость ее именно в вопросе генетического контроля над реакциями обмена веществ доклеточного предка, стали сторонниками некоего промежуточного варианта между голобиозом и генобиозом. Их объединяет общая идея: белковые и нуклеиновые молекулы появились одновременно, объединились в единую систему в пределах структуры доклеточного предка и подверглись коэволюции, то есть одновременной и взаимосвязанной эволюции.
Однако и этот компромиссный вариант не получил всеобщего признания. Главный аргумент против него - белковые и нуклеиновые макромолекулы структурно и функционально глубоко различны, они не могли появиться одновременно в ходе химической эволюции, в связи с чем нереально их сосуществование в протобиологической системе.
Ослабляя позиции гипотезы голобиоза, эти соображения усиливали одновременно позиции противоположной гипотезы - генобиоза, утверждающей первичность макромолекулярной системы с функциями генетического кода.
Позиции гипотезы генобиоза стали заметно укрепляться в 1970-е годы, а к 1980-м годам, когда слабости гипотезы голобиоза стали очевидными, она оказалась доминирующей в; представлениях о доклеточном предке.
Кроме того, с идеей генобиоза оказалось также тесно связано самостоятельное сегодня направление в естествознании, занимающееся изучением еще одного фундаментального свойства живой материи (в дополнение к трем вышеперечисленным) - ее способности к стереоспецифической комплементарной репродукции. Это направление было заложено еще в ранних трудах основателя научной микробиологии Л. Пастера.
Дело в том, что до того, как в 1860-е гг. Пастер окончательно доказал отсутствие самозарождения современных нам микроорганизмов, предметом его научных интересов в 40-50-е годы XIX века было явление, обнаруженное им в ходе исследований строения кристаллов веществ биологического происхождения. Речь идет об открытии асимметричного (асимметрия - отсутствие у объекта свойства быть зеркально симметричным), а в его терминологии - диссимметричного строения кристаллов солей виноградной кислоты, имеющих биологическое происхождение. К этому выводу Пастер пришел, обнаружив способность отклонять поляризованный луч, то есть оптическую активность, не только у самих кристаллов, но и у их водных растворов, что свидетельствовало о молекулярной природе этого явления. У растворов из веществ небиологического происхождения это свойство отсутствует, строение их молекул симметрично.
Сегодня эта идея Пастера подтвердилась, и считается доказанным, что молекулярная диссимметрия (асимметрия, стерео-изомерия), а согласно современной терминологии, молекулярная хиралъностъ (от греческого - рука), присуща только живой материи и является ее неотъемлемым свойством. А если это так, то возникает вопрос, как возникло это явление. Не следует ли искать в его происхождении и истоки самой жизни? Уже сам Пастер задавался этим вопросом. И ответ его был достаточно определенным. Да, превращение молекулярно-симметричных веществ неживой природы в молекулярно-диссимметричные живой неразрывно связано с происхождением живой материи. А это означает, что необходимо выяснить, как неживая молекулярная симметрия превращается в живую молекулярную диссимметрию. По мнению Пастера, это могло происходить постепенно, по мере воздействия на неживую косную материю особых диссимметрических сил, вызывающих диссимметризацию молекул этой материи. Согласно Пастеру, силы эти носили космический характер, ибо жизнь такая, какой она нам известна, есть функция диссимметрии Вселенной. Такими диссимметрическими силами могли быть мощные электрические разряды, геомагнитные колебания, вращение Земли вокруг Солнца, появление Луны и т.д. Правда, эксперименты в лаборатории по моделированию таких условий успехом не увенчались. Тем не менее Пастер непоколебимо верил в свою правоту.
Основанием для отнесения взглядов Пастера именно к гипотезе генобиоза служит тот факт, что проблему зарождения живого из неживого Пастер рассматривал на молекулярном уровне, хотя и не поднимал вопроса о самовоспроизведении той диссимметричной молекулярной системы, образование которой было, по его убеждению, первым и необходимым этапом к зарождению жизни. Можно поэтому говорить о том, что Пастер первым вывел изучение проблемы происхождения живого на молекулярный уровень, и в этом его историческая заслуга перед наукой.
Эти идеи получили сегодня широкое развитие в естествознании, причем не столько в биологии, сколько в химии и физике. Сегодня считается, что если молекулярная хиральность - изначальный и фундаментальный признак живой материи, то способность возрождать хирально чистые молекулярные блоки зародилась так же рано, как и способность к генетически детерминированной саморепродукции. Иными словами, одновременно с генетическим возник и стереохимический код. Его функцией стало кодирование построения хирально чистых мономеров, наличие которых необходимо для комплементарного взаимодействия молекул субстрата и ферментов при биохимических реакциях.
Но что же представляют собой эти мономеры, то есть каковы по своей химической природе те хирально чистые молекулярные «блоки», которые и составили основу для зарождения живого? Нужно отметить, что хиральность может быть двух типов - левой (L - конфигурация), отклоняющей луч света влево, что характерно для белковых молекул; и правой (D-конфигурация), отклоняющей луч света вправо, что характерно для молекул нуклеиновых кислот ДНК и РНК.
Общее признание в рамках гипотезы генобиоза получила идея, согласно которой такими блоками были макромолекулы ДНК или РНК. Но какая из этих информационных молекул появилась первой и смогла сыграть роль матрицы для первичной комплементарной полимеризации?
Этот неизбежно возникающий вопрос сразу же вступил в противоречие с центральным положением молекулярной генетики: генетическая информация идет в направлении от ДНК к РНК и белку. Кроме того, стоял вопрос, как могла функционировать протобиотическая полинуклеотидная система в отсутствие ферментов, то есть белков, если допустить, что появление последних было вторичным?
Ответ на эти вопросы был получен только к концу 1980-х годов. Он гласил, что первичной была молекула не ДНК, а РНК.
Признание этого факта связано с наличием у РНК уникальных свойств. Оказалось, что она наделена такой же генетической памятью, как и ДНК. Далее была установлена поистине уникальная вездесущность РНК: нет организмов, в которых отсутствовала бы РНК, но есть множество вирусов, геном которых составляет РНК, а не ДНК. Кроме того, оказалось, что вопреки устоявшейся генетической догме возможен перенос генетической информации от РНК к ДНК при участии фермента, открытого в начале 1970-х годов.
В начале 1980-х годов была установлена способность РНК к саморепродукции в отсутствие белковых ферментов, то есть открыта ее автокаталитическая функция. Это решало ранее, казалось, неразрешимую проблему объединения двух функций - каталитической (ранее считавшейся присущей только белкам) и информационно-генетической, необходимых для саморепродукции макромолекулярной системы.
В результате сформировалось четкое представление, что древняя РНК совмещала в себе черты фенотипа и генотипа, то есть отвечала требованиям дарвиновской системы, будучи подверженной как генетическим преобразованиям, так и естественному отбору. Сегодня уже очевидно, что процесс эволюции шел от РНК к белку, а затем к образованию молекулы ДНК, у которой С-Н связи более прочны, чем С-ОН связи РНК.
Очевидно, что возникновение хиральности, а также первичных молекул РНК не могло произойти в ходе плавного эволюционного развития. Судя по всему, имел место скачок со всеми характерными чертами самоорганизации вещества, об особенностях которой уже говорилось выше.
4. Сущность и определение жизни
Представленные выше гипотезы и теории дают нам возможность понять сущность биологических процессов, необходимых для появления живых организмов. На обыденном уровне мы все интуитивно понимаем, что представляет собой живое, а что - мертвое. Однако при попытке определить сущность жизни как на обыденном, так и на научном уровне, возникают большие трудности, так как сущность жизни и в том и в другом случае понимается и определяется различным образом.
Большинство ученых убеждены, что жизнь представляет собой особую форму существования материального мира. До конца 50-х годов в научной и философской литературе общепринятым было знаменитое определение Ф. Энгельса, которое утверждало, что жизнь есть способ существования белковых тел, состоящий в постоянном самообновлении химических составных частей этого тела. Но к этому времени стало очевидным, что субстратная основа жизни не сводится только к белкам, а функциональная - к присущему им обмену веществ.
Интересны также определения жизни Э. Шредингера как апериодического кристалла, Г. Югая как космической организованности материи, а также определение, подчеркивающее энергетический аспект жизни - противостояние энтропийным процессам.
Есть аксиоматические определения жизни, называющие ее важнейшие черты. Таково определение А.И. Опарина, упоминавшееся выше. К этой группе относят и определение Б.М. Медникова, называющее жизнью активное, идущее с затратой энергии, поддержание и воспроизведение специфических структур, функционирование которых описывают следующие положения: 1) живые организмы характеризуются наличием фенотипа и генотипа; 2) генетические программы не возникают заново, а реплицируются матричным способом; 3) в процессе репликации неизбежны ошибки на микроуровне, случайные и непредсказуемые изменения генетических программ (мутации); 4) в ходе формирования фенотипа эти изменения многократно усиливаются, что делает возможным их селекцию со стороны факторов внешней среды.
Современная биология в вопросе о сущности живого все чаще идет по пути перечисления основных свойств живых организмов. При этом акцент делается на то, что только совокупность данных свойств может дать представление о специфике жизни.
Итак, что такое живое и чем оно отличается от неживого? К числу свойств живого обычно относят следующие:
- живые организмы характеризуются сложной упорядоченной структурой. Уровень их организации значительно выше, чем в неживых системах;
- живые организмы получают энергию из окружающей среды, используя ее на поддержание своей высокой упорядоченности. Большая часть организмов прямо или косвенно использует солнечную энергию;
- живые организмы активно реагируют на окружающую среду. Способность реагировать на внешнее раздражение - универсальное свойство всех живых существ, как растений, так и животных;
- живые организмы не только изменяются, но и усложняются;
- все живое размножается. Способность к самовоспроизведению - один из самых главных признаков жизни, так как в этом проявляется действие механизма наследственности и изменчивости, определяющих эволюцию всех видов живой природы;
- живые организмы передают потомкам заложенную в них информацию, необходимую для жизни, развития и размножения. Эта информация содержится в генах - единицах наследственности, мельчайших внутриклеточных структурах. Генетический материал определяет направление развития организма. Вот почему потомки похожи на родителей. Однако эта информация в процессе передачи несколько изменяется, искажается. В связи с этим потомки не только похожи на родителей, но и отличаются от них;
- живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни.
В обобщенном и упрощенном варианте все отмеченное можно выразить в выводе, что все живые организмы питаются, дышат, растут, размножаются и распространяются в природе, а неживые тела не питаются, не дышат, не растут и не размножаются.
Однако строго научное разграничение живого и неживого встречает определенные трудности. Имеются как бы переходные формы от неживого к живому. Так, например, вирусы вне клеток другого организма не обладают ни одним из атрибутов живого. У них есть наследственный аппарат, но отсутствуют основные необходимые для обмена веществ ферменты, и поэтому они могут расти и размножаться, лишь проникая в клетки другого организма и используя его ферментные системы. Поэтому, в зависимости от того, какой признак живого мы считаем самым важным, мы относим вирусы к живым системам или нет. Естественно, что в определении жизни должны быть зафиксированы все эти функциональные признаки. Поэтому можно предложить следующее определение: жизнь - высшая из природных форм движения материи, она характеризуется самообновлением, саморегуляцией и самовоспроизведением разноуровневых открытых систем, вещественную основу которых составляют белки, нуклеиновые кислоты и фосфороорганические соединения. Признаками жизни являются: противостояние энтропийным процессам, обмен веществ с окружающей средой, воспроизводство на основе генетического кода и молекулярная хиральность.
5. Появление жизни на земле
Для появления жизни на Земле прежде всего были необходимы следующие материальные основы - химические элементы-органогены и важнейший из них углерод, способный создавать разнообразные (несколько десятков миллионов), подвижные, низкоэлектропроводные, насыщенные водой, длинные скрученные цепеобразные структуры. Соединения углерода с водородом, кислородом, азотом, фосфором, серой, железом обладают хорошими каталитическими, строительными, энергетическими, информационными и иными свойствами.
Кислород, водород и азот наряду с углеродом можно отнести к «кирпичикам» живого. Клетка состоит на 70% из кислорода,
17% углерода, 10% водорода, 3% азота. Все эти элементы живого принадлежат к наиболее устойчивым и распространенным во Вселенной химическим элементам. Они легко соединяются между собой, вступают в реакции и обладают малым атомным весом. Их соединения легко растворяются в воде.
Для появления жизни необходимы также определенные физические и химические условия (температура, давление, радиация, вода, соли и т.д.). Эти показатели не должны выходить за границы определенного диапазона значений, вне которых жизнь становится невозможной.
Современное естествознание располагает точными знаниями о самых различных процессах и явлениях нашего мира. Однако этих знаний оказывается недостаточно для достоверного описания появления жизни на Земле. Сегодня мы можем уверенно утверждать только, что развитие природы носит направленный характер, выражающийся в нарастании сложности и упорядоченности вещества и его структур во Вселенной. Жизнь - одна из самых высоких известных человеку форм упорядоченности вещества, которая может возникнуть только по достижении развивающейся Вселенной определенной стадии эволюции и только в таких ее локальных системах, где предыдущее развитие подготовило необходимые условия для столь высокого уровня упорядоченности вещества. В принципе такие условия могут возникнуть во многих локальных системах, на многих планетах, образовавшихся около звезд определенного типа. Но пока мы знаем только одно место во Вселенной, где есть жизнь,- это наша планета Земля.
Наша планета - «золотая середина» в Солнечной системе - наилучшим образом подходит для зарождения жизни. Возраст Земли предполагается равным 4,6 миллиардов лет, а первые осадочные породы, свидетельствующие о появлении крупных водоемов, заполненных жидкой водой, датируются возрастом 3,8 миллиарда лет, хотя некоторые ученые относят его еще дальше, считая равным 4 миллиардам лет.
На Земле постепенно возникли атмосфера и гидросфера - моря, океаны и т.д. Возникли они за счет дегазации лав, выплавлявшихся из верхней мантии при интенсивном вулканизме.
Несмотря на то, что объемы океанов и атмосферы все время росли, они и сегодня составляют ничтожную часть массы
планеты. Океаны вместе с ледниками составляют одну четырехтысячную, а атмосфера - одну миллионную долю массы Земли. Мы имеем все основания полагать, что при дегазации вулканических лав на поверхность Земли поступали прежде всего пары воды и газообразные соединения углерода, серы, азота.
Вначале атмосфера была такой тонкой, что парниковый эффект был ничтожен. В таком случае средняя температура поверхности Земли была около 15°С. А при такой температуре все пары воды должны были конденсироваться, за счет этого и образовались океаны.
Первичная атмосфера не содержала свободного кислорода, поскольку его не содержали те газы, которые выбрасывались при извержении вулканов. Это соображение подтверждает и анализ пузырьков газа, обнаруженных в протоархейских породах. 60 процентов этих газов составляла углекислота, остальное - соединения серы, аммиака, другие окислы углерода. Что касается воды первичного океана, то исследователи сходятся на том, что ее состав был близок к современному. Для этого есть немало доказательств. Но так же, как и в первичной атмосфере, в первичном океане свободного кислорода не было.
Таким образом, свободный кислород, а значит, и химический состав современной атмосферы и свободный кислород океана не были первоначально заданы при рождении Земли как небесного тела, а являются результатом жизнедеятельности первичного живого вещества.
Для построения любого сложного органического соединения, входящего в состав живых тел, нужен небольшой набор блоков-мономеров (низкомолекулярных соединений): 29 мономеров описывают биохимическое строение любого живого организма. Это строение состоит из аминокислот (из них построены все белки), азотных соединений (составные части нуклеиновых кислот), глюкозы - источника энергии, жиров - структурного материала, идущего на построение в клетке мембран и запасающего энергию.
После того, как углеродистые соединения образовали «первичный бульон», могли уже организовываться биополимеры - белки и нуклеиновые кислоты, обладающие свойством самовоспроизводства. Необходимая концентрация веществ для образования биополимеров могла возникнуть в результате осаждения органических соединений на минеральных частицах, например, на глине или гидроокиси железа, образующих ил водоемов. Кроме того, органические вещества могли образовать на поверхности океана тонкую пленку, которую ветер и волны гнали к берегу, где она собиралась в толстые слои. В химии известен также процесс объединения родственных молекул в разбавленных растворах.
В начальный период формирования нашей планеты воды, пропитывающие земной грунт, непрерывно перемещали растворенные в них вещества из мест их образования в места накопления. Там формировались протобионты - системы органических веществ, способных взаимодействовать с окружающей средой, то есть расти и развиваться за счет поглощения из окружающей среды разнообразных богатых энергией веществ.
Далее образуются микросферы - шаровидные тела, возникающие при растворении и конденсации абиогенно полученных белковоподобных веществ.
В подтверждение возможности абиогенного синтеза были проведены следующие опыты. Воздействуя на смесь газов электрическими разрядами, имитирующими молнию, и ультрафиолетовым излучением, ученые получали сложные органические вещества, входящие в состав живых белков. Органические соединения, играющие большую роль в обмене веществ, были искусственно получены при облучении водных растворов углекислоты. Были искусственно синтезированы аминокислоты и простые нуклеиновые кислоты. Этими экспериментами было доказано, что абиогенное образование органических соединений во Вселенной могло происходить в результате взаимодействия тепловой энергии, ионизирующего и ультрафиолетового излучений и электрических разрядов.
Началом жизни на Земле принято считать появление нуклеиновых кислот, способных к воспроизводству белков. Переход от сложных органических веществ к простым живым организмам наукой пока не установлен. Теория биохимической эволюции предлагает лишь общую схему. В соответствии с ней между коацерватами (сгустками органических веществ) могли выстраиваться молекулы сложных углеводородов, что приводило к образованию примитивной клеточной мембраны, обеспечивающей коацерватам стабильность. В результате включения в коацерват молекулы, способной к самовоспроизведению, могла возникнуть примитивная клетка, способная к росту.Следующим шагом в организации живого должно было быть образование мембран, которые отграничивали смеси органических веществ от окружающей среды. С их появлением и получается клетка - «единица жизни», главное структурное отличие живого от неживого. Bсe основные процессы, определяющие поведение живого организма, протекают в клетках. Тысячи химических реакций происходят одновременно для того, чтобы клетка могла получить необходимые питательные вещества, синтезировать специальные биомолекулы и удалить отходы.Синтез белка осуществляется в цитоплазме клетки. Почти в каждой из клеток человека синтезируется свыше 10000 разных белков. Величина клеток - от микрометра до более одного метра (у нервных клеток, имеющих отростки). Клетки имеют разное назначение (нервные, мышечные и т.д.). Большинство из них обладает способностью восстанавливаться, но некоторые, например, нервные - не восстанавливаются.
Сегодня уже не вызывает сомнений, что В.И. Вернадский, предположивший, что жизнь сразу возникла в виде примитивной биосферы, был прав - потому, что только разнообразие видов живых организмов могло обеспечить выполнение всех функций живого вещества в биосфере. Живое вещество -это вся совокупность живых организмов нашей планеты. Биосфера - внешняя геологическая оболочка Земли, образующая у ее поверхности пленочный слой. Это - системное образование, включающее в себя живое вещество планеты и среду его обитания, преобразованную им. Именно такое понимание биосферы было предложено В.И. Вернадским. Он же впервые нарисовал панораму исторического развития биосферы и показал роль живого вещества в процессе эволюции Земли, неотделимость эволюции биосферы от геологической истории планеты.
Вернадский доказал, что жизнь является мощнейшей геологической силой, вполне сравнимой как по энергетическим затратам, так и по внешним эффектам с такими геологическими процессами, как горообразование, извержение вулканов, землетрясения и т.д. Жизнь не просто существует в окружающей ее среде, но активно формирует эту среду, преобразуя ее «под себя». Вернадский выделил биогеохимические функции жизни, отвечающие за это. К ним относятся: газовая - поглощение и выделение кислорода, углекислого газа и др.; окислительная - образование карбонатов, сульфидов, соединений с азотом, серой, фосфором, железом, марганцем и т.д.; восстановительная - десульфинирование, денитрификация и т.д.; концентрация и выделение солей кальция; концентрация фосфора, калия, бора, азота, серы, кальция, натрия, цинка в почвах и осадочных породах; синтез и разрушение органического вещества. И сегодня мы можем смело говорить, что весь лик современной Земли, все ее ландшафты, все осадочные породы, метаморфические породы (граниты, гнейсы, образовывающиеся из осадочных пород), запасы полезных ископаемых, современная атмосфера являются результатом деятельности живого вещества.
Следы древнейших организмов обнаружены в кремнистых пластах Западной Австралии, возраст которых, а следовательно, и возраст останков жизни оценен в 3,2 - 3,5 миллиарда лет. Это минерализовавшиеся нитчатые и округлые микроорганизмы примерно десятка различных видов, напоминающие простейшие бактерии и микроводоросли. Организмы, видимо, имели внутренние структуры, в них присутствовали химические элементы, соединения которых были способны осуществлять фотосинтез. Обнаруженные древнейшие организмы бесконечно сложны по сравнению с самым сложным из известных органических соединений неживого (абиогенного) происхождения. Нет сомнений, что это не самые ранние формы жизни и что существовали их более древние предшественники. Истоки жизни уходят в тот «темный» первый миллиард лет существования Земли как планеты, который не оставил следов в ее геологической истории. Так, есть данные, что известный биогеохимический цикл углерода, связанный с фотосинтезом в биосфере, существенно стабилизировался более 3,8 миллиарда лет назад. А это позволяет считать, что фотоавтотрофная биосфера существовала на нашей планете не менее 4 миллиардов лет назад. Но по всем данным цитологии и молекулярной биологии, фотоавтотрофные организмы были вторичными в процессе эволюции живого вещества. Автотрофному способу питания живых организмов должен был предшествовать гетеротрофный (потребление в качестве пищи других организмов), как более простой. Автотрофные организмы, строящие свое тело за счет неорганических минеральных веществ, имеют более позднее происхождение.
Древнейшая жизнь, вероятно, существовала в качестве гетеротрофных бактерий, получавших пищу и энергию от органического материала абиогенного происхождения, образовавшегося еще раньше, на космической стадии эволюции Земли. Исходя из этого нетрудно себе представить, что начало жизни как таковой отодвигается еще дальше, за пределы каменной летописи земной коры, то есть более чем на 4 миллиарда лет назад.
Учитывая вышесказанное, нетрудно прийти к общему заключению о том, что жизнь на Земле существует примерно столько же времени, сколько существует сама планета. Именно это имел в виду Вернадский, когда говорил о вечности жизни на Земле.
Заключение
Зарождение жизни - точка отсчета для развития всего живого мира на Земле. Именно в этот момент начали функционировать фундаментальные законы существования живых организмов, которые с ходом поступательного развития жизни становились только более многоуровневыми и дифференцированными. Не поняв существа этих базисных законов, мы лишаем себя возможности осмыслить целый ряд важнейших аспектов в эволюционной биологии, цитологии, микробиологии, экологии, учении о биосфере и других науках, включая медицину и валеологию. Можно сказать, что понимание причины и механизма возникновения первичных живых форм является тем ключом, который облегчит проникновение в тайны существования растений, животных и человека, и поможет найти оптимальные подходы к их гармоничному, или органичному, сосуществованию. Именно поэтому «ориджинология» - наука о возникновении жизни, должна занять достойное место в ряду других наук.
Кроме познавательного аспекта, ориджинология имеет важнейшее практическое значение. В настоящее время на планете быстрыми темпами развиваются глобальные изменения, связанные, прежде всего с ухудшением состояния экосистем и здоровья населения планеты. Многие ученые сходятся во мнении, что главным резервом, на который человечество может опираться в своем дальнейшем существовании, является системный ресурс биосферы. Другим резервом, является системный ресурс самого человека, его огромные потенциальные возможности, которые могут развертываться в трудных ситуациях. В решении обоих этих проблем могут быть использованы знания, накопленные учеными в ходе исследований, посвященных возникновению жизни на Земле.
Список использованной литературы
1. Найдыш В.М.Концепции современного естествознания: Учебник. -- Изд. 2-е, перераб. и доп. - М.: Альфа-М; ИНФРА-М, 2004. -- 622 с. (в пер.)
2. Горохов В.Г., «Концепции современного естествознания», М.: ИНФРА, 2003 г.;
3. Лихин А.Ф. «Концепции современного естествознания», М.: Проспект, 2004 г.;
4. Найденыш В.М. «Концепции современного естествознания», М.: ГАРДАРИКИ, 2003 г.;
Подобные документы
Общее понятие про креационизм. Характеристика концепций: божественное сотворение всего живого; многократное самозарождение жизни. История возникновения панспермии как концепции. Вариант возникновения жизни на Земле как следствия химических процессов.
контрольная работа [192,5 K], добавлен 02.05.2009Содержание креационизма - философско-методологической концепции возникновения жизни. Основные идеи гипотез стационарного состояния, самопроизвольного зарождения и панспермии. Этапы появление живых организмов по концепции биохимической эволюции Опарина.
реферат [26,0 K], добавлен 19.11.2010Характеристика основных теорий происхождения жизни на Земле, их преимущества и недостатки, подтверждающие факты. Научная вероятность возникновения жизни на молодой планете, эксперименты Опарина. Самые древние микробы и главные признаки их жизни.
реферат [21,4 K], добавлен 23.04.2010Условия появления жизни (наличие воды, углерода, внешней энергии), основные концепции ее возникновения. Гипотеза происхождения жизни Опарина. Первые живые организмы. Геологические эры и эволюция жизни. Химический состав нашей планеты в разные периоды.
презентация [244,0 K], добавлен 25.04.2014История представлений о возникновении жизни на Земле. Гипотезы возникновения жизни на Земле. Образование первичных органических соединений. Что считать жизнью? Эволюция жизни на Земле. Появление высокоорганизованных форм жизни.
реферат [1,1 M], добавлен 17.05.2003Проблема происхождения жизни. Гипотеза А.И. Опарина о коацерватной стадии в процессе возникновения жизни. Этапы химической и предбиологической эволюции на пути к жизни. Гипотеза о роли малых молекул в первичном зарождении белково-нуклеиновых систем.
реферат [26,0 K], добавлен 02.01.2008Проблема происхождения жизни на Земле. Возможности существования жизни в других областях Вселенной. Креационизм. Теория стационарного состояния, самопроизвольного самозарождения, панспермии. Современные возрения на происхождение жизни на Земле.
реферат [2,5 M], добавлен 04.10.2008Сущность естественнонаучных теорий происхождения жизни на Земле, их распространенность и популярность на современном этапе, содержание и основные положения. Истоки происхождения креационизма, концепция Опарина и этапы перехода от неживой материи к живой.
реферат [21,3 K], добавлен 18.04.2009Библейские представления и развитие естествознания. Взаимоотношение времени и вечности в теории сотворения. Концепции возникновения жизни, их разновидности и особенности. Основные положения естественнонаучной теории, этапы зарождения жизни на Земле.
курсовая работа [48,9 K], добавлен 11.11.2010Теории возможности и вероятности возникновения жизни на Земле (креационизм, спонтанное и стационарное зарождение жизни, панспермия, биохимическая эволюция). Стадии образования органических молекул. Возникновение живых организмов, образование атмосферы.
курсовая работа [40,5 K], добавлен 26.05.2013