Биосфера и Цивилизация, экологические проблемы, связанные с глобальными изменениями окружающей среды
Биосфера, место человека в ней, трофическая цепь. Экологические и антропогенные факторы, глобальные проблемы. Биологическое многообразие, устойчивость биосферы, ноосфера, химические процессы. Современные представления о Вселенной, модель большого взрыва.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 25.02.2010 |
Размер файла | 43,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1. Биосфера и Цивилизация
1.1 Биосфера и место человека в биосфере
Термин «биосфера» появился в науке в 1875 г., однако первые представления о биосфере складывались уже в начале 19 в. Эти первые представления были в частности. Отражены в работе «Гидрология» Ж.Б. Ламарка (1802). В 1826 г. Немецкий ученый Гумбольт ввел понятие «жизненная среда» понимая под этим оболочку Земли, куда включал атмосферные, морские и континентальные процессы и весь органический мир. Так в науке формировалось понятие пространства, охватываемого жизнью и ей же создаваемого. Геолог Э. Зюсс назвал это пространство «биосферой». Впоследствии понятие биосферы разрабатывалось разными исследователями. Считается, что наиболее полно концепция биосферы разработана в трудах отечественного естествоиспытателя и философа В.И. Вернадского.
Суть его учения заключается в следующем: биосфера- это целостная организованная система живого вещества; все в ней - часть единого механизма биосферы; живое вещество - это то звено, которое соединяет историю химических элементов с эволюцией организмов и человека. И с эволюцией всей биосферы.
Биосфера сыграла определяющую роль в возникновении атмосферы, гидросферы и литосферы. Биосфера представляет собой единство живого и минеральных элементов, вовлеченных в сферу жизни. Биосфера в своем естественном состоянии - это монолит жизни. Органическая жизнь сосредоточена в литосфере, в гидросфере, а также в тропосфере. Нижняя граница биосферы опускается на 2-3 км на суше и на 1-2 км ниже дна океана. А верхней служит так называемый озоновый экран на высоте 20-25 км, выше которого жесткое ультрафиолетовое излучение Солнца убивает все живое.
Человеческое общество с его производством и созданной им искусственной средой - техносферой также является частью биосферы.
Суммарная биомасса живых организмов Земли оценивается примерно в 2,4*1012 т, причем основная ее часть (более 99%) образованна наземными животными, растениями и организмами. Биомасса организмов океана ничтожно мала по сравнению с биомассой наземных организмом. Жизнь распространена по земной поверхности крайне неравномерно и в различных природных условиях принимает вид относительно независимых комплексов - биогеоценозов или экосистем. Живая часть биогеоценоза носит название биоценоза. Разнообразные процессы и явления, протекающие в биосфере, являются объектом исследований различных наук.
Особое место при этом отводится экологии. Э. Геккель. Впервые применивший этот термин определил экологию как познание экономики природы, одновременное исследование всех взаимоотношений живого с органическими и неорганическими компонентами среды, включая непременно антагонистические и неантагонистические взаимоотношения животных и растений, контактирующие друг с другом. Одним словом, экология - это наука, изучающая все сложные и взаимоотношения в природе, рассматриваемые Дарвином «как условия борьбы за существование». В результате деятельности человека экология, дифференцируясь на множество самостоятельных наук, все больше приобретает политический и социальный оттенок, включая в себя вопросы права, экономики, социологии, технологии и др. Биосфера выполняет свои функции благодаря многосторонним обменным связям. Все живые организмы связанны между собой энергетическими отношениями, поскольку являются объектами питания других организмов.
1.2 Понятие о трофической цепи
Живые организмы, входящие в состав биоценоза, неодинаковы с точки зрения специфики ассимиляции ими вещества и энергии из окружающей среды. Поскольку растения не нуждаются в других живых посредниках для строительства своего организма, их называют автотрофами. Поскольку они, используя энергию солнечного света, создают органическое вещество из неорганического, их называют производителями, или продуцентами.
Организмы, которые не могут строить собственное вещество из минеральных компонентов, вынуждены использовать созданное автотрофами, употребляя их в пищу. Поэтому их называют гетеротрофами, что означает «питаемый другими» или консументами.
Травоядные животные - консументы 1-го порядка поедают растения - продуцентами, первичные хищники - консументы 2-го порядка поедают травоядных, вторичные хищники - консументы 3-го порядка поедают хищников - консументы 2-го порядка и консументов 1-го порядка.
Таким образом, создаются пищевые цепи из продуцентов и консументов. И продуценты и консументы на разных этапах своего жизненного цикла смыкаются с редуцентами, или деструкторами (разрушителями): микроорганизмами, бактериями, грибами.
Редуценты разлагают выделения животных, микроорганизмов, мертвые организмы и минерализуют их до воды, СО2 и минеральных удобрений. Таким образом, в сообществе живых организмов от звена к звену циркулируют питательные вещества и энергия.
1.3 Экологические факторы
Среда, окружающая живые организмы, т.е. материальные тела и явления, с которыми организм находится в прямых или косвенных отношениях, характеризуется огромным разнообразием. Это многообразие элементов, явлений, условий рассматриваются в качестве экологических факторов. Экологический фактор - это любое условие среды, способное оказывать прямое или косвенное воздействие на живые организмы хотя бы на протяжении одной из фаз индивидуального развития. Организм, в свою очередь, реагирует на экологический фактор специфичными приспособительными реакциями. Экологические факторы подразделяются на две категории: факторы неживой природы и факторы живой природы.
Абиотические факторы. Могут быть классифицированы следующим образом:
Климатические: солнечный свет, температура, влага, скорость движения воздуха, давление;
Химические: газовый состав воздуха, солевой состав воды, концентрация, кислотность и состав почвенных растворов;
Эдафогенные: механический состав почвы, влагоемкость, плотность, воздухопроницаемость;
Орографические: высота над уровнем моря, рельеф, экспозиция склона.
Биотические факторы. Под биотическими факторами понимают совокупность влияний жизнедеятельности одних организмов на другие.
Фитогенные: влияние растительных организмов;
Зоогенные: влияние животных организмов;
Микробиогенные: вирусы, простейшие, бактерии;
Антропогенные: деятельность человека.
Растения создают первичное органическое вещество на Земле и, следовательно, представляют собой пищу для всех иных живых организмов. Любой вид животных обладает четкой избирательностью к составу пищи. Среди животных есть виды, которые могут питаться одним видом растений или животных и многими видами.
Лимитирующие факторы. В 1840г. химик - органик Ю. Либих выдвинул теорию минерального питания растений, в которой утверждается, что развитие растений зависит не только от тех химических элементов или веществ, которые присутствуют в достаточном для организма количестве, но и от тех, которых не хватает.
Например, избыток воды воды или азота не заменяет недостатка бора или железа, которые обычно присутствуют в почве в малом количистве. Либих сформулировал «закон минимума» («закон Либиха»), согласно которому необходимо увеличить содержание в почве минеральных веществ, находящегося в минимальном количестве. Разумеется, закон Либиха справедлив не только для растений.
Спустя 70 лет ученый В. Шелфорд доказал, что не только вещество или какой - либо другой фактор (температура, давление и т.д.), присутствующее в минимуме, может определять урожай или жизнеспособность организма, но и избыток какого - то элемента может приводить к нежелательным последствиям.
Например, многие животные и растения могут поддерживать жизнедеятельность лишь в некотором узком диапазоне рН. Согласно Шелфорду, факторы, присутствующие, как в избытке, так и в недостатке по отношению к оптимальным требованиям организма, называются лимитирующими, а соответствующее правило получило название «Закон лимитирующего фактора» или «Закон толерантности».
1.4 Антропогенный фактор и глобальные экологические проблемы
Человек появился в ходе эволюции биосферы. Он - ее элемент. Появление разума, по-видимому, закономерный этап в развитии живой материи, коренной перелом в ее эволюции, ибо она получила способность мыслить и познавать себя. Все необходимое человек получает из биосферы. Туда же он сбрасывает бытовые и промышленные отходы. Долгое время природа справлялась с этими нарушениями, которые человек вносил в ее деятельность, и сохраняла равновесие. В настоящее время деятельность человека стала соизмерима с силами Природы, и она уже не способна выдерживать напор преобразующей деятельности человека. Это приводит к формированию глобального экологического кризиса, сопровождающегося обострением, так называемых глобальных экологических проблем, к которым относится проблема народонаселения, изменение состава атмосферы и климата, изменения состояния водных систем, истощение природных ресурсов.
Рост народонаселения. Сейчас на Земле - 6,5 млрд. человек. В XX веке темп роста народонаселения резко увеличился и только за последние 40 лет человечество выросло более чем в два раза.
В настоящее время появились тенденции к сокращению темпа роста населения, однако он все еще продолжает оставаться высоким. По прогнозам демографов, к 2025г. на Земле будет от 7,6 до 9,4 млрд. человек.
Основная доля прироста населения приходится на развивающиеся страны, такой рост населения приведет к еще большему давлению человечества на ОС и, по-видимому, еще больше обострит существующие на сегодняшний день экологические проблемы. Дело в том, что у всех живых организмов существуют пределы роста, обусловленные т.н. экологической емкостью территорий, и человек не является исключением.
Каковы эти пределы для человека? К настоящему времени разработаны так называемые ресурсная и биосферная модель мировой системы. По ресурсной модели населения Земли не должно превышать 7 - 7,5 млрд. человек, а по биосферной - 10 млрд.
Изменение состава атмосферы. На первом месте по загрязнению атмосферы стоит энергетика. Энергетика - основа цивилизации и без производства достаточного количества энергии человечество не сможет существовать и развиваться.
Сегодня главный производитель энергии - ТЭС, их доля в общем производстве энергии составляет около 63%.
Доля ГЭС составляет около 20%, доля АЭС - около 17%. Существенную роль в загрязнении атмосферы играет транспорт и выбросы промышленных предприятий. Вносят свою лепту и лесные пожары, до 95% которых обусловлены человеческой неосторожностью. Загрязнение атмосферы, в свою очередь порождает такие проблемы, как парниковый эффект и потепление климата, истощение озонового слоя, закисление природных сред.
Парниковый эффект. Ежегодно в атмосферу выбрасывается 1,5 млрд. т аэрозолей (пыль, дым, туман), миллиарды том СО2 и СО. Углекислый газ пропускает к Земле тепло Солнца, но хуже пропускает в космос тепло Земли. Аналогичное влияние метана, который также выбрасывается в атмосферу. Результат - повышение to на Земле. За последние 100 лет оно составило 0,5 - 0,6oС. Это приводит к усилению процессов опустынивания и повышению уровня Мирового океана.
Закисление природных сред. Выбрасываемые в атмосферу диоксиды серы и азота доокисляются в атмосфере и, растворяясь в воде, образуют серную и азотную кислоты, выпадая затем на землю с дождем, снегом, туманом. Кислотные дожди губительны для растений, лесов и рыбных водоемов. Попадая на почву, они вызывают повышение ее кислотности, что нарушает жизнедеятельность микроорганизмов.
Истощение озонового слоя. Как было сказано ранее, озоновый слой находится на высоте 20 - 25 км над поверхностью Земли и защищает нас от губительного ультрафиолетового излучения Солнца. В последние годы наблюдается циклический процесс снижения концентрации озона в приполярных областях. Это явление получило название «озоновых дыр». Главными «виновниками» разрушения озонового слоя на сегодняшний день считаются хлорфторуглероды, которые используются в холодильной промышленности и в производстве аэрозолей. Они разлагаются с выделением атомов хлора, которые ускоряют превращение озона в молекулярный кислород О2.
Истощение ресурсов. Среди разнообразных ресурсов нашей планеты отметим леса - одно из величайших богатств Земли. На протяжении последних 50 лет наблюдается уменьшение площади лесов на 1 - 2% ежегодно. А за последние 200 лет их количество уменьшилось в двое. Особенно быстро идет разрушение тропических лесов. В которых сосредоточенно до 60% существующих видов растений и животных. Этот процесс чрезвычайно опасен еще и потому, что тропические леса Амазонки, Юго-Восточной Азии, а также леса Сибири называют легкими планеты - настолько велик их вклад в образование атмосферного кислорода.
Истощение водных ресурсов. Потребление воды постоянно растет, однако использование и охрана водных ресурсов далеки от оптимальных решений. Так, большой отбор воды на орошение из рек Средней Азии привел к катастрофе Аральского моря. Соль со дна высохшего моря разносится ветром на сотни км, вызывая засоление почв. За последние годы высохли сотни естественных водоемов Приаралья. Подобные проблемы существуют и на других территориях.
Беспокойство вызывает загрязнение водоемов сточными водами - отходами промышленных предприятий из за аварий танкеров и нефтепроводов в ОС ежегодно попадает более 5 млн. т нефти. Нефтяные пленки, кроме прямого вреда, замедляют обмен гидросферы и атмосферы, что приводит к гибели жизни в океане.
В этих условиях биосфера стала утрачивать свои компенсационные свойства и не успевает залечивать раны наносимые ей. Выход из экологического кризиса видится в реализации понятия «ноосфера». Главные компоненты ноосферы - это человечество, производство и Природа, составляющие единую систему, т.к. человечество не может отказаться от НТП и вернуться в первобытное состояние.
Общий подход к решению экологических проблем - достижение сбалансированного развития человечества путем реализации программ по предотвращению экологических катастроф. К таким программам можно отнести сдерживания роста населения, развития новых малоотходных технологий производства, поиск новых, более «чистых» источников энергии и т.д.
1.5 Биологическое многообразие и устойчивость биосферы
За период, охватывающий около 3 млрд. лет, на Земле в результате биологической эволюции возникали все новые и новые разнообразные виды живых организмов (процесс видообразования продолжается и сегодня). В жесткой борьбе за существование многие из них исчезли безвозвратно, другие подвергались эволюционным изменениям и давали начало видам, их сменяющим, многие виды сохранились до наших дней. Сегодня живой мир нашей планеты "бесконечно" разнообразен и включает огромное число видов. Сегодня хорошо известно, что стабильность существования биосферы как экологической системы планетарного масштаба, зависит именно от многообразия видов живых организмов, ее составляющих. Все виды организмов находятся в прямой или косвенной взаимосвязи друг с другом (трофические, тропические и т.п.). На основании изучения естественных экологических систем с небольшим числом видов, их составляющих, (например: пещерные экосистемы, тундровые), а также искусственных (агробиогеоценозы, лабораторные экспериментальные экосистемы). Так изъятие, гибель даже одного вида может повлечь сильное повреждение и гибель данной системы.
1.6 Ноосфера
Огромное влияние человека на природу и масштабные последствия его деятельности послужили основой для создания учения о ноосфере. Термин «ноосфера» переводится буквально как сфера разума. Впервые его ввел в научный оборот в 1927 г. французский ученый Э. Леруа. Вместе с Тейяром де Шарденом он рассматривал ноосферу как некое идеальное образование, внебиосферную оболочку мысли, окружающую Землю.
Ряд ученых предлагает употреблять вместо понятия «ноосфера» другие понятия: «техносфера», «антропосфера», «психосфера», «социосфера» или использовать их в качестве синонимов. Подобный подход представляется весьма спорным, так как между перечисленными понятиями и понятием «ноосфера» есть определенная разница.
Следует также отметить, что учение о ноосфере не носит пока законченного канонического характера, которое можно было бы принимать как некое безусловное руководство к действию. Учение о ноосфере было сформулировано и в трудах одного из его основателей В.И. Вернадского. В его работах можно встретить разные определения и представления о ноосфере, которые к тому же менялись на протяжении жизни ученого. Вернадский начал развивать данную концепцию с начала 30-х гг. после детальной разработки учения о биосфере. Осознавая огромную роль и значение человека в жизни и преобразовании планеты, В.И. Вернадский употребляет понятие «ноосфера» в разных смыслах: 1) как состояние планеты, когда человек становится крупнейшей преобразующей геологической силой; 2) как область активного проявления научной мысли; 3) как главный фактор перестройки и изменения биосферы.
Очень важным в учении В.И. Вернадского о ноосфере было то, что он впервые осознал и попытался осуществить синтез естественных и общественных наук при изучении проблем глобальной деятельности человека, активно перестраивающего окружающую среду. По его мнению, ноосфера есть уже качественно иная, высшая стадия биосферы, связанная с коренным преобразованием не только природы, но и самого человека. Это не просто сфера приложения знаний человека при высоком уровне техники. Для этого достаточно понятия «техносферы». Речь идет о таком этапе в жизни человечества, когда преобразующая деятельность человека будет основываться на строго научном и действительно разумном понимании всех происходящих процессов и обязательно сочетаться с «интересами природы».
В настоящее время под ноосферой понимается сфера взаимодействия человека и природы, в пределах которой разумная человеческая деятельность становится главным определяющим фактором развития. В структуре ноосферы можно выделить в качестве составляющих человечество, общественные системы, совокупность научных знаний, сумму техники и технологий в единстве с биосферой. Гармоничная взаимосвязь всех составляющих структуры есть основа устойчивого существования и развития ноосферы.
Говоря об эволюционном развитии мира, его переходе в ноосферу, основатели этого учения расходились в понимании сущности данного процесса. Тейяр де Шарден говорил о постепенном переходе биосферы в ноосферу, т.е. «в сферу разума, эволюция которой подчиняется разуму и воле человека», путем постепенного сглаживания трудностей между человеком и природой.
У В.И. Вернадского мы встречаем иной подход. В его учении о биосфере живое вещество преобразует верхнюю оболочку Земли. Постепенно вмешательство человека все увеличивается, человечество становится основной планетарной геолого-образующей силой. Поэтому (стержень учения Вернадского о ноосфере) человек несет прямую ответственность за эволюцию планеты. Понимание им данного тезиса необходимо и для его собственного выживания. Стихийность же развития сделает биосферу непригодной для обитания людей. В связи с этим человеку следует соизмерять свои потребности с возможностями биосферы. Воздействие на нее должно быть дозировано разумом в ходе эволюции биосферы и общества. Постепенно биосфера преобразуется в ноосферу, где ее развитие приобретает направляемый характер.
В этом и заключаются непростой характер эволюции природы, биосферы, а также сложности появления ноосферы, определения роли и места в ней человека. В.И. Вернадский неоднократно подчеркивал, что человечество лишь вступает в данное состояние. И сегодня, спустя несколько десятилетий после смерти ученого, говорить об устойчивой разумной деятельности человека (т.е. о том, что мы уже достигли состояния ноосферы) нет достаточных оснований. И так будет, по крайней мере до тех пор, пока человечество не решит глобальных проблем планеты, в том числе экологическую. О ноосфере правильнее говорить, как о том идеале, к которому следует стремиться человеку.
2. Понятие о химических процессах. Проблемы и решения
Способность к взаимодействию различных химических реагентов определяется не только их атомно-молекулярной структурой, но и условиями протекания химических реакций.
К условиям протекания химических процессов относятся, прежде всего, термодинамические факторы, характеризующие зависимость реакций от температуры, давления и некоторых других условий. В еще большей степени характер и особенно скорость реакций зависят от кинетических условий, которые определяются наличием катализаторов и других добавок к реагентам, а также влиянием растворителей, стенок реактора и иных условий.
Не следует, однако, забывать, что эти условия могут оказывать воздействие на характер и результат химических реакций при определенной структуре молекул химических соединений. Наиболее активны в этом отношении соединения переменного состава с ослабленными связями между их компонентами. Именно на них и направлено в первую очередь действие разных катализаторов, которые значительно ускоряют ход химических реакций. Меньшее влияние оказывают на реакции такие термодинамические факторы, как температура и давление. Для сравнения можно привести реакцию синтеза аммиака из азота и водорода. Вначале его не удавалось получить ни с помощью большого давления, ни с помощью высокой температуры, и только использование в качестве катализатора специально обработанного железа впервые привело к успеху. Однако эта реакция сопряжена с большими технологическими трудностями, которые удалось преодолеть после того, как был использован металлорганический катализатор. В его присутствии синтез аммиака происходит при обычной температуре (18°С) и нормальном атмосферном давлении, что открывает большие перспективы не только для производства удобрений, но и для такого изменения генной структуры злаков (ржи и пшеницы), когда они не будут нуждаться в азотных удобрениях. Еще большие возможности и перспективы возникают с использованием катализаторов в других отраслях химической промышленности, в особенности в «тонком» и «тяжелом» органическом синтезе.
Не приводя более примеров о чрезвычайно высокой эффективности катализаторов в ускорении химических реакций, следует обратить особое внимание на то, что возникновение и эволюция жизни на Земле были бы невозможны без существования ферментов, служащих, по сути дела, живыми катализаторами.
Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире наталкиваются на серьезные ограничения. Речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а также частично -- практического применения выделенных ферментов для ускорения некоторых химических реакций.
Тот факт, что катализ играл решающую роль в процессе перехода от химических систем к биологическим, т.е. на предбиотической стадии эволюции, в настоящее время подтверждается многими данными и аргументами. Наиболее убедительные результаты связаны с опытами по самоорганизации химических систем, которые наблюдали наши соотечественники Б.П. Белоусов и А.М. Жаботинский. Такие реакции сопровождаются образованием специфических пространственных и временных структур за счет поступления новых и удаления использованных химических реагентов. Однако в отличие от самоорганизации открытых физических систем в указанных химических реакциях важное значение приобретают каталитические процессы.
Роль этих процессов усиливается по мере усложнения состава и структуры химических систем. На этом основании некоторые ученые, например, напрямую связывают химическую эволюцию с самоорганизацией и саморазвитием каталитических систем. Другими словами, такая эволюция если не целиком, то в значительной мере связана с процессами самоорганизации каталитических систем. Следует, однако, помнить, что переход к простейшим формам жизни предполагает также особый дифференцированный отбор лишь таких химических элементов и их соединений, которые являются основным строительным материалом для образования биологических систем. В связи с этим достаточно отметить, что из более чем ста химических элементов лишь шесть, названных органогенами, служат основой для построения живых систем.
3. Современные представления о Вселенной. Модель большого взрыва и расширяющейся Вселенной
Современная картина Вселенной возникла только в 1924 г., когда американский астроном Эдвин Хаббл показал, что наша Галактика не единственная. На самом деле существует много других галактик, разделенных огромными областями пустого пространства. Для доказательства Хабблу требовалось определить расстояния до этих галактик, которые настолько велики, что, в отличие от положений близких звезд, видимые положения галактик действительно не меняются. Поэтому для измерения расстояний Хаббл был вынужден прибегнуть к косвенным методам. Видимая яркость звезды зависит от двух факторов: от того, какое количество света излучает звезда (ее светимости), и от того, гдe она находится. Яркость близких звезд и расстояние до них мы можем измерить; следовательно, мы можем вычислить и их светимость. И наоборот, зная светимость звезд в других галактиках, мы могли бы вычислить расстояние до них, измерив их видимую яркость. Хаббл заметил, что светимость некоторых типов звезд всегда одна и та же, когда они находятся достаточно близко для того, чтобы можно было производить измерения. Следовательно, рассуждал Хаббл, если такие звезды обнаружатся в другой галактике, то, предположив у них такую же светимость, мы сумеем вычислить расстояние до этой галактики. Если подобные расчеты для нескольких звезд одной и той же галактики дадут один и тот же результат, то полученную оценку расстояния можно считать надежной.
Таким путем Хаббл рассчитал расстояния до девяти разных галактик. Теперь известно, что наша Галактика - одна из нескольких сотен тысяч миллионов галактик, которые можно наблюдать в современные телескопы, а каждая из этих галактик в свою очередь содержит сотни тысяч миллионов звезд. На рисунке показано, какой увидел бы нашу Галактику наблюдатель, живущий в какой-нибудь другой галактике. Наша Галактика имеет около ста тысяч световых лет в поперечнике. Она медленно вращается, а звезды в ее спиральных рукавах каждые несколько сотен миллионов лет делают примерно один оборот вокруг ее центра. Наше Солнце представляет собой обычную желтую звезду средней величины, расположенную на внутренней стороне одного из спиральных рукавов. Какой же огромный путь мы прошли от Аристотеля и Птолемея, когда Земля считалась центром Вселенной! В 20-х годах, когда астрономы начали исследование спектров звезд других галактик, обнаружилось нечто еще более странное: в нашей собственной Галактике оказались те же самые характерные наборы отсутствующих цветов, что и у звезд, но все они были сдвинуты на одну и ту же величину к красному концу спектра. Чтобы понять смысл сказанного, следует сначала разобраться с эффектом Доплера. Как мы уже знаем, видимый свет - это колебания, или волны электромагнитного поля. Частота (число волн в одну секунду) световых колебаний чрезвычайно высока - от четырехсот до семисот миллионов волн в секунду. Человеческий глаз воспринимает свет разных частот как разные цвета, причем самые низкие частоты соответствуют красному концу спектра, а самые высокие - фиолетовому. Представим себе источник света, расположенный на фиксированном расстоянии от нас (например, звезду), излучающий с постоянной частотой световые волны. Очевидно, что частота приходящих волн будет такой же, как та, с которой они излучаются (пусть гравитационное поле галактики невелико и его влияние несущественно). Предположим теперь, что источник начинает двигаться в нашу сторону. При испускании следующей волны источник окажется ближе к нам, а потому время, за которое гребень этой волны до нас дойдет, будет меньше, чем в случае неподвижной звезды. Стало быть, время между гребнями двух пришедших волн будет меньше, а число волн, принимаемых нами за одну секунду (т. е. частота), будет больше, чем когда звезда была неподвижна. При удалении же источника частота приходящих волн будет меньше.
Это означает, что спектры удаляющихся звезд будут сдвинуты к красному концу (красное смещение), а спектры приближающихся звезд должны испытывать фиолетовое смещение. Такое соотношение между скоростью и частотой называется эффектом Доплера, и этот эффект обычен даже в нашей повседневной жизни. Прислушайтесь к тому, как идет по шоссе машина: когда она приближается, звук двигателя выше (т. е. выше частота испускаемых им звуковых волн), а когда, проехав мимо, машина начинает удаляться, звук становится ниже. Световые волны и радиоволны ведут себя аналогичным образом. Эффектом Доплера пользуется полиция, определяя издалека скорость движения автомашин по частоте радиосигналов, отражающихся от них. Доказав, что существуют другие галактики, Хаббл все последующие годы посвятил составлению каталогов расстояний до этих галактик и наблюдению их спектров. В то время большинство ученых считали, что движение галактик происходит случайным образом и поэтому спектров, смещенных в красную сторону, должно наблюдаться столько же, сколько и смещенных в фиолетовую. Каково же было удивление, когда у большей части галактик обнаружилось красное смещение спектров, т. е. оказалось, что почти все галактики удаляются от нас! Еще более удивительным было открытие, опубликованное Хабблом в 1929 г.: Хаббл обнаружил, что даже величина красного смещения не случайна, а прямо пропорциональна расстоянию от нас до галактики. Иными словами, чем дальше находится галактика, тем быстрее она удаляется! А это означало, что Вселенная не может быть статической, как думали раньше, что на самом деле она непрерывно расширяется и расстояния между галактиками все время растут. Открытие расширяющейся Вселенной было одним из великих интеллектуальных переворотов двадцатого века. Задним числом мы можем лишь удивляться тому, что эта идея не пришла никому в голову раньше. Ньютон и другие ученые должны были бы сообразить, что статическая Вселенная вскоре обязательно начала бы сжиматься под действием гравитации. Но предположим, что Вселенная, наоборот, расширяется. Если бы расширение происходило достаточно медленно, то под действием гравитационной силы оно, в конце концов, прекратилось бы и перешло в сжатие. Однако если бы скорость расширения превышала некоторое критическое значение, то гравитационного взаимодействия не хватило бы, чтобы остановить расширение, и оно продолжалось бы вечно. Все это немного напоминает ситуацию, возникающую, когда с поверхности Земли запускают вверх ракету. Если скорость ракеты не очень велика, то из-за гравитации она, в конце концов, остановится и начнет падать обратно. Если же скорость ракеты больше некоторой критической (около одиннадцати километров в секунду), то гравитационная сила не сможет ее вернуть, и ракета будет вечно продолжать свое движение от Земли. Расширение Вселенной могло быть предсказано на основе ньютоновской теории тяготения в XIX, XVIII и даже в конце XVII века. Однако вера в статическую Вселенную была столь велика, что жила в умах еще в начале нашего века. Даже Эйнштейн, разрабатывая в 1915 г. общую теорию относительности, был уверен в статичности Вселенной. Чтобы не вступать в противоречие со статичностью, Эйнштейн модифицировал свою теорию, введя в уравнения так называемую космологическую постоянную. Он ввел новую "антигравитационную" силу, которая в отличие от других сил не порождалась каким-либо источником, а была заложена в саму структуру пространства-времени. Эйнштейн утверждал, что пространство-время само по себе всегда расширяется и этим расширением точно уравновешивается притяжение всей остальной материи во Вселенной, так что в результате Вселенная оказывается статической. По-видимому, лишь один человек полностью поверил в общую теорию относительности: пока Эйнштейн и другие физики думали над тем, как обойти не статичность Вселенной, предсказываемую этой теорией, русский физик и математик А.А. Фридман, наоборот, занялся ее объяснением. Фридман сделал два очень простых исходных предположения: во-первых, Вселенная выглядит одинаково, в каком бы направлении мы ее ни наблюдали, и во-вторых, это утверждение должно оставаться справедливым и в том случае, если бы мы производили наблюдения из какого-нибудь другого места. Не прибегая ни к каким другим предположениям, Фридман показал, что Вселенная не должна быть статической. В 1922 г., за несколько лет до открытия Хаббла, Фридман в точности предсказал его результат! Предположение об одинаковости Вселенной во всех направлениях на самом деле, конечно, не выполняется. Как мы, например, уже знаем, другие звезды в нашей Галактике образуют четко выделяющуюся светлую полосу, которая идет пo всему небу ночью - Млечный Путь. Нo если говорить о далеких галактиках, то их число во всех направлениях примерно одинаково. Следовательно, Вселенная действительно "примерно" одинакова во всех направлениях - при наблюдении в масштабе, большом по сравнению с расстоянием между галактиками, когда отбрасываются мелкомасштабные различия.
Правда, на первый взгляд, тот факт, что Вселенная кажется нам одинаковой во всех направлениях, может говорить о какой-то выделенности нашего местоположения во Вселенной. В частности, раз мы видим, что все остальные галактики удаляются от нас, значит, мы находимся в центре Вселенной. Но есть и другое объяснение: Вселенная будет выглядеть одинаково во всех направлениях и в том случае, если смотреть на нее из какой-нибудь другой галактики. Это, как мы знаем, вторая гипотеза Фридмана. У нас нет научных доводов ни за, ни против этого предположения, и мы приняли его, так сказать, из скромности: было бы крайне странно, если бы Вселенная казалась одинаковой во всех направлениях только вокруг нас, а в других ее точках этого не было! В модели Фридмана все галактики удаляются друг от друга. Это вроде бы как надутый шарик, на который нанесены точки, если его все больше надувать.
Все варианты модели Фридмана имеют то общее, что в какой-то момент времени в прошлом (десять-двадцать тысяч миллионов лет назад) расстояние между соседними галактиками должно было равняться нулю. В этот момент, который называется большим взрывом, плотность Вселенной и кривизна пространства-времени должны были быть бесконечными.
4. Экологические проблемы, связанные с глобальными изменениями окружающей среды
Экологическая проблема взаимоотношений общества и природы, сохранения окружающей среды. На протяжении тысячелетий человек постоянно увеличивал свои технические возможности, усиливал вмешательство в природу, забывая о необходимости поддержания в ней биологического равновесия. Особенно резко возросла нагрузка на окружающую среду во второй половине XX в. Во взаимоотношениях между обществом и природой произошел качественный скачок, когда в результате резкого увеличения численности населения, интенсивной индустриализации и урбанизации нашей планеты хозяйственные нагрузки начали повсеместно превышать способность экологических систем к самоочищению и регенерации. Вследствие этого нарушился естественный круговорот веществ в биосфере, под угрозой оказалось здоровье нынешнего и будущего поколения людей. Экологическая проблема современного мира не только остра, но и многогранна. Она проявляется практически во всех отраслях материального производства (особенно в сельском хозяйстве, химической промышленности, черной и цветной металлургии, атомной энергетике), имеет отношение ко всем регионам планеты. Окружающая нас природа серьезно больна. Угрожающие размеры приняло уничтожение лесов. Ежегодно с лица Земли исчезает 11 млн. га тропических лесов это в 10 раз превышает масштабы лесовосстановления. Идет быстрое уничтожение двух главных мировых массивов тропических лесов Амазонии и Юго-Восточной Азии. В Амазонии ведутся массовые вырубки под пастбища, развивается и целлюлозно-бумажное производство. В Юго-Восточной Азии ценная древесина заготавливается для экспорта. Все это ведет к уничтожению уникального генофонда тропических лесов, нарушению водного режима огромных районов, снижению их роли как «легких планеты». Интенсивно вырубаются леса и умеренных широт. Параллельно идет процесс опустынивания. Он ежегодно изымает из сельскохозяйственного производства около 6 млн. га земель. Особенно сильно процесс опустынивания проявляется в Сахельских странах Африки, расположенных на границе Сахары и саванны. Следующие одна за другой необычайно жестокие засухи, поразившие эти страны в 70 80 гг. явились эхом неправильных и экстенсивных методов эксплуатации почв в условиях африканских тропиков. Негативную роль сыграли также перевыпас скота и уничтожение и без того скудной растительности с целью заготовки дров. Сахельские засухи принесли смерть миллионам африканцев. Многие страны мира сталкиваются серьезными водоресурсными проблемами, которые заключаются не только в количественной нехватке воды, но и в дефиците чистых пресных вод. Ежегодно в водоемы попадает огромное количество неочищенных сточных вод. Среди наиболее загрязненных рек и озер мира Дунай, Рейн, Сена, Миссисипи, Волга, Днепр, Ладожское озеро, Балхаш и др. На каждого жителя планеты ежегодно добывается около 20 т минерального сырья, 97 98 % его в виде отходов поступает затем в почву, воду, воздух. Масса отходов и загрязняющих веществ, поступающая в окружающую среду, достигла примерно 40 млрд. т. Загрязнение окружающей среды ставит под угрозу жизнь и здоровье людей, существование растительного и животного мира. Например, загрязнения двуокисью серы и окислами азота породило такое явление, как кислотные дожди, отравляющие почву и водоемы, губящие леса. Эти загрязнения переносятся на большие расстояния воздушными массами и вместе с осадками выпадают от источников загрязнения («трансграничный перенос»). Только в США и Западной Европе ими уничтожено уже более 30 млн. га лесов, в ФРГ поражена половина лесной (преимущественно хвойной) растительности. Европа становится «лысеющим континентом». Кислотные дожди не минуют и территорию России: в европейской части страны уровень загрязнения западных ветров примерно в 10 раз больше, чем в восточных. Содержащаяся в атмосфере двуокись углерода играет большую роль в жизни человека, растений и животных, предохраняет землю от перегрева. Но хозяйственная деятельность человека нарушила баланс CO2 в природе. Это создает, по мнению многих ученых, реальную угрозу так называемого парникового эффекта заметного потепления климата, таяния ледников, повышения уровня Мирового океана. В последние годы выявилась еще одна экологическая опасность разрушение озонового слоя стратосферы, особенно четко проявившееся над Антарктидой (так называемая «озоновая дыра»). Этот слой, отличающийся повышенным содержанием озона, защищает от избыточного ультрафиолетового излучения Солнца. Причина разрушения озонового слоя резко возросшее производство и использование так называемых фреонов (фторхлоруглеродов) в холодильных установках, в виде аэрозолей и т. д. Международная конференция в Вене (1985 г.) призвала страны резко снизить их производство. К экологической проблеме современности можно также отнести ухудшающиеся условия жизни людей в крупных городах, загрязнение Мирового океана и др. Итак, глобальные последствия нарушения среды обитания затронули все страны, так как экологические проблемы «не признают» государственных границ. Поэтому они могут быть решены только при широком международном сотрудничестве. Действуя в этом направлении, ООН приняла международный документ «Всемирную стратегию охраны природы». Высвобождение средств от гонки вооружений сделало решение экологических проблем более близким и реальным.
Список литературы
1. Голев И.М., Дмитриев О.А. Основные Концепции Современного Естествознания: Учебное пособие. Научная книга, 2006г.
2. Рузавин Г.И. Концепции современного естествознания: Учебник для вузов. -- М.: Культура и спорт, ЮНИТИ, 2002г
3. Карпенков С.Х. Концепции современного естествознания: Учебник для вузов. -- М.: Культура и спорт, ЮНИТИ, 2004г
4. Карташкин. БА. Современные концепции естествознания, шесть лекций-бесед для студентов гуманитарных специальностей и направлений подготовки. - М.: ТОО "Люкс-арт", 2003г
Подобные документы
Эволюция представления о биосфере. Концепция Вернадского о биосфере. Переход от биосферы к ноосфере. Современная концепция экологии. Структура экологических систем. Взаимодействие экосистемы и окружающей её среды. Информация и управление в экосистемах.
реферат [53,0 K], добавлен 14.06.2010Гипотетические представления о Вселенной. Основные принципы познания в естествознании. Развитие Вселенной после Большого Взрыва. Космологическая модель Птолемея. Особенности теории Большого Взрыва. Этапы эволюции и изменение температуры Вселенной.
курсовая работа [1,8 M], добавлен 28.04.2014Общие фундаментальные принципы и законы. Связь жизни на Земле с физическими условиями. Происхождение жизни. Влияние Солнца на экологические процессы Земли. Биосфера Земли. Причины и характер загрязнения биосферы, способы решения этой проблемы.
контрольная работа [22,1 K], добавлен 14.10.2007Биоэтика как естественное обоснование человеческой морали. Юридические проблемы биоэтики. Характеристика и состав биосферы. Вернадский о биосфере и "живом веществе". Взаимосвязь космоса и живой природы. Противоречия в системе: природа-биосфера-человек.
лекция [48,9 K], добавлен 20.06.2009Изучение понятия ноосферы – нового, эволюционного состояния биосферы, при котором разумная деятельность человека становится, решающим фактором ее развития. Процессы, происходящие в биосфере, с точки зрения В.И. Вернадского. Функции биосферы и ионосферы.
презентация [979,2 K], добавлен 21.06.2012Основные гипотезы мироздания: от Ньютона до Эйнштейна. Теория "большого взрыва" (модель расширяющейся Вселенной) как величайшее достижение современной космологии. Представления А. Фридмана о расширении Вселенной. Модель Г.А. Гамова, образование элементов.
реферат [45,1 K], добавлен 24.02.2012Этапы зарождения и развития жизни на Земле, отличительные свойства живого вещества. Основные положения теории перехода от биосферы к ноосфере французского математика и философа Эдуарда Леруа. Единство биосферы и человечества в исследованиях Вернадского.
контрольная работа [21,9 K], добавлен 14.06.2009Понятие и суть биологического разнообразия. Обзор проблемы контроля и сохранения биологического разнообразия биосферы. Отрицательное влияние человека на биосферу. Экономическая оценка вклада природных экосистем в глобальную биосферную устойчивость.
курсовая работа [48,9 K], добавлен 24.11.2008Общая характеристика концепции современного естествознания. Земли отличий от других планет Солнечной системы. Анализ работы В.И. Вернадского по соотношению форм движения материи. Понятие и сущность ноосферы и биосферы, их работа и взаимодействие.
контрольная работа [34,2 K], добавлен 20.12.2008Сущность и содержание теории Большого взрыва, история и основные этапы ее развития, место в естествознании. Описание соответствующей модели, этапы и направления формирования Вселенной. Принципы определения возраста Вселенной, критерии его оценки.
реферат [694,9 K], добавлен 16.03.2014