Нарушения фагоцитарной активности

Макрофаги перитонеального экссудата как модель фагоцитоза и нарушений фагоцитарной активности. Современное состояние учения о фагоцитозе согласно классическим постулатам Ильи Ильича Мечникова. Характеристика общих принципов современной цитофизиологии.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 19.02.2010
Размер файла 30,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Краткий экскурс в историю

Более 100 лет прошло с момента открытия фагоцитарной теории, созданной нашим великим натуралистом, лауреатом Нобелевской премии И. И. Мечниковым. Открытие, осмысление явления фагоцитоза и формулирование в общих чертах основ фагоцитарной теории было сделано им в декабре 1882 г. В 1883 г. он изложил основы новой фагоцитарной теории в докладе “О целебных силах организма” в Одессе на VII съезде естествоиспытателей и врачей и опубликовал их в печати. Были впервые высказаны основные положения фагоцитарной теории, которые И. И. Мечников развивал в последующем на протяжении всей своей жизни. Хотя сам факт поглощения живыми клетками других частиц был описан многими натуралистами задолго до ученого, однако только он дал блестящее толкование огромной роли фагоцитов в защите организма от болезнетворных микробов.

Много позже к 70-летнему юбилею ученого коллега и друг И. И. Мечникова Эмиль Ру напишет: “Сегодня, мой друг, Вы наблюдаете доктрину фагоцитоза со спокойным удовлетворением отца, дитя которого сделало хорошую карьеру в мире, но сколько беспокойств оно Вам доставило! Его появление вызвало протесты и сопротивление и в течение двадцати лет Вам пришлось сражаться за него”. Доктрина фагоцитоза “...одна из наиболее плодотворных в биологии: она связала явление иммунитета с внутриклеточным пищеварением, она объяснила нам механизм воспаления и атрофии; она оживила патологическую анатомию, которая, не будучи в состоянии дать приемлемое объяснение, оставалась чисто описательной... Ваша эрудиция такая обширная и верная, что она служит всему миру”.

И. И. Мечников утверждал, что “...иммунитет в инфекционных болезнях должен быть приписан активной целлюлярной деятельности. Среди клеточных элементов фагоциты должны занять первое место. Чувствительность и подвижность, способность поглощать твердые тела и вырабатывать вещества, могущие разрушать и переваривать микробов -- вот главные факторы деятельности фагоцитов. Если эти свойства в достаточной мере развиты и парализуют патогенное действие микробов, тогда животное от природы иммунно... когда фагоциты не обнаруживают наличия всех или одного из этих свойств в достаточной степени, то животное восприимчиво к инфекции...”. Вместе с тем, если бактериальные продукты вызывают у фагоцитов отрицательный хемотаксис или, если при положительном хемотаксисе фагоциты не поглощают бактерий или поглощают, но не убивают их, -- также развивается смертельная инфекция. Решение фундаментальных проблем сравнительной эмбриологии и биологии, приведшее к крупнейшим открытиям ученого, позволило И. И. Мечникову установить, что “фагоцитоз чрезвычайно распространен в животном мире... как на самой низшей ступени животной лестницы, например, у простейших, так и ...у млекопитающих животных и человека... фагоциты представляют собой мезенхимальные клетки”.

И. И. Мечников был в то же время первым, кто занялся сравнительным изучением явления фагоцитоза. Внимание ученого было обращено не только на традиционные лабораторные объекты, но и на таких представителей мира животных, как дафнии, морские звезды, крокодилы, обезьяны. Сравнительное изучение фагоцитоза было необходимо И. И. Мечникову для доказательства всеобщности явлений поглощения и разрушения чужеродного материала фагоцитирующими мононуклеарами, широкого распространения в природе изучаемой им формы иммунологической защиты.

Клеточная теория Мечникова сразу наткнулась на сопротивление. Прежде всего, она была предложена в то время, когда большинство патологов видели в воспалительной реакции, а также в связанных с ней микрофагах и макрофагах не защитную, а вредоносную реакцию. В то время считали даже, что, хотя фагоцитирующие клетки действительно способны поглощать болезнетворные микроорганизмы, это приводит не к разрушению возбудителя, а к переносу его в другие части тела и распространению болезни. Также в тот период времени интенсивно развивалась гуморальная теория иммунитета, основы которой были заложены П. Эрлихом. Были открыты антитела и антигены, были выявлены механизмы гуморальной устойчивости организма против некоторых патогенных микроорганизмов и их токсинов (дифтерия, столбняк и др.). Как это ни странно, но два таких открытия не могли некоторое время ужиться вместе. Позднее в 1888 г. Наттолл нашел в сыворотке нормальных животных вещества, токсичные для некоторых микроорганизмов, и показал, что такие антибактериальные свойства значительно повышаются в результате иммунизации животного. В дальнейшем было обнаружено, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор, затем идентифицированный как сывороточные антитела, и термолабильный фактор, названный комплементом, или алексином (от греч. aleksein -- защищать). Ученик самого Мечникова Борде описал лизис эритроцитов гуморальными антителами и комплементом, и большинство исследователей стали соглашаться с Кохом, что победу одержали гуморалисты. Мечников и его ученики отнюдь не собирались сдаваться. Были поставлены простые опыты, в которых микробы, помещенные в маленький мешочек из фильтровальной бумаги, защищающий их от фагоцитов, сохраняли свою вирулентность, хотя буквально купались в тканевой жидкости, богатой антителами. В Англии сэр Элмрот Райт и С. Р. Дуглас попытались примирить различия между этими двумя школами в своих капитальных исследованиях процесса опсонизации (от греч. opsonein -- делать съедобным). Эти ученые утверждали, что клеточный и гуморальный факторы являются одинаково важными и взаимозависимыми в том отношении, что гуморальные антитела, специфически реагируя со своей мишенью -- микроорганизмом, подготавливают его к фагоцитозу макрофагами.

В 1908 г. Шведская академия удостоила Нобелевской премии по медицине совместно Мечникова -- основателя клеточного направления и Эрлиха -- олицетворявшего гуморалистские идеи того времени. Они были удостоены премии в качестве “признания их работ по иммунитету”.

Заслуга Мечникова состоит не только в создании им гениальной теории. Еще ранее он начал изучать заразные болезни человека и домашних животных: вместе со своим учеником Н. Ф. Гамалеей он изучал туберкулез, чуму рогатого скота, искал способы борьбы с вредителями сельского хозяйства. К 1886 г. относится одно из важнейших событий в истории русской медицины. Летом этого года в Одессе начала работать созданная Мечниковым и его талантливым учеником Н. Ф. Гамалеей первая русская бактериологическая станция. Он создал в России крупнейшую научную школу микробиологов. Выдающиеся ученые Н. Ф. Гамалея, Д. К. Заболотный, Л. А. Тарасевич и многие другие были учениками И. И. Мечникова. Илья Ильич Мечников умер в 1916 году, до конца жизни занимаясь вопросами иммунологии и клеточного иммунитета. А наука об иммунитете быстро и стремительно развивалась. В этот период было необычайно много работ и ученых, изучавших факторы внутренней защиты организма.

Период с 1910 по 1940 гг. был периодом серологии. В это время было сформулировано положение о специфичности и о том, что АТ являются естественными, высоковариабельными глобулинами. Большую роль здесь сыграли работы Ландштейнера, который пришел к выводу, что специфичность антител не является абсолютной.

С 1905 появились работы (Сarrel, Guthrie) по трансплантации органов. В 1930 г. К. Ландштейнер открывает группы крови. Работами по фагоцитозу, бактериофагии, вирусам, патогенезу чумы занимается Амадей Боррель. Премия присуждена Ф. Макфарлейну Бернету (1899 - 1985) и Питеру Медавару (1915 - Англия) “за открытие приобретенной иммунологической толерантности”. Медавар показал, что отторжение чужеродного кожного трансплантата подчиняется всем правилам иммунологической специфичности, и в основе его лежат такие же механизмы, как и при защите от бактериальных и вирусных инфекций. Последующая работа, которую он провел вместе с рядом учеников, заложила прочную основу для развития трансплантационной иммунобиологии, которая стала важной научной дисциплиной и в дальнейшем обеспечила многие достижения в области клинической трансплантации органов. Бернет опубликовал книгу “Образование антител” (1941 г.). Со своим коллегой, Франком Феннером, Бернет утверждал, что способность к иммунологическим реакциям возникает на сравнительно поздних стадиям эмбрионального развития и при этом происходит запоминание существующих маркеров “своего” у антигенов, присутствующих в данный момент. Организм в последующем приобретает к ним толерантность и не способен отвечать на них иммунологической реакцией. Все антигены, которые не запомнились, будут восприниматься как “не свои” и смогут в дальнейшем вызывать иммунологический ответ. Было высказано предположение, что любой антиген, введенный в течение этого критического периода развития, будет затем восприниматься как свой и вызывать толерантность, в результате чего не сможет в дальнейшем активировать иммунную систему. Эти идеи были далее развиты Бернетом в его клонально-селекционной теории образования антител. Предположения Бернета и Феннера были подвергнуты экспериментальной проверке в исследованиях Медавара, который в 1953 г. на мышах чистых линий получили четкое подтверждение гипотезы Бернета - Феннера, описав феномен, которому Медавар дал название приобретенной иммунологической толерантности.

В 1969 г. одновременно несколькими авторами (Р. Петров, М. Беренбаум, И. Ройт) была предложена трехклеточная схема кооперации иммуноцитов в иммунном ответе (Т-, В-лимфоцитов и макрофагов), определившая на многие годы изучение механизмов иммунного ответа, субпопуляционной организации клеток системы иммунитета.

Существенную роль в этих исследованиях сыграли кинематографические методы. Возможность непрерывного динамического изучения микробиологических объектов in vivo и in vitro в условиях, совместимых с их жизнедеятельностью, визуализация невидимых для человеческого глаза электромагнитных излучений, регистрация как быстрых, так и медленных процессов, управление масштабом времени, и некоторые другие характерные особенности исследовательской кинематографии открыли большие и во многих отношениях уникальные возможности для изучения взаимодействия клеток.

Представление о фагоцитах за истекшее время подверглось существенной эволюции. В 1970 г. Van Furth и соавт. предложили новую классификацию, выделяющую МФ из РЭС в отдельную систему мононуклеарных фагоцитов. Исследователи отдали дань уважения И. И. Мечникову, пользовавшемуся термином “мононуклеарный фагоцит” еще в начале XX века. Фагоцитарная теория не стала, однако, неизменяемой догмой. Непрерывно накопляемые наукой факты изменили и усложнили понимание тех явлений, в которых фагоцитоз казался решающим или единственным фактором.

Можно утверждать, что в наши дни, созданное И. И. Мечниковым учение о фагоцитах, переживает свое второе рождение, новые факты значительно обогатили его, показав, как это и предсказывал Илья Ильич, огромное общебиологическое значение. Теория И. И. Мечникова явилась мощным индуктором прогресса иммунологии во всем мире, большой вклад в него внесли советские ученые. Однако и сегодня основные положения теории остаются незыблемыми.

Первостепенное значение фагоцитарной системы подтверждается созданием в США общества ученых, занимающихся изучением ретикулоэндотелиальной системы (РЭС), издается специальный “Journal of Reticulo-Endothelial Society”.

В последующие годы развитие фагоцитарной теории связано с открытием цитокиновой регуляции иммунного ответа и, конечно, изучения влияния цитокинов на клеточный ответ, в том числе и макрофагов. На заре этих открытий стоя ли работы таких ученых, как Н. Ерне, Г. Келер, Ц. Милштейн.

В СССР бурный интерес к фагоцитам и связанными с ними процессами, наблюдался в 80-е годы. Здесь необходимо отметить работы А. Н. Маянского, изучавшего влияния макрофагов не только в свете их иммунной функции. Он показал значение клеток РЭС на функционирование таких органов как печень, легкие, желудочно-кишечный тракт. Работы также проводили А. Д. Адо, В. М. Земсков, В. Г. Галактионов, эксперименты по изучению работы МФ в очаге хронического воспаления ставил Серов.

Следует сказать, что в 90-е годы интерес к неспецифическому звену иммунитета упал. Отчасти это можно объяснить тем, что все усилия ученых были в основном устремлены к лимфоцитам, но особенно -- к цитокинам. Можно сказать, что сейчас продолжается “цитокиновый бум”.

Однако это ни в коем случае не означает, что актуальность проблемы упала. Фагоцитоз составляет пример того процесса, интерес к которому не может пропасть. Будет открытие новых факторов стимулирующих его активность, будут обнаружены вещества, угнетающие РЭС. Будут открытия, уточняющие тонкие механизмы взаимодействия МФ с лимфоцитами, с клетками интерстиция, с антигенными структурами. Особенно это может быть актуально сейчас в связи с проблемой опухолевого роста и СПИДа. Остается надеяться, что в ряду открытий, начатых великим Мечниковым, будут стоять имена русских ученых.

Современное состояние учения о фагоцитозе

Основные положения о фагоцитах и системе фагоцитоза, блестяще сформулированные И. И. Мечниковым и разработанные его учениками и последователями, надолго определили развитие этого важнейшего направления биологии и медицины. Идея о противоинфекционном иммунитете, которая так увлекла современников И. И. Мечникова, сыграла решающую роль в становлении клеточной иммунологии, эволюции взглядов на воспаление, физиологию и патологию реактивности и резистентности организма. Парадоксально и вместе с тем закономерно, что учение о фагоцитозе началось с крупных обобщений и концепций, которые на протяжении многих лет дополнялись фактами частного характера, мало повлиявшими на развитие проблемы в целом. Волна современной иммунологической информации, изобилие изящных методов и гипотез направили интересы многих исследователей в сторону изучения лимфоцитарных механизмов клеточного и гуморального иммунитета. И если иммунологи быстро поняли, что без макрофага им не обойтись, то судьба другого класса фагоцитирующих клеток -- полинуклеарных (сегментоядерных) лейкоцитов -- до недавнего времени оставалась неясной. Только теперь можно с уверенностью сказать, что и эта проблема, сделав за последние 5 - 10 лет качественный скачок, прочно утвердилась и успешно развивается не только иммунологами, но и представителями смежных профессий -- физиологами, патологами, биохимиками, клиницистами. Изучение полинуклеарных фагоцитов (нейтрофилов) -- один из немногих примеров в цитофизиологии, а тем более в иммунологии, когда число исследований на объекте “человеческого происхождения” превосходит количество работ, выполненных в эксперименте на животных.

Сегодня учение о фагоцитозе -- это совокупность представлений о свободных и фиксированных клетках костномозгового происхождения, которые, обладая мощным цитотоксическим потенциалом, исключительной реактивностью и высокой мобилизационной готовностью, выступают в первой линии эффекторных механизмов иммунологического гомеостаза. Противомикробная функция воспринимается как частный, хотя и важный, эпизод этой общей стратегии. Доказаны мощные цитотоксические потенции моно- и полинуклеарных фагоцитов, которые, кроме бактерицидности, находят выражение в уничтожении малигнизированных и иных форм патологически измененных клеток, альтерации тканей при неспецифическом воспалении в иммунопатологических процессах. Если нейтрофилы (доминирующий тип полинуклеаров) почти всегда нацелены на деструкцию, то функции мононуклеарных фагоцитов сложнее и глубже. Они участвуют не только в разрушении, но и в созидании, запуская фибробластические процессы и репаративные реакции, синтезируя комплекс биологически активных субстанций (факторы комплемента, индукторы миелопоэза, иммунорегуляторные белки, фибронектини пр.). Сбывается стратегический прогноз И. И. Мечникова, который всегда смотрел на фагоцитарные реакции с общефизиологических позиций, утверждая значение фагоцитов не только в защите от “вредных деятелей”, но и в общей борьбе за гомеостаз, которая сводится к поддержанию относительного постоянства внутренней среды организма. “При иммунитете, атрофии, воспалении и излечении, во всех явлениях, имеющих величайшее значение в патологии, участвуют фагоциты”.

Мононуклеарные фагоциты, которые ранее относили к ретикулоэндотелиальной системе, выделены в самостоятельное семейство клеток -- систему мононуклеарных фагоцитов, которая объединяет моноциты костного мозга и крови, свободные, и фиксированные тканевые макрофаги. Доказано, что, выходя из крови, моноцит меняется, адаптируясь к условиям той среды, в которую попадает. Это обеспечивает специализацию клетки, т. е. максимальное соответствие тем условиям, в которых ей предстоит “работать”. Не исключена и другая альтернатива. Подобие моноцитов может быть чисто внешним (как это случилось с лимфоцитами), и часть из них предетерминирована к трансформации в различные варианты макрофагов. Гетерогенность зрелых нейтрофилов хотя и существует, но выражена гораздо слабее. Они почти не меняются морфологически, попадая в ткани, в отличие от макрофагов живут там недолго (не более 2 - 5 суток) и явно не обладают пластичностью, присущей моноцитам. Это высокодифференцированные клетки, которые практически заканчивают свое развитие в костном мозге. Не случайно, известные в прошлом попытки отыскать корреляцию между сегментацией ядра и способностью лейкоцитов к фагоцитозу не увенчались успехом. Тем не менее, идея о функциональной неоднородности морфологически зрелых нейтрофилов продолжает получать подтверждения. Известны различия между нейтрофилами костного мозга и периферической крови, нейтрофилами крови, тканей и экссудатов. Причины и физиологический смысл этих особенностей неизвестны. По-видимому, изменчивость полинуклеаров в отличие от моноцитов-макрофагов носит тактический характер.

Изучение фагоцитоза ведется согласно классическим постулатам И. И. Мечникова о фазах фагоцитарной реакции -- хемотаксису, аттракции (связывании) и поглощении, уничтожении (переваривании). К характеристике каждого из этих процессов в настоящее время приковано внимание, им посвящают монографии, обзоры. Результаты многочисленных исследований позволили углубиться в суть этих реакций, конкретизировать молекулярные факторы, лежащие в их основе, нащупать общие узлы и вскрыть частные механизмы клеточной реактивности. Фагоцитоз служит прекрасной моделью для изучения миграционной функции, пространственной ориентации клеток и их органелл, слияния и новообразования мембран, регуляции клеточного гомеостаза и других процессов. Иногда фагоцитоз нередко отождествляют с поглощением. Это явно неудачно, ибо нарушает исторически сложившееся представление о фагоцитозе как об интегральном процессе, который объединяет сумму клеточных реакций, начиная с распознавания объекта и кончая его разрушением или стремлением к разрушению. С функциональной точки зрения фагоциты могут пребывать в двух состояниях -- покоящемся и активированном. В наиболее общем виде активация -- есть результат преобразования внешнего стимула в реакцию эффекторных органелл. Больше пишут об активированном макрофаге, хотя в принципе то же самое можно сделать и для полинуклеаров. Надо выбрать лишь точку отсчета -- к примеру, функциональный статус в сосудистом русле нормального организма. Активация различается не только степенью возбуждения индивидуальных клеток, но и масштабом охвата клеточной популяции в целом. В норме активировано небольшое количество фагоцитов. Появление раздражителя резко меняет этот показатель, отражая подключение фагоцитов к реакциям, корригирующим внутреннюю среду организма. Стремление проактивировать фагоцитарную систему, усилив тем самым ее эффекторные возможности, неоднократно звучало в работах И. И. Мечникова. Современные исследования по адъювантам, биологическим и фармакологическим модуляторам мононуклеарных и полинуклеарных фагоцитов по существу развивают эту мысль с позиций межклеточной кооперации, общей и частной патологии. В этом видится перспектива рационального воздействия на воспаление, репаративные и регенеративные процессы, иммунопатологию, резистентность к острому и хроническому стрессу, устойчивость к инфекциям, опухолям и пр.

Многие признаки активации стереотипны, повторяясь у всех фагоцитирующих клеток. К ним относятся изменение активности лизосомальных и мембранных ферментов, усиление энергетического и окислительного метаболизма, синтетических и секреторных процессов, изменение адгезивных свойств и рецепторной функции плазматической мембраны, способности к случайной миграции и хемотаксису, поглощению и цитотоксичности. Если учесть, что каждая из этих реакций по своей природе интегративна, то количество частных признаков, по которым можно судить о возбуждении клеток, будет огромным.

Один и тот же раздражитель способен индуцировать все или большинство признаков активации. Однако это, скорее, исключение, чем правило. Сегодня многое известно о конкретных механизмах, реализующих эффекторные свойства моно и полинуклеарных фагоцитов. Расшифрована структурная основа двигательных реакций, открыты органеллы, обеспечивающие векторную ориентацию в пространстве, изучены закономерности и кинетика образования фаголизосом, установлена природа цитотоксичности и бактерицидности, определены синтетические и секреторные потенции, обнаружены рецепторные и каталитические процессы в плазматической мембране и пр. Становится все более очевидным, что дискретные проявления клеточной реактивности обеспечиваются или, по крайней мере, инициируются обособленными механизмами и могут возникать независимо друг от друга. Удается подавить или усилить хемотаксис, не изменив способности к поглощению и цитотоксичности, секреция не связана с поглощением, повышение адгезивности не зависит от потребления кислорода и т. д. Известны генетические дефекты, когда выпадает одна или несколько из перечисленных функций, причем многие из них стереотипны по клинической симптоматике. Если к этому присовокупить патологию медиаторных систем, генерирующих хемоаттрактанты и опсонины, станет понятно, насколько сложным и одновременно конкретным должен быть сегодня диагноз, констатирующий нарушение фагоцитоза.

Крупным событием явилось утверждение молекулярных основ цитотоксичности (в том числе бактерицидности) и ее отношения к реактивности клеток. Стремление понять сущность реакций, приводящих к гибели поглощенных бактерий, проглядывает в большинстве работ И. И. Мечникова. Многие годы эта проблема традиционно сводилась к “перевариванию”, в котором участвуют гидролитические ферменты (цитазы, по И. И. Мечникову), определяющие, как полагали, антимикробные свойства фагоцитов. Эта позиция была сильно поколеблена, после того как оказалось, что лизосомальные гидролазы обладают слабой бактерицидностью in vitro или лишены ее. В основу современных взглядов положены наблюдения, свидетельствующие об усилении окислительного метаболизма активированных фагоцитов и разобщении двух главных событий -- киллинг-эффекта и деградации убитых, нежизнеспособных объектов. Прежняя терминология, в которой закреплена причинная связь между уничтожением живой мишени и переваривающей функцией клетки, оставлена. Переваривание, которое обусловлено кислыми и нейтральными гидролазами, переформированными в гранулах, является вторичным и нацелено на объекты, убитые зависимыми и независимыми от кислорода механизмами -- биооксидантами, системой миелопероксидазы, катионными белками, лактоферрином, лизоцимом. Реализация цитотоксичности отражает реактивное возбуждение фагоцитирующих клеток, которые секретируют эффекторные молекулы внутрь фагосом (с образованием фаголизосом) либо наружу, атакуя внеклеточные (непоглощенные) объекты. То, что количество кислорода, поглощаемого лейкоцитами, значительно увеличивается при фагоцитозе, известно давно. Однако истинное значение этого феномена, который в современной литературе часто называют респираторным, или метаболическим взрывом, осмыслено лишь в последние годы. В отличие от многих клеток кислородное дыхание не является системой жизнеобеспечения фагоцитов -- они хорошо переносят гипоксию и выполняют ряд функций в условиях анаэробиоза. При помощи респираторного взрыва моноциты-макрофаги и нейтрофилы решают чисто эффекторные задачи, “вооружаясь” против микробов и других объектов, которые воспринимаются ими как антигомеостатические факторы. В анаэробной среде фагоциты сохраняют способность к поглощению, но резко снижают токсичность в отношении многих патогенных и условно-патогенных бактерий. Ключевой механизм сводится к активации мембранных оксидаз, катализирующих перенос электронов с НАДФН на молекулярный кислород. Это стимулирует окисление глюкозы в гексозомонофосфатном шунте, приводя к гиперпродукции перекиси водорода и свободных радикалов кислорода -- биологических оксидантов с мощными цитотоксическими потенциями. Клиническое значение подобных реакций стало очевидным после того, как было обнаружено фатальное снижение противоинфекционного иммунитета у детей с врожденной патологией системы респираторного взрыва нейтрофилов. Впрочем, было бы неверно противопоставлять различные антимикробные факторы. Их эффективность во многом зависит от взаимной сбалансированности условий, в которых происходит фагоцитоз, вида микроба. Нейтрофилы, лишенные возможности использовать бактерицидные свойства активированного кислорода, тем не менее, нормально убивают эпидермальный стафилококк, синегнойную палочку, зеленящий стрептококк, облигатные анаэробы. Относительная устойчивость к фагоцитозу определяется суммой признаков -- поверхностными свойствами микробной клетки, наличием факторов типа лейкотоксинов и антифагинов, инактивацией биооксидантов и пр. Давно обнаружена способность некоторых бактерий тормозить образование фаголизосом. Этот механизм, который исключает контакт с цитотоксическими компонентами фагоцитов, обеспечивает длительное персистирование в макрофагах туберкулезной палочки, a в нейтрофилах -- бруцелл, а также других микроорганизмов. Одну из причин видят в повышении внутриклеточного уровня циклического аденозинмонофосфата, блокирующего мобилизацию гранул и их слияние с фагосомами. Этот пример показывает, насколько глубокими могут быть взаимоотношения, которые складываются в процессе фагоцитоза.

Становление взглядов на механизмы цитотоксичности фагоцитов не подорвало мечниковской концепции о цитазах как о медиаторах, опосредующих деструктивные функции клеток. И. И. Мечников не раз подчеркивал, что, кроме разрушения микробов, фагоциты способны повреждать собственные ткани. Эти идеи получили блестящее развитие в современных работах по ферментологии лизосомальных гранул и способам их подключения к фагоцитарным реакциям. В гранулах моно- и полинуклеарных фагоцитов идентифицирован большой арсенал гидролитических ферментов (нейтральных и кислых гидролаз), для каждого из которых можно подыскать мишень во внеклеточном пространстве. Под их прицелом находятся коллагеновые и эластиновые волокна, пептидогликановый матрикс хряща, фибронектин, факторы комплемента, системы калликреин-кининов, свертывания, фибринолиза, иммуноглобулины, клеточные мембраны. В противовес старым представлениям сегодня сделан акцент на активном, секреторном высвобождении эффекторных молекул, которое значительно повышает эффекторную пластичность клетки, позволяя в кратчайший срок мобилизовать и рационально использовать свои возможности в физиологических ситуациях и в ходе разнообразных патологических процессов. Секретируя, фагоциты воздействуют на другие медиаторные системы и разрушают внеклеточные объекты, размер которых исключает возможность поглощения. Так, по-видимому, обстоит дело при эмфиземе легких, в реакциях на иммунные комплексы, при остром и хроническом воспалении. Кроме гидролаз и других компонентов лизосомальных гранул, активированные фагоциты выделяют пирогенны, интерфероны и интерфероноподобные вещества, простагландины, тромбоксаны, биооксиданты, монокины, факторы, стимулирующие предшественники миелопоэза и пр. Лейкотриены вызывают сокращение гладких мышц и повышение сосудистой проницаемости, действуя в 100 - 10000 раз сильнее, чем гистамин.

Прав был И. И. Мечников, когда говорил о широком спектре задач, решаемых фагоцитами, и многообразии их функциональных контактов (“живой цепи”, по И. И. Мечникову) с другими клетками и тканями. Активированные макрофаги и нейтрофилы служат одним из самых ярких примеров экстренной мобилизации эффекторных механизмов с обширной сферой приложения в масштабе не только соединительной ткани, но и всего организма.

Активаторы моноцитов-макрофагов и полинуклеаров образуются в системах комплемента, свертывания, фибринолиза, калликреин-кининов, иммуноглобулинов, выделяются лимфоцитами, фибробластами, тромбоцитами, эндотелием. Сложные взаимоотношения складываются и внутри самой фагоцитарной системы. Моноцитарный инфильтрат при воспалении формируется под влиянием хемоаттрактантов, продуцируемых нейтрофилами, которые первыми мигрируют в зону альтерации. В свою очередь, моноциты и макрофаги выделяют факторы, избирательно активирующие нейтрофилы. Существенное значение имеет функциональная кооперация между однотипными фагоцитами, которая предполагает участие “аутокаталитических” механизмов, контролирующих миграционную, секреторную и другие функции активированных клеток. Липоксигеназные метаболиты арахидоновой кислоты -- различные варианты гидроксиэйкозантетраеновые кислоты хемотаксичны в ничтожных дозах (особенно для нейтрофилов) и, являясь потенциальными “осколками” клеточного метаболизма унифицируют сигналы, которые обеспечивают направленную миграцию фагоцитов в очаги тканевого повреждения. Любая травма любой ткани может стать инициатором подобных реакций. В этом прослеживается один из универсальных механизмов гомеостаза -- внутри популяции фагоцитов, в масштабе соединительной ткани, за ее пределами.

Из сказанного следует важный вывод. Трудно подыскать такое изменение внутренней среды организма, которое бы не фиксировалось системой фагоцитоза. Являясь мощными эффекторами, фагоциты превращаются в узел связи, своего рода стратегическую мишень, через которую трансформируются все реакции крови и соединительной ткани. Особенно показательны нейтрофилы. Обмениваясь в циркуляции каждые 5 ч, они как бы фотографируют сдвиги, которые происходят в течение этого периода, являясь своеобразным зеркалом гомеостаза. Не случайно, что индикаторные тесты, основанные на высокой реактивности полинуклеаров, давно используются в клинике и по информативности нередко превосходят другие гематологические показатели.

Много внимания уделяется молекулярным механизмам активации фагоцитов. В соответствии с общими принципами современной цитофизиологии схема фагоцитарной реакции предусматривает распознавание и рецепцию (связывание) внешнего сигнала, реактивные изменения в плазматической мембране, активацию внутриклеточных сигналов-посредников, функциональную трансформацию эффекторных органелл. Открытие стимуляторов с известной структурой привело к заключению, что их воздействие на фагоциты опосредуется через дискретные участки плазматической мембраны -- специфические рецепторы, которые по молекулярной конфигурации комплементарны стимулирующему агенту. Это определяет важнейшее свойство плазматической мембраны -- дифференцировать молекулярный профиль внешних раздражителей и трансформировать его в определенную форму клеточного ответа. Макрофаги и нейтрофилы рецептируют Fc-фрагмент IgG- и IgA-иммуноглобулинов, производные комплемента (СЗЬ, C3d, СЗе, С5а, С567), различные хемоаттрактанты, пектины, бактериальные гликопротеиды, фибронектин, адрен- и холинергические агенты, гистамин, кортикостероиды, эстрогены и пр. Вместе они определяют фармакологический профиль, т. е реактивность клетки к соответствующему набору функциональных модуляторов. Выясняется, что рецепторный аппарат -- весьма динамичная система. Имея определенный стартовый уровень, она меняется в зависимости от конкретной обстановки и состояния клеток. Интенсивность специфической рецепции является одной из самых интересных форм реактивности, управление которой позволит воздействовать на наиболее ранние этапы фагоцитарного процесса. Принципиально, что экспрессия разных рецепторов меняется несинхронно, дифференцируется фармакологическими агентами и приводит к неодинаковым функциональным последствиям. Пассивная, по чисто внешним признакам (к примеру, хемоаттрактанты связываются разрушенными клетками), рецепция сопровождается молекулярными сдвигами в плазматической мембране, многие из которых играют ключевую роль в активации клетки. Один из постулатов современной цитофизиологии, утверждающий функциональное или даже структурное единство рецепторов и ферментов плазматической мембраны (эктоферментов), нашел отражение и в исследованиях по фагоцитозу. В составе плазматической мембраны фагоцитов обнаружены серинэстеразы, протеиназы, аденилатциклазы, оксидазы, АТФ-азы. Полагают, что они активируются при стимуляции, воспринимая изменения молекулярной топографии клеточной поверхности. Ферментология плазматической мембраны отражает стремление понять механизмы, инициирующие переключение энергии раздражения в энергию клеточного возбуждения Поиски универсального фермента-инициатора не оправдались, что, скорее, говорит о специфике различных форм клеточной реактивности, нежели отрицает саму идею эктоферментного опосредования. Не увенчались успехом и поиски универсального медиаторного звена между реакциями плазматической мембраны и эффекторными органеллами. На эту роль претендовали циклические нуклеотиды, Са2+, производные активированного кислорода. Каждый из них контролирует более или менее сложный набор клеточных функций, но в целом их эффект не универсален. Напротив, есть факты, которые убеждают, что внутриклеточное опосредование может быть полидетерминантным, т. е. зависит от совместного действия нескольких медиаторов. Именно такое сочетание определяет конечную форму ответа и свойственно большинству фагоцитарных реакций. По последним данным, механизмы, обеспечивающие выход на одни и те же органеллы, могут быть неодинаковы для разных стимуляторов. Глубокое развитие получили идеи И. И. Мечникова и его современников об опсонинах, сыгравшие некогда решающую роль в объединении клеточных и гуморальных концепций иммунитета. Понятие об опсонинах сформулировано в 1903 г., а усиление фагоцитоза в сывороточной среде замечено еще раньше. Однако лишь последние десятилетия ознаменовалось радикальными успехами в изучении молекулярных основ опсонической функции и ее реализации на уровне клеток-эффекторов. К семейству опсонинов обычно относят четыре группы хорошо охарактеризованных сывороточных белков -- IgG, СЗ (СЗЬ), фибронектин, С-реактивный белок, однако в действительности их, очевидно, больше. Наиболее универсальными свойствами обладают СЗЬ- и IgG-антитела. Кооперируясь друг с другом, они создают мощный опсонический заслон, который традиционно считается одним из главных факторов противоинфекционного иммунитета. Функции других опсонинов, по-видимому, более ограниченны, их активность сильнее зависит от свойств фагоцитируемого объекта и типа фагоцитов. Именно неоднородность субстратов, с которыми приходится сталкиваться фагоцитирующим клеткам, следует считать первопричиной эволюционно закрепленной гетерогенности опсонических факторов.

Проблема опсонинов гораздо шире, чем противомикробная защита. В наиболее общем виде она сводится к фокусированию клеточных реакций на любых объектах экзогенного и эндогенного происхождения, которые, попадая во внутреннюю среду, вступают в противоречие с гомеостазом. Кроме уничтожения микробов, опсонизация способствует удалению продуктов тканевого распада, разрушению малигнизированных и инфицированных вирусами клеток, гибели одноклеточных и многоклеточных паразитов, элиминации антигенов, прочно связанных с базальными мембранами и другими тканевыми субстратами. Опсонические реакции, как и фагоцитоз в целом, -- явление, безусловно, физиологическое. Но это тот случай, когда о значении эффекторных механизмов удается судить по их поведению в патологических ситуациях. И. И. Мечников утверждал, что действие опсонинов не ограничивается улучшением физических контактов между объектом и фагоцитирующей клеткой. По его мнению, опсонины не только меняют поверхностные свойства фагоцитируемых частиц, но и стимулируют фагоциты. Есть основания считать опсонины своеобразными фармакологическими агентами, которые стимулируют клетки независимо от поглощения по сигналу с рецепторов плазматической мембраны, вошедших в контакт с опсонизированной поверхностью. В составе Fаb-фрагмента IgG обнаружен тетрапептид -- тафтсин (в честь Тафтского университета в США), который в незначительных дозах усиливает многие функции поли- и мононуклеарных фагоцитов. Справедливость идеи о стимулинах становится еще очевиднее, если изучать не изолированные системы фагоцит -- опсонизированный объект, а реальные ситуации, возникающие в организме. Многочисленные наблюдения показывают, что на объекты фагоцитоза нельзя смотреть как на пассивные сорбенты опсонических факторов. Процесс опсонизации сопровождается реакциями в различных системах гуморального гомеостаза, что приводит к гиперпродукции биологически активных веществ, прямо или косвенно влияющих на клеточную реактивность. Это отчетливо прослеживается на примере комплемента. Наработка СЗ-опсонинов связана с его каскадной активацией и сочетается с образованием С5а -- одного из самых мощных эндогенных стимуляторов фагоцитоза.

Важен вопрос об отношении фагоцитоза к приобретенному (специфическому) иммунитету. Классический постулат И. И. Мечникова о переваривании антигенного материала фагоцитами как необходимом этапе образования антител трансформировался в современную концепцию о предъявлении антигенных детерминант Т-лимфоцитам в виде комплекса с продуктами иммунорегуляторных генов (Ia-белками), премированных на плазматической мембране макрофагов. Вкупе с медиаторами типа интерлейкинов это определяет центральную позицию мононуклеарных фагоцитов в механизмах формирования приобретенного иммунитета. Для нейтрофилов не удалось добиться большего, чем факта слабого усиления пролиферации В-лимфоцитов нейтральными протеиназами нейтрофилов человека и негативного влияния избытка нейтрофилов на аналогичный феномен. Скорее всего, это “пробирочные” реакции, не имеющие серьезного приложения к регуляции лимфоцитарных функций in vivo.

Иначе обстоит дело на уровне эффекторного звена иммунных процессов. По существу, ни одно из проявлений приобретенного иммунитета не воспроизводится в полном объеме без участия моноцитов-макрофагов и (или) полинуклеаров. Об этом говорят реакции, наведенные антителами-опсонинами, гиперчувствительность замедленного типа, повреждения, вызываемые иммунными комплексами, и проч.

Зависит от МФ ответ лимфоцитов на неспецифические митогены -- фитогемагглютинин, конканавалин А, перийодат, как и продукция имилимфокинов -- МИФ, МАФ, лимфотоксина и др. Предполагают, что активация Т-лимфоцитов осуществляется непосредственно свободным или связанным с МФ митогеном, а МФ выделяет фактор, трансформирующий Т-клетки. МФ, выделяя различные факторы, регулируют пролиферацию и дифференцировку незрелых костномозговых МФ, програнулоцитов, возможно, эритроидных клеток. Удалось выявить, генетически обусловленные различия регулирующего влияния МФ на пролиферативную активность стволовых кроветворных клеток. Макрофаги также с помощью различных растворимых факторов усиливают пролиферацию фибробластов, эпидермальных клеток кожи, эндотелия сосудов, участвуют в созревании клеток тимуса.

Сегодня не может быть полностью принята гипотеза о центральной роли тимуса и Т-клеток в противоопухолевом надзоре, поскольку есть сведения об одинаковой частоте возникновения опухолей у бестимусных и нормальных животных, одинаковом их отторжении у иммунодефицитных или супрессированных животных, ограниченном числе опухолей у людей с тяжелой иммуносупрессией. По мнению исследователей, роль Т-лимфоцитов достаточно однозначна в отторжении вирусиндуцированных опухолей, но она невелика при спонтанных и индуцированных канцерогенами неоплазмах. Целый ряд доказательств свидетельствует о сложной системе естественной и приобретенной антиопухолевой защиты организма и ограниченной роли в ней Т-лимфоцитов. Об этом говорит раннее развитие естественной резистентности к опухолям на протяжении нескольких дней после рождения, подавление ее при введении веществ, угнетающих МФ, непосредственно перед трансплантацией опухоли или одновременно с ней, совпадение индуцированной стимуляции резистентности к опухолям с активированием МФ. Поэтому все большее значение в этой системе придают МФ. Оказалось, что неактивированные МФ не оказывают антиопухолевое действие, но положение меняется при активации клеток, которая может быть специфической и неспецифической. Специфическая активация возникает у клеток, взятых из иммунного организма или у интактных МФ, инкубированных с иммунными Т-лимфоцитами, с этими лимфоцитами и АГ или с продуктами реакции. МФ в этом случае активируются специфическим армирующим фактором, специфически узнают и убивают опухоль в результате цитолизиса. Неспецифическая активация обусловлена инфекционным процессом, эндотоксинами, липидом А, полинуклеотидами, иммунными комплексами иной специфичности. Активированные таким путем МФ приобретают цитостатические свойства. МФ могут армироваться специфическим к данным лимфоцитам фактором иной специфичности в отличие от фактора, индуцированного опухолевыми АГ, в таком случае они становятся неспецифически цитотоксичными по отношению к опухоли. Поэтому, если к иммунным МФ добавить специфические опухолевые клетки, а затем через некоторое время неспецифические, МФ будут специфически лизировать гомологичную мишень и неспецифически подавлять неродственную.

Таким образом, МФ в организме, скорее всего, проявляют одновременно специфическую и неспецифическую клеточную цитотоксичность, обнаруживая в первом случае цитолитические, а во втором -- цитостатические потенции.

Активированные МФ подавляют пролиферацию нормальных и опухолевых сингенных, аллогенных и ксеногенных клеток -- быстро пролиферирующих сильнее, чем медленно пролиферирующих. Однако быстро пролиферирующие опухолевые клетки полностью подавляются, тогда как нормальные клетки -- лишь частично.

Механизм цитотоксичности МФ сложен. Специфический армирующий фактор с молекулярной массой 25000 - 50000 дальтон имеет аффинность к АГ опухоли, связывается с поверхностью МФ, секретируется коммитированными Т-лимфоцитами. Важен межклеточный контакт мишени и МФ, который постоянно возникает, причем, зона контакта имеет 100 - 200А. Предполагают, что он может способствовать локальному слиянию и инъецированию в мишень лизосом МФ, лизирующих ее. По разным данным, киллинг может осуществляться сериновыми протеазами, возникающим под влиянием лизосомальных гидролаз СЗа-субкомпонентом комплемента, катионным белком или индукцией макрофагами в мишенях аберрантного деления, приводящего к их лизису. Вместе с тем считают, что роль простагландинов, аргиназы, перекиси водорода и интерферона не столь существенна в непосредственном цитолитическом эффекте.

Определенное значение придают изменению структуры мембран эффекторов и мишеней, так как обработка МФ фосфолипазой или лизолецитином индуцирует в них противоопухолевую цитотоксичность, что объяснили возможным образованием на мембране цитолитической структуры в результате изменения ее конформации. Подобные процессы, по-видимому, происходят при активации МФ липополисахаридами (ЛПС), в результате которой ЛПС через липид А связывается с плазматической мембраной МФ, изменяя ее организацию в результате формирования комплекса липид А -- мембранный липид, по этой же причине, возможно, тумороцидная способность МФ резко подавлялась после их экспозиции с липопротеидами низкой плотности или холестериновыми липосомами.

В организме в силу постоянного выделения бактериальных эндотоксинов, иммунологических реакций различной специфичности, сопровождающихся освобождением лимфокинов, образованием иммунных комплексов, постоянно поддерживается популяция неспецифически активированных МФ, выполняющих надзор за спонтанно появляющимися трансформированными клетками и элиминирующими их.

МФ имеют огромное значение для системы мононуклеарных фагоцитов в естественной устойчивости организма к опухолям. Поскольку подавление пролиферации макрофагами не зависит от вида и типа клеток, характеристики роста, трансформации и реактивности, это свидетельствует о наличии у МФ структур узнавания, не имеющих иммунологической специфичности. В мишенях появляются общие изменения, узнаваемые вездесущими МФ, которые поэтому являются широкими регуляторами общего клеточного гомеостаза.

За 120 лет, прошедшие со дня создания И. И. Мечниковым учения о фагоцитах, оно ушло далеко вперед. Роль МФ оказалась неизмеримо более широкой и вышла за рамки иммунологии.

Эта теория оказала глубочайшее конструктивное влияние на все развитие современной иммунологии. Именно она послужила началом изучения клеточных аспектов иммунитета. Некоторые аспекты теории, предсказанные И. И. Мечниковым, до сих пор остаются недостаточно разработанными. Очевидно, что научное наследие, оставляемое нам И. И. Мечниковым, и в будущем будет определять основные направления учения о фагоцитах.

В организме человека фагоцитирующую функцию выполняют несколько типов клеток. Прежде всего, это те клетки, которые осуществляют защиту при каких-либо инфекциях и инвазиях -- макрофаги, моноциты и нейтрофилы. В меньшей степени она представлена у эозинофилов и базофилов. Кроме того, общеизвестным является тот факт, что в различных тканях фагоцитирующую функцию берут на себя (помимо вездесущих макрофагов) специфические клеточные элементы данной ткани, например: фиброкласты, остеокласты, клетки микроглии. Также нельзя забывать о том, что к тем немаловажным клеткам, благодаря которым идет специфический иммунный ответ, относятся дендритные клетки, широко представленные в местах, являющихся барьерными в организме. И хотя их фагоцитирующая функция до конца не доказана, существуют данные о том, что это так и есть.

Библиографический список

1. Д. И. Маянский, Клетка Купфера и система мононуклеарных фагоцитов, Москва, 2003

2. Методы изучения in vitro клеточного иммунитета, под ред. Блума и Глэйда, Москва,2006

3. И. И. Мечников, Лекции по сравнительной патологии воспаления, Москва, 1947


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.