Особенности биологического уровня организации материи. Проблемы генетики

Биология как наука, предмет ее изучения, история становления и развития. Современная теория биологической эволюции и ее критики. Основное положение клеточной теории. Сущность живого и его основные признаки, уровни. Теории о происхождении жизни.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 04.02.2010
Размер файла 59,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Особенности биологического уровня организации материи. Проблемы генетики

Введение

Современное естествознание, как мы уже говорили, представляет собой совокупность наук, которые тесно связаны между собой и отражают единый, гармоничный мир природы. А поскольку этот мир не только един, но и многообразен, каждая из естественных наук имеет свой объект, изучает то или иное его проявление. Одной из таких наук наряду с физикой и химией является биология, изучающая живую материю. Именно через биологическую проблематику естествознание наиболее близко подходит к объектам социально-гуманитарных наук и в ряде случаев, как это имеет место при изучении проблем биоэтики, сливается с ними.

1. Предмет биологии. Ее структура и этапы развития

Исходя из особого направления интересов биологической науки, ее обычно определяют, как науку о живом, его строении, формах активности, сообществах живых организмов, их развитии, связях друг с другом и с неживой природой. Однако это определение приобретает смысл лишь в том случае, если мы имеем сложившееся представление о том, что такое «жизнь». Но поскольку жизнь не поддается простому определению, ее признаки будут рассмотрены отдельно, в следующем параграфе данной главы. Здесь же отметим, что жизнь была и остается одной из тайн природы, которая до конца так еще и не раскрыта, в связи с чем острые споры о ее происхождении и сущности продолжаются до сих пор.

Современная биология - результат длительного развития этой науки.

Интерес к познанию живого у человека возник очень давно. Этот интерес был связан не столько с любознательностью, сколько с необходимостью удовлетворения самых простых человеческих потребностей в пище, лекарствах, одежде, жилье и т.п.

Первоначально люди оценивали феномен жизни как одно из великих чудес света, сотворенного всеведущим и всемогущим Богом, замыслы и дела которого недоступны человеческому разуму. Догма о сотворении мира божественной волей является одной из исходных в системе догматов иудейской, христианской, исламской и ряда других религиозных систем. Однако уже в первых древних цивилизованных обществах появились любознательные люди, которые не удовлетворялись этими догмами. Они попытались исследовать живые организмы более тщательно, чем это делалось в священных текстах, стали составлять перечни растений и животных, населяющих различные регионы, классифицировать их. И хотя эти перечни нередко были наивными, именно они положили начало научным биологическим исследованиям. Одним из зачинателей биологии в древнем мире был выдающий греческий философ и ученый Аристотель, впервые подробно описавший многие виды животных и высказавший мысль, что существующие растения и животные есть результат развития от простых форм к более сложным и совершенным.

Но самостоятельной наукой биология стала лишь в XVIII-XIX вв. В процессе ее становления обычно выделяют три основных этапа: традиционный (К. Линней), эволюционный (Ч. Дарвин), молекулярно-генетический (Г. Мендель).

Каждый из них связан не только с увеличением объема биологических знаний, но и с изменением общих представлений о мире живого, самих основ биологического мышления, или, говоря иначе, со сменой биологических парадигм.

В настоящее время биология представляет собой целый комплекс наук о живой природе. Структуру этого комплекса можно рассматривать с разных точек зрения.

По общему направлению исследований биология подразделяется на вирусологию, бактериологию, ботанику, зоологию.

По изучаемым свойствам живого в биологической науке выделяются: морфология - наука о строении живых организмов; молекулярная биология, изучающая микроструктуру живых тканей и клеток; экология, рассматривающая образ жизни растений и животных в их взаимосвязи с окружающей средой; генетика, исследующая законы наследственности и изменчивости.

По уровню организации исследуемых живых объектов выделяются: анатомия, изучающая макроскопическое строение животных; гистология, изучающая строение отдельных тканей; цитология, исследующая строение живых клеток; бактериология и вирусология, изучающие соответствующие живые организмы; молекулярная биология, исследующая живые организмы не только на молекулярном, но и на более глубоком, атомарном уровне.

Эта многоплановость комплекса биологических наук обусловлена чрезвычайным многообразием живого мира. К настоящему времени биологами обнаружено и описано более одного миллиона видов животных и около полумиллиона растений. Но поскольку мир растений и животных исследован далеко не полностью, количество неописанных видов оценивается по меньшей мере еще в один миллион. Кроме того, существует великое множество видов микроорганизмов: вирусов и бактерий.

Важнейшим инструментом познания этого мира служит категория «живого», являющаяся ключевой, исходной для всей многообразной системы биологических наук. Значение этой категории возрастает по мере того, как биология проникает все глубже в сущность живого, исследуя жизнь на молекулярном уровне. В этих условиях становится все очевиднее как глубокое единство живой и неживой природы, так и качественное своеобразие, специфика живого.

Так что же такое жизнь, живая природа?

2. Сущность живого, его основные признаки

Интуитивно мы понимаем, что есть живое и что есть мертвое.

Но при попытке определить сущность живого возникают определенные трудности. Эти трудности подметил уже французский философ-просветитель Дени Дидро. «Я могу понять, - писал он, - что такое агрегат, ткань, состоящая из крохотных чувствительных телец, но живой организм!. Но целое, система, представляющая собой единый организм, индивидуум, сознающий себя как единое целое, выше моего понимания! Не понимаю, не могу понять, что это такое!»

Вероятно, именно с этими трудностями связано существование в биологической литературе множества не вполне удачных и совсем неудачных определений этого понятия. Так, один из авторов предлагает следующее, довольно странное определение: «Живой организм - это тело, слагаемое из живых объектов; неживое тело - слагаемое из неживых объектов». Несостоятельность данной дефиниции связана с ошибкой, именуемой в логике «кругом в определении», т.е. с неудачной попыткой определить «неизвестное через непонятное».

Не вполне приемлемым является и определение жизни, данное в свое время немецким философом Ф. Энгельсом, который определял жизнь как способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней средой. Уязвимость этого определения связана с тем, что в нем не соблюдается другое требование логики, требующее использования в определении лишь такого признака или их совокупности, которые свойственны только данному понятию и отсутствуют у других понятий. Простой пример показывает, что состоять из белков и обмениваться веществами с окружающей средой могут и мертвые объекты. Так, живая мышь и горящая свеча с физико-химической точки зрения одинаково имеют в своем составе белки и находятся в одинаковом состоянии обмена веществ, равно потребляя кислород и выделяя углекислый газ. Но в одном случае этот сходный процесс обмена веществ происходит в результате свойственного живым организмам процесса дыхания, а в другом - в результате процесса горения. Таким образом, оказывается, что обмен веществ является хотя и необходимым, но недостаточным критерием для определения жизни, так же, как и наличие белков.

Учитывая этот негативный опыт, современная биология, в соответствии с логическими правилами определения понятий, следует по пути перечисления всех необходимых и существенных признаков живых организмов, которые отличают их от неживых объектов. При этом подчеркивается, что только совокупность данных свойств дает представление о специфике жизни.

К числу необходимых и существенных свойств живого относят следующие.

Живые организмы являются высокоорганизованными структурами. Уровень их организованности значительно выше, чем тот, который достигнут неживыми системами. Это своего рода острова упорядоченности в окружающем их океане беспорядка. Высшим проявлением этого важнейшего свойства всего живого является человек и созданный им социальный, общественный организм, наиболее ярким выражением упорядоченности которого являются выработанные людьми общечеловеческие нормы нравственности.

Но для того чтобы поддержать достигнутый уровень упорядоченности, живые системы могут существовать только как неравновесные и незамкнутые, открытые. Они должны постоянно взаимодействовать с окружающей их неживой средой, заимствуя у нее вещества, энергию и перерабатывая их в необходимые для поддержания жизни формы. Для осуществления этого обмена живые организмы прямо или косвенно используют солнечную энергию. Основную роль в осуществлении обмена веществ, или метаболизма, в живых организмах играют белковые соединения, замечательным свойством которых является их высокий химизм, т.е. способность к активному взаимодействию с другими веществами.

Глубокое осознание неразрывной связи живого с окружающей природной средой является необходимой предпосылкой решения современной цивилизацией возникших перед ней острых экологических проблем.

Живые организмы в отличие от неживых в процессе своего развития быстро усложняются. Это свойство к усложнению и дальнейшему совершенствованию проявляется не только на уровне развития всего мира живого и составляющих его групп, т.е. в филогенезе, но и в процессе развития каждого отдельного организма, т.е. в онтогенезе, Так, у растения или животного в ходе его индивидуального развития появляются новые ветви или новые органы, отличающиеся не только по своей форме, но и по своему химическому составу от породивших их структур. Причем формы развития на этих двух уровнях как бы повторяют друг друга; как говорят биологи, «онтогенез повторяет филогенез». Развитие человеческого эмбриона (онтогенез), например, как бы воспроизводит в миниатюре всю историю эволюции человеческого рода (филогенез).

Еще одним уникальным признаком живого является его способность к самовоспроизведению, размножению. Эта способность живых организмов оценивается как самое существенное их свойство. На химическом уровне этот признак живого связан с особыми свойствами самовоспроизведения, копирования, которыми обладают входящие в состав всех живых организмов наряду с белками нуклеиновые кислоты. Именно эти химические структуры обеспечивают способность живых организмов передавать потомкам информацию, необходимую для жизни, развития и размножения. Данная информация содержится в образуемых из нуклеиновых кислот генах - мельчайших единицах наследственности, локализованных во внутриклеточных структурах. Именно генетический материал определяет целенаправленное, упорядоченное развитие организма. Вот почему потомки оказываются похожими на родителей. Однако в процессе передачи информации потомству ее содержание не остается неизменным, оно подвергается разного рода случайным воздействиям, изменяется, перестраивается, искажается, или, как говорят биологи, мутирует. Под влиянием мутаций потомки оказываются не только похожими на родителей, но и отличаются от них, чем и обеспечивается развитие видов.

Обобщая и несколько упрощая все изложенное о специфике живого, можно свести его отличительные признаки к трем главным: метаболизм, или обмен веществ; способность к передаче наследственной информации и самовоспроизведению; изменчивость под воздействием мутаций, или мутабильность.

На базе этих основных признаков может быть сформулировано следующее краткое определение сущности живого.

Жизнь - есть форма существования высокоорганизованных неравновесных, открытых систем, в структуре которых решающую роль играют белки и нуклеотиды; эти системы способны к обмену веществ, самовоспроизведению путем передачи наследственной информации и изменчивости на основе мутаций. Приведенное определение жизни в настоящее время является общепринятым среди биологов1. Вместе с тем следует отметить, что в последнее время появились и некоторые иные, новейшие формулировки сущности жизни, которые активно обсуждаются учеными. Одно из таких определений предложил известный американский физик Фрэнк Типлер в своей сенсационной книге «Физика бессмертия» (1995). «Мы не хотим, - пишет он, - привязывать определение жизни к молекуле нуклеиновой кислоты, потому что можно вообразить себе существование жизни, которая к этому определению не подходит. Если к нам в космический корабль явится внеземное существо, химическую основу которого составляет не нуклеиновая кислота, то нам все равно захочется признать его живым». И это произойдет, по мнению Типлера, потому, что жизнь представляет собой лишь информацию особого рода, которая может существовать сама по себе, независимо от тех или иных ее химических носителей. «Я, - заключает американский ученый, - определяю жизнь как некую закодированную информацию, которая сохраняется естественным отбором».

Однако шок в научном мире вызвало не столько это определение, сколько защищаемое Типлером положение о существовании бога в качестве источника этой информации и о возможности воскрешения мертвых и вечной жизни всех людей, коль скоро эта жизнь сводится к чистой информации. Именно эти утверждения американского физика были оценены многими учеными как «удар по репутации науки», которая традиционно не связывает себя ни с категорией бога, ни с другими догматами церкви.

Дискуссионным является до сих пор не только вопрос о сущности жизни, но и теснейшим образом связанная с ним проблема происхождения живого, его зарождения и развития.

3. Происхождение жизни

Для более полного понимания любого явления необходимо рассмотреть его не только в статике, с точки зрения основных признаков, но и в динамике - в плане возникновения и развития. Дополняя и уточняя друг друга, эти два подхода помогают составить более глубокое представление о сущности предметов и явлений окружающей нас действительности. Это относится и к познанию феномена жизни.

В современной культуре существуют две главных концепции происхождения живых существ: религиозная, креационистская, и научная, эволюционистская. Несмотря на претензии на непогрешимость, которые пытается предъявить каждая из этих концепций, с научной точки зрения они обе носят лишь вероятностный, гипотетический характер.

Креационистская (от лат. creatio - сотворение) теория, если изложить ее содержание, не опираясь на те или иные религиозные догмы, представляет собой основанное на вере религиозное учение о чудесном сотворении мира, в том числе и жизни, богом из ничего, из пустоты. Наиболее последовательно это учение представлено в монотеистических религиях - иудаизме, христианстве, исламе. Креационизм утверждает постоянство, неизменность видов живых организмов, сотворенных богом в результате единовременного акта.

Так, в Библии акт творения, якобы продолжавшийся всего шесть дней, изображается следующим образом.

1-й день: Бог создал небо и землю, а также свет и воду, т.е. материал, который стал началом единой Вселенной.

2-й день: Бог создал небо, которое разделило воды верхние и нижние.

3-й день: Бог указал воде место, куда течь, чтобы обнажилась суша. Затем он покрыл сушу травами и деревьями.

4-й день: Бог создал солнце, луну и звезды.

5-й день: Бог создал «пресмыкающихся, душу живую» в воде.

6-й день: бог создал и «зверей земных по роду их», и человека «по образу Своему, по образу Божию»1.

Таким образом, согласно библейскому тексту, для создания всего живого Богу хватило нескольких дней.

Эволюционистская концепция - представляет собой научную теорию, основанную на человеческом разуме; она связывает возникновение жизни с длительным процессом универсальной эволюции природы, взаимодействий порядка и хаоса и ее самоорганизации, упорядочения на определенном этапе. Эволюционизм является результатом тщательных экспериментальных и теоретических исследований и весьма детально разработан современным естествознанием.

И по своему содержанию, и по используемым методам эти концепции практически противоположны. Однако в современных условиях усиления взаимной терпимости религии и науки наметилось некоторое их сближение. Некоторые современные ученые, как уже говорилось выше, размышляя о целях универсальной, в том числе и биологической, эволюции Вселенной, порой используют категорию Высшего Разума, близкую, по сути к понятию бога. Что же касается теологов, то они внимательно анализируют новейшие достижения естествознания, правда, главным образом для того, чтобы подвергнуть их жесткой критике с позиций креационизма2.

Эволюционная теория сегодня ищет новые аргументы для своего подтверждения в достижениях всей совокупности естественных наук. В частности, для ее дальнейшего обоснования используется теория самоорганизации, созданная во второй половине прошлого века русским ученым, специалистом в области физической химии, лауреатом Нобелевской премии И.Р. Пригожиным.

Согласно его идеям, положившим начало новой науке о самоорганизации систем - синергетике, наша Вселенная явилась результатом длительного процесса саморазвития, самоорганизации. Основными характеристиками этого процесса, по мнению Пригожина, являются как постепенное, плавное развитие, так и его перерывы в виде взрывов, революций и катастроф, ведущих к качественным сдвигам в развитии материи. В этих процессах велика роль и закономерности, и случайности.

В свете фундаментальной естественнонаучной теории самоорганизации дарвиновская теория биологической эволюции предстала как частный случай, как момент, или этап, в универсальной эволюции Вселенной.

Решающим моментом в истории Земли, образовавшейся около 6 млрд. лет тому назад в составе Солнечной системы, а затем и в истории развития жизни на ней, было появление атмосферы. В ее составе кроме водорода появились также азот, углерод и кислород. Атмосфера молодой Земли постоянно подвергалась мощным воздействиям непрерывных изменений высоких температур, давления, радиации. Результатом этих процессов стали химические реакции, приведшие к появлению первых молекул органического вещества.

Дальнейшее взаимодействие органических веществ привело к образованию основных химических компонентов живого: нуклеотидов и белков. Нуклеотиды первыми среди органических веществ в процессе их самоорганизации приобрели способность самовоспроизведения, самокопирования, а белки обнаружили свойство высокой химической активности и способность на этой основе создавать самые различные структуры с разнообразными функциями. Поэтому именно из этих двух органических веществ - нуклеотидов и белков - и возникли на Земле около 5 млрд. лет тому назад первые простейшие живые организмы, способные передавать наследственную информацию и осуществлять обмен веществ. Именно на этом этапе завершился продолжавшийся многие миллиарды лет процесс добиологической эволюции и начался качественно новый, гораздо более динамичный период биологической эволюции. Этот знаменательный момент перехода от неживого к живому, от сложных органических веществ к простейшим живым организмам в истории универсальной эволюции до сих пор остается «белым пятном» в естествознании. Биологи пока не пришли к единому мнению о деталях данного процесса. Центральной неисследованной проблемой происхождения жизни является научное воспроизведение возникновения механизма наследственности. Оценивая сложившуюся ситуацию, английский биолог, лауреат Нобелевской премии Фрэнсис Крик признает: «Мы не видим пути от первичного бульона до естественного отбора. Можно прийти к выводу, что происхождение жизни - чудо, но это свидетельствует только о нашем незнании».

Так или иначе, но возникновение на основе молекулярных трансформаций первых живых существ стало величайшей революцией в развитии природы, которая положила начало качественно новому процессу - конкуренции между живыми организмами, который и был впервые описан Ч. Дарвиным, создавшим теорию биологической эволюции. Содержанию этой теории, и сегодня сохраняющей свое значение важнейшего обобщения в биологической науке, будет посвящен один из последующих разделов данной главы.

Конечно, со времен Дарвина естествознание ушло далеко вперед; процесс возникновения и развития жизни описывается сегодня не только с помощью дарвиновской теории, но и на основе теории самоорганизации, созданной И. Пригожиным, которая раскрывает на атомно-молекулярном уровне механизмы добиологической эволюции, создавшей физико-химические предпосылки возникновения живого. Совмещение дарвиновской теории эволюции с новейшей теорией самоорганизации, а также с открытиями современной генетики и создание на этой основе универсальной теории эволюции природы является одним из крупнейших достижений современного естествознания. Причем отметим, универсальная теория эволюции обосновывается наукой не только теоретически, но также и экспериментально, проведением множества физических, химических и биологических опытов в различных научных центрах многих стран, в том числе и в России.

Большой вклад в исследование проблем перехода от сложных органических веществ к простым формам жизни внес выдающийся русский биохимик академик А.И. Опарин. Его экспериментами убедительно подтвержден вышеописанный процесс универсальной эволюции, результатом которой и стало возникновение жизни на Земле.

Отметим, что рассмотренные выше концепции происхождения жизни - религиозная и научная - продолжают сохранять свое влияние. Это связано с тем, что существуют они как бы в разных измерениях, в разных сферах духовной жизни. Креационистская концепция, основанная на вере, признает в качестве истин положения, которым нет доказательств в научном смысле. В результате она оказывается за рамками научного исследования. Религия и наука - эти две сферы человеческого постижения действительности - изначально по своим методам исключают друг друга. Для ученого истина всегда содержит элемент гипотезы, предварительности, но для верующего теологическая истина абсолютна.

Кроме указанных концепций происхождения жизни на Земле существуют и некоторые другие. Одной из них, пользующейся особой популярностью у писателей-фантастов, а также у уфологов, является концепция панспермии, или внеземного происхождения жизни. Эта концепция исходит из представления о возможности переноса живых организмов с одного космического тела на другое. Согласно панспермии, рассеянные в мировом пространстве зародыши жизни переносятся с метеоритами или перемещаются сами по себе под давлением светового излучения; подобным образом появилась будто бы и жизнь на Земле, ее источником стали занесенные из космоса споры микроорганизмов. По сути эта теория не дает объяснения рассматриваемой проблеме, а лишь переносит ее в какое-то другое место Вселенной.

4. Структурные уровни живого

Ныне существующий на нашей планете мир живой природы чрезвычайно разнообразен. Чтобы разобраться в его составе, выявить закономерные связи между составляющими его частями, биологическая наука применяет метод классификации растений и животных, используя для этой цели различные основания. На основе определенных критериев выделяются разные уровни, подсистемы живого мира. Наиболее часто в современной биологии для классификации уровней организации живого используется критерий масштабности. По этому основанию в мире живого обычно выделяются следующие уровни:

Биосферный - включающий всю совокупность живых организмов Земли, существующих в тесной связи с окружающей природной средой. На этом уровне биологической наукой решается такая, например, актуальная проблема, как регулирование процесса концентрации углекислого газа в атмосфере. Исследуя биосферный уровень организации живого, ученые выяснили, что в последнее время в результате значительного усиления хозяйственной активности и слабой природоохранной деятельности концентрация углекислого газа в атмосфере планеты стала возрастать. В результате возникла опасность глобального повышения температуры, возникновения так называемого «парникового эффекта», увеличения в ряде районов количества осадков до масштабов Всемирного потопа.

Уровень биогеоценозов выражает следующую ступень структуры живого. Под биогеоценозами понимаются участки Земли с определенным составом тесно взаимосвязанных живых и неживых компонентов, представляющих единый природный комплекс, экосистему. Рациональное использование природы невозможно без знания структуры и функционирования биогеоценозов, или экосистем.

Популяционно-видовой уровень образуется свободно скрещивающимися между собой особями одного и того же вида. Его изучение важно для выявления факторов, влияющих на численность популяций. На этой основе соответствующими службами обеспечивается поддержание оптимальной численности популяций. Этот уровень также важен с точки зрения исследования путей исторического развития живого, его эволюции.

Организменный и органо-тканевый уровни отражают признаки отдельных особей, их строение, физиологию, поведение, а также строение и функции органов и тканей живых существ.

Клеточный и субклеточный уровни отражают процессы специализации клеток, а также различные внутриклеточные включения.

Молекулярный уровень составляет объект исследований молекулярной биологии, одной из важнейших задач которой является изучение механизмов передачи наследственной информации и развитие генной инженерии и биотехнологии.

Разделение живой материи на уровни, конечно же, весьма условно. Оно имеет значение лишь как инструмент биологического исследования. Решение же конкретных биологических проблем, например регулирования численности того или иного вида животных, опирается на данные о всех уровнях живого, которые теснейшим образом связаны друг с другом. Однако все биологи согласны с тем, что в мире живого существуют ступенчатые уровни, своего рода иерархии. Представление о них как раз и отражает системный подход к изучению природы, который помогает глубже понять ее.

Вместе с тем следует иметь в виду, что в этом бесконечно разнообразном мире все же существует некий фундамент, который объединяет все его многообразие. Своего рода «первокирпи-чиком» живого мира является клетка. Ее исследование помогает глубже уяснить специфику живого.

5. Клетка как «первокирпичик» живого, ее строение и функционирование. Механизм управления клеткой

Вспомним, что своего рода «первокирпичики» имеются на каждом из основных уровней природы.

Так, на уровне, изучаемом физикой, такую роль играют кварки - мельчайшие из известных науке частиц вещества-поля, которые характеризуется тем, что даже с помощью самых совершенных приборов бывает трудно определить их точное местонахождение.

В сфере химических наук место «первокирпичиков» занимают уже более крупные частицы - атомы. Из них состоят различные химические элементы. Это более устойчивая, стабильная частица, чем кварк.

Есть подобная фундаментальная частица и в биологии. Это живая клетка. Именно она является мельчайшей системой, обладающей всей совокупностью свойств живого, в том числе и свойством передавать наследственную информацию.

Создание клеточной теории, основы которой были впервые изложены в 1838 г. немецкими учеными М. Шлейденом и Т. Шваном, стало одним из крупнейших достижений биологической науки XIX в.

Основное положение клеточной теории состоит в утверждении, что все живые организмы от амебы до человека состоят из клеток, сходных по своему строению. Это положение стало еще одним свидетельством единства происхождения и развития всех видов живого.

Многочисленные исследования в области цитологии - биологической науки, специально занимающейся исследованием живой клетки, показали, что все клетки имеют некоторые общие свойства не только в строении, но и в функциях. Так, все они осуществляют обмен веществ, способны к саморегуляции своего состояния, могут передавать наследственную информацию.

Вместе с тем выяснилось, что клетки специализированы и весьма многообразны. Они могут существовать как одноклеточные организмы, а также в составе организмов многоклеточных, где их число может достигать нескольких миллиардов, как, например, у человека.

У клеток разный срок существования. В частности, некоторые клетки пищевода отмирают у человека через несколько дней после появления, а срок жизни нервных клеток может совпадать с продолжительностью жизни человека. Жизненный цикл любой клетки завершается или делением и продолжением жизни, но уже в обновленном виде, или гибелью.

Разнообразны и размеры клеток: они колеблются от одной тысячной сантиметра до 10 см.

Специализированные группы клеток образуют различные ткани организма: нервную, мышечную и др. А несколько типов тканей формируют органы: сердце, легкие и т.д. Группы органов, связанные с решением каких-то общих задач, называются системами организма.

Многообразием функций клетки обусловлена ее сложная структура. Клетка обособляется от окружающей среды оболочкой, которая, будучи неплотной и рыхлой, обеспечивает ее взаимодействие с внешним миром - обмен с ним веществом, энергией и информацией. Обмен веществ, или метаболизм, клеток важнейшее свойство всего живого.

Обмен веществ - сложный, многоступенчатый процесс. Он включает доставку в клетку исходных продуктов, получение из них энергии и белков, выведение из клетки в окружающую среду выработанных полезных продуктов, энергии и «вредных отходов производства».

Метаболизм в свою очередь служит основой для другого важнейшего свойства клетки - сохранения стабильности, устойчивости ее внутренней среды. Это свойство клеток, также присущее всей живой системе, называют гомеостазом.

Особое место в мире живого занимают вирусы. Их иногда называют бесклеточными организмами, поскольку они не имеют четко выраженной клеточной структуры и существуют, проникая в другие клетки и паразитируя на них.

Следует также отметить, что существуют и некоторые организмы с клеточным строением, которые не имеют типичной для большинства клеток структуры, например прокариоты, безъядерные клетки. Исторически они являются предшественниками вполне развитых, имеющих ядро клеток, так называемых эукариотов. К группе прокариотов, древнейших безъядерных клеток, относятся некоторые организмы, сохранившиеся и поныне, в частности бактерии, сине-зеленые водоросли и др. Не имея ядер, эти организмы тем не менее обладают нитями молекул нуклеиновых кислот, которые у них, как и у всех других клеток, выполняют управленческую функцию; расположены эти нити не в ядре, а во внутриклеточной жидкости, цитоплазме. Несмотря на относительную простоту организации, безъядерные клетки способны выполнять все свойственные типичным клеткам функции, включая обмен веществ, поддержание стабильности и т.п.

Но каким же образом обеспечивается управление всем этим многоступенчатым процессом, происходящим в клетке?

Исчерпывающего ответа на этот вопрос пока нет. Общепризнано, что все нити управления внутриклеточным обменом находятся в особых структурах, как правило, находящихся в ядре клетки в виде очень длинных цепей молекул нуклеиновых кислот. Их исходной структурной единицей является ген. Ген представляет собой своего рода природное кибернетическое устройство, содержащее информацию, инструкции, коды, определяющие характер всей деятельности клетки как по обмену веществ, так и по самовоспроизведению. Именно гены обеспечивают важнейшие метаболические и наследственные функции клетки, как и всего организма в целом. В связи с их исключительно высокой ролью о них будет рассказано особо, в следующем параграфе данной главы.

Открытие в XX в. структуры и функционирования генетического аппарата клетки сыграло в развитии биологии такую же роль, как открытие атомного ядра в физике. Если открытие атомного ядра позволило человеку овладеть практически неисчерпаемыми запасами энергии, то открытие гена дало возможность людям вмешиваться в свойства живой клетки, управлять механизмом наследственности и, наконец, практически решать задачи клонирования (копирования) живых организмов.

Чрезвычайная сложность организации живой клетки является еще одним убедительным доказательством того, что даже клетка, не говоря уже обо всем мире живого, не могла стать результатом единовременного акта творения, скорее всего это результат длительного процесса биологической эволюции.

6. Ген и его свойства. Генетика и практика

Содержание теории эволюции сегодня невозможно представить без анализа роли в ней генов, управляющих функционированием каждой клетки, каждого живого организма. Что же такое ген? Какова его роль в функционировании и развитии живых организмов?

Ген (от греч. genos - происхождение) представляет собой мельчайшую единицу наследственности, которая обеспечивает преемственность в потомстве того или иного элементарного признака организма. У высших организмов ген входит в состав особых нитевидных образований - хромосом, находящихся внутри ядра клетки. Совокупность всех генов организма составляет его геном. В геноме человека насчитывается около ста тысяч генов. По своим химическим характеристикам ген представляет собой участок молекулы ДНК (у некоторых вирусов - РНК), в определенной структуре которого закодирована та или иная наследственная информация. Каждый ген содержит некоторый рецепт, который обеспечивает соответствующий синтез определенного белка, и таким образом совокупность генов управляет всеми химическими реакциями организма и определяет все его признаки. Важнейшим свойством гена является сочетание высокой устойчивости, неизменяемости в ряду поколений со способностью к наследуемым изменениям - мутациям, которые являются источником изменчивости организмов и основой для действия естественного отбора.

О невероятной сложности генетического устройства свидетельствуют следующие факты: геном бактерии Хеликобактер, вызывающей язву желудка у человека, включает 1603 гена, содержащих более полутора миллиона единиц, или «букв», информации; геном крошечного, живущего в почве червя Элеганс состоит из 97 млн. «букв» генетического кода; геном человека, который удалось расшифровать в 2001 г., содержит около 100 тыс. генов, включающих около 3 млрд. единиц информации, причем сбой, ошибка в функционировании хотя бы одной из этих единиц может привести к тяжелому заболеванию.

Гены являются объектом изучения одной из наиболее перспективных отраслей биологической науки - генетики. Ее определяют как науку о наследственности и изменчивости организмов и практических методах управления ими. Она является основой для разработки методов селекции, т.е. создания новых пород животных, видов растений, микроорганизмов с нужными человеку признаками.

Быстрое развитие генетики в XX-XXI вв. объясняется рядом причин:

Огромной ролью, которую играет генетический материал в существовании живых организмов. Как отмечалось выше, некоторые исследователи считают, и не без оснований, способность живых организмов передавать наследственную информацию главным свойством всего живого.

Динамизмом, изменчивостью генного материала, его способностью к мутациям, преобразованиям, перестройкам, что и является исходным фактором эволюции, развития жизни, ее огромного разнообразия.

Открытием генетиками уже в конце XIX в. определенной упорядоченности, законов, которым подчиняются механизмы наследственности, что и сделало возможным целенаправленное воздействие на эти механизмы, или селекцию животных и растений.

Основой генетики стали законы передачи наследственной информации, отрытые чешским ученым Г. Менделем. Эти закономерности были им обнаружены при проведении множества опытов по скрещиванию различных сортов гороха и четко сформулированы в 1865 г. Законы Менделя, касающиеся механизма наследственности, принадлежат к наиболее точным, количественно определенным биологическим обобщениям. Однако эти открытия были по достоинству оценены только после смерти ученого, а в России - значительно позже, чем в других странах.

Главными направлениями исследований ученых-генетиков сегодня стали следующие:

* дальнейшее исследование особенностей структуры тех предельно мелких материальных объектов - участков молекул нуклеиновых кислот, которые являются хранителями генетической информации каждого вида живого, единицами наследственности. Крупнейшим достижением генетики на этом направлении стала расшифровка американскими и английскими учеными на рубеже третьего тысячелетия генома человека;

более глубокое исследование механизмов и законов передачи генетической информации от поколения к поколению, а также ее реализации в конкретные признаки и свойства организма, например в большую продуктивность животных или урожайность сельскохозяйственных культур;

выяснение предпосылок и механизмов изменения генетической информации на разных этапах развития организма.

Эти задачи решаются учеными на разных уровнях организации живой природы: молекулярном, клеточном, организменном, популяционном. Продвигаясь вперед, ученые-генетики в тесном контакте с практиками-селекционерами активно решают задачи выбора оптимальной системы скрещивания и эффективного метода отбора и управления развитием наследственных признаков.

Крупнейшее открытие современной генетики, как отмечалось, связано с установлением способности генов к перестройке, изменению. Эта способность называется мутированием (от лат. muta-tio - изменение). Мутации могут иметь последствия троякого рода: они могут быть полезными, вредными или нейтральными. Одним из результатов мутаций может быть появление организма нового вида - мутанта.

Причины мутаций до конца не выяснены. Однако генетикой установлены основные факторы, вызывающие мутации, так называемые мутагены. Известно, что мутации могут вызываться некоторыми общими условиями, в которых оказывается организм: его питанием, температурным режимом, составом воздушной среды и т.д. Вместе с тем мутации определяются и некоторыми внезапно возникающими экстремальными факторами, такими, как отравляющие вещества, радиоактивное излучение. Под воздействием экстремальных факторов количество мутаций может увеличиваться по сравнению с нормальными условиями в сотни раз, причем возрастает оно пропорционально дозе воздействия.

Учитывая это, селекционеры часто используют химические вещества, радиационное излучение и другие мутагены для обеспечения направленных полезных мутаций.

Активная работа ученых в этом направлении привела к выделению в качестве самостоятельной отрасли генетики генной инженерии, целью которой стало конструирование новых, не существующих в природе генов. С помощью современных биотехнологий удалось получить целый ряд впечатляющих результатов: ряд эффективных лекарств, например инсулин; сыворотку против гепатита и др.; создать первые образцы пищи, подвергнутой генетическому инжинирингу (помидоры, картофель, кукуруза и др.); вывести методами генной инженерии некоторые виды животных, таких, как мышь, обезьяна, овца, некоторые виды промысловых рыб и даже вплотную подойти к решению проблемы клонирования человека, создания смоделированных живых организмов на основе искусственных генов. Следует отметить, что эти достижения науки оцениваются общественностью неоднозначно. Так, некоторые религиозные деятели и многие специалисты по этике считают морально недопустимыми подобные эксперименты, а законодательные органы Европейского союза потребовали принятия закона, согласно которому все пищевые продукты, содержащие гормоны роста и чужеродные гены, должны иметь специальные этикетки в магазинах и ресторанах.

Вместе с тем следует отметить, что модификация генного материала происходит не только в научно-исследовательских институтах и научных лабораториях, но и далеко за их пределами. В последнее время в связи с резким возрастанием загрязнения окружающей природной среды, усиления содержания в атмосфере углекислого газа, повышения радиационного фона значительно возросло число спонтанных, стихийных, вредных мутаций как у животных, так и у человека.

В последние годы, например, ежегодно в мире рождается около полутора миллионов детей с наследственными болезнями мутагенного характера, что составляет около 2% от общего количества рождаемости. Установлено, что именно с патологиями наследственного аппарата связана предрасположенность к таким тяжелым заболеваниям, как туберкулез, полиомиелит, рак. Известны вызываемые теми же факторами дефекты психики - эпилепсия, слабоумие, шизофрения и т.п. Всемирной организацией здравоохранения зарегистрировано свыше тысячи серьезных аномалий человека в виде различных уродств, нарушений жизненно важных процессов под влиянием тех или иных вредных мутагенов.

Одним из наиболее опасных видов мутагенов являются вирусы (от лат. virus - яд). Вирусы - мельчайшие из живых существ, они способны проникать через любые фильтры, в связи с чем их иногда называют фильтрующимися вирусами. Тем не менее они содержат важнейшие элементы жизни. Вирусы состоят из нуклеиновой кислоты и белковой оболочки, но всех структур развитой живой клетки, например ядра, они не имеют. По своему образу жизни они также отличаются от обычных клеток; будучи неспособными синтезировать белок, вирусы ведут паразитический образ жизни, получая необходимые для их жизнедеятельности вещества путем проникновения в живую клетку и использования готовых органических веществ и энергии. Как внутриклеточные паразиты, вирусы являются возбудителями многих заболеваний растений, животных и человека; размножаясь только в живых клетках, они используют их генетический аппарат, переключая клетку на синтез вирусных частиц. Вирусы настолько резко отличаются от других живых организмов, что иногда их выделяют в особое царство живой природы, наряду с царствами растений и животных. Конечно, описываемые вирусы нельзя путать с компьютерными, под которыми понимаются особые компьютерные программы, специально создаваемые так называемыми хакерами для порчи содержимого чужих компьютеров, хотя какое-то чисто внешнее сходство здесь присутствует.

Вирусы могут попадать в организм человека через дыхательную, пищеварительную и половую системы. Их большая часть гибнет благодаря иммунной системе организма, вырабатывающей антитела. Огромную опасность для антител представляют патогенные вирусы.

Сегодня своевременно напомнить, что вирусы, как и другие биологические материалы, например бактерии, споры, могут использоваться в качестве боевого оружия, типа вооружений - биологического оружия, как одно из средств террористической деятельности. С этой целью используются возбудители сибирской язвы, холеры, чумы, оспы, брюшного тифа и даже… гриппа. Основным методом их боевого применения является распыление в воздухе, заражение воды и пищи токсичными микроорганизмами. Отдельные попытки применения такого рода оружия, вызвавшие человеческие жертвы, имели место на территории США вскоре после известных трагических событий 11 сентября 2001 г.

Однако и в мирных условиях патогенные вирусы вызывают у человека множество заболеваний, одним из которых является СПИД - синдром приобретенного иммунодефицита. Вирус СПИДа, или, как его иногда называют, ВИЧ (вирус иммунодефицита человека), передается половым путем, при инъекции, родовых контактах матери и ребенка, через донорские органы и кровь. Но он не передается воздушно-капельным путем, как вирус гриппа.

Попадая в клетки крови и мозга, вирус СПИДа встраивается в генный аппарат и парализует его защитные свойства. Зараженный им человек становится беззащитным перед любой инфекцией. Проблема очищения генетического аппарата человека от чужеродной инфекции является одной из актуальных в современной медицине, но она, к сожалению, еще далека от своего решения. Поэтому сегодня основным средством борьбы со СПИДом является комплекс мер по его профилактике, важнейшая из которых - санитарное просвещение. Для профилактики этой опасной болезни, в частности, нужно знать, что существует тип людей, которые не воспринимают ВИЧ, оставаясь практически здоровыми, хотя и являются его носителями: это люди с сильными, вич-устойчивыми генами, но они-то и являются основными распространителями СПИДа. Подобное заболевание можно обнаружить только специальным анализом крови, в которой в этом случае обнаруживаются особые антитела, пожирающие ВИЧ. Однако данная методика эффективна только на достаточно высоком уровне развития инфекции, только после ее выхода из скрытой фазы. Поэтому медики используют и более глубокие методы исследования с целью выявления заболеваний на его ранних стадиях, что необходимо, например, при получении донорской крови.

Основным методом лечения СПИДа является введение в кровь больного препаратов, содержащих соответствующие антитела, разрушающие белковую оболочку ВИЧ.

Крупный вклад в развитие современной генетики, селекции, в создание новых сортов растений, пород животных, борьбу с их болезнями, а также болезнями человека внесли отечественные биологи Н.И. Вавилов, И.В. Мичурин, Н.П. Дубинин, Н.В. Тимофеев-Ресовский.

Н.И Вавилов на основе изучения мутаций растений установил законы их наследственности и изменчивости, обосновал идею о том, что важнейшим условием успешного создания новых сортов является использование для селекции разнообразного исходного материала. В поисках неизвестных видов растений он исколесил весь мир, собрал уникальную коллекцию, включающую тысячи образцов семян. Эта коллекция и по сей день служит основой селекционных работ. Вавилов возглавлял и направлял работы по организации сельского хозяйства в стране, являлся членом ряда иностранных академий наук.

И.В. Мичурин внес большой вклад в дело гибридизации, скрещивания разных видов растений. На основе методов межсортовой и отдаленной, т.е. межвидовой, гибридизации создал свыше 300 сортов плодовых культур. Благодаря его работам многие южные сорта плодовых культур удалось распространить в средней полосе нашей страны. Разработанные им методы успешно используются и в селекции других культур.

Н.В. Тимофеев-Ресовский, долгое время работавший в Берлине в Институте биологии, а затем в России, известен как один из основателей современной радиационной генетики. Его исследования были отмечены наградами ряда зарубежных академий наук. Его жизнь и творчество подробно описаны в известном романе Д. Гранина «Зубр».

Н.П. Дубинин вошел в историю генетики как первооткрыватель ряда особенностей строения генов. В результате его исследований была подтверждена дробимость генов, выяснена их роль в процессе эволюции живых существ; он известен также как крупнейший специалист в области радиационной генетики. Дубинин был избран членом ряда зарубежных научных учреждений, в том числе Академии наук США.

Основные выводы генетики стали неотъемлемой частью современной концепции биологической эволюции, возникновения и развития всего живого. Но ее главной составляющей и сегодня остается концепция естественного отбора, основы которой были заложены Ч. Дарвиным. Рассмотрим современную теорию биологической эволюции более подробно.

7. Современная теория биологической эволюции и ее критики

Под эволюцией обычно понимают процесс изменений, одну из форм движения, для которой, в отличие от революции, характерны постепенные, непрерывные, накапливающиеся перемены, тем не менее приводящие к качественным сдвигам в развитии, в том числе и живой природы.

Представление о том, что окружающий нас бесконечно многообразный мир живых организмов появился в результате длительного процесса изменения и развития, эволюционным путем, сложилось не сразу. В этом процессе становления эволюционной парадигмы, как правило, выделяют три основных этапа.

Первый этап - традиционная биология; наиболее яркий ее представитель - шведский естествоиспытатель К. Линней.

Второй этап - классическая теория биологической эволюции; создатель - английский естествоиспытатель Ч. Дарвин.

Третий этап - синтетическая теория биологической эволюции.

Ее содержание явилось результатом синтеза идей Ч. Дарвина и чешского ботаника, основателя генетики Г. Менделя.

Общетеоретической основой традиционной биологии, которая господствовала в биологической мысли с древнейших времен вплоть до XIX в., была концепция креационизма, исходившая, как говорилось выше, из представления о единовременном возникновения всех форм жизни на Земле. В свете креационистской концепции в центре биологических исследований оказалась задача детального описания всего многообразия чудесным образом возникшего мира растений и животных, его классификация и систематизация, а не анализ возникновения, развития, изменения, эволюции.

Первые попытки такой систематизации были предприняты, как уже отмечалось, древнегреческим философом и ученым Аристотелем. Эта, несомненно, полезная работа продолжалась и в Средние века. Но самый значительный вклад в традиционную биологию внес К. Линней. Он создал наиболее удачную систему классификации растительного и животного мира, которая строилась на основе учета сходств и различий в строении и поведении животных. Линней убедительно показал, что все живые организмы делятся на обособленные группы, или виды. Линнеевская система классификации во многом используется и современной биологической наукой. Согласно современным представлениям, основной единицей классификации как для растений, так и для животных является вид. Под видом понимается популяция особей, обладающих сходным строением, поведением, происхождением. В современной классификации также используется введенная Линнеем биноминальная (двуименная) система именования организмов, в соответствии с которой название рода пишется на первом месте, а название вида - на втором. Например, научное название домашней кошки - Felis domestica - относится ко всем породам домашних кошек. Все они принадлежат к одному и тому же виду. Близкими видами того же рода являются лев (Felis leo), тигр (Felis tigris) и леопард (Felis pardus). Но собака (Canis familiaris) относится уже к другому роду.


Подобные документы

  • Биология как комплекс наук, которые непосредственно связаны с изучением живого. Уровни развития биологических знаний. Сущность жизни, особенности ее понимания в биологии. Возникновение теории происхождения видов. Современные проблемы теории селектогенеза.

    реферат [48,8 K], добавлен 27.12.2016

  • Цитология как наука, изучающая строение, функции и эволюцию клеток. История изучения клетки, появление первых микроскопов. Открытие мастерской оптических приборов в России. История развития клеточной теории, ее основные положения в современной биологии.

    презентация [347,3 K], добавлен 23.03.2010

  • Происхождение жизни. Процесс развития живого. Общие тенденции эволюции живого и неживого в природе. Дарвиновская теория эволюции, и процесс ее утверждения. Теории эволюционных учений. Синтетическая теория эволюции. Теория прерывистого равновесия.

    курсовая работа [59,1 K], добавлен 07.12.2008

  • Биология как наука, предмет и методы ее изучения, история и этапы становления и развития. Основные направления изучения живой природы в XVIII в., яркие представители биологической науки и вклад в ее развитие, достижения в области физиологии растений.

    контрольная работа [47,3 K], добавлен 03.12.2009

  • Электромагнитные взаимодействия как определяющий уровень организации материи. Сущность живого, его основные признаки. Структурные уровни организации живой материи. Предмет биологии, ее структура и этапы развития. Основные гипотезы происхождения жизни.

    лекция [28,4 K], добавлен 18.01.2012

  • Эволюционные идеи в античности, Средневековье, эпохи Возрождения и Нового времени. Теория Чарльза Дарвина. Синтетическая теория эволюции. Нейтральная теория молекулярной эволюции. Основные эмбриологические доказательства биологической эволюции.

    реферат [26,6 K], добавлен 25.03.2013

  • Цитология как раздел биологии, наука о клетках, структурных единицах всех живых организмов, предмет и методы ее изучения, история становления и развития. Этапы исследований клетки как элементарной единицы живого организма. Роль клетки в эволюции живого.

    контрольная работа [378,6 K], добавлен 13.08.2010

  • Этапы становления биологии: традиционный - идея эволюции живой природы, эволюционный - теория Дарвина и Ламарка, молекулярно-генетический - законы наследственности. Создание синтетической теории эволюции. Мир живого: возникновение и эволюция жизни.

    реферат [33,2 K], добавлен 14.01.2008

  • Предмет, задачи и методы биологии, история зарождения и современные достижения в данной области знания. Человек как объект биологии, характеристика и обоснование его биосоциальной природы. Теории происхождения жизни, иерархические уровни ее организации.

    презентация [3,7 M], добавлен 25.12.2014

  • История изучения клетки. Открытие и основные положения клеточной теории. Основные положения теории Шванна-Шлейдена. Методы изучения клетки. Прокариоты и эукариоты, их сравнительная характеристика. Принцип компартментации и поверхность клетки.

    презентация [10,3 M], добавлен 10.09.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.