Иммунная система

Сущность процессов роста и развития организма. Понятие и виды иммунитета, назначение иммунной системы. Факторы и признаки ослабления иммунитета, методы его повышения. Структура и функции скелета. Строение костей скелета. Этапы развития организма человека.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 12.01.2010
Размер файла 30,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1

Содержание

Введение

1. Иммунная система

2. Состав скелета человека

3. Основные этапы развития организма человека

Заключение

Список использованной литературы

Введение

И.И. Мечников открыл первую клетку иммунной системы, которую назвали фагоцит, или макрофаг. Греческое слово “фаг” означает поедание, пожирание.

Фагоцитоз был известен ученым c 1862 г. по работам Э. Геккеля, но только Мечников первым связал фагоцитоз с защитной функцией иммунной системы. Можно сказать, что именно с открытия фагоцитоза началась к л е т о ч н а я и м м у н о л о г и я.

В 1892 г. Мечников выпускает свою ставшую сразу же знаменитой книгу “Лекции по патологии воспаления”. Во французском названии труда, вышедшего в свет в 1901 г., он впервые употребил слово “и м м у н и т е т” для обозначения системы защиты организма от внешнего инфекционного агента, которая делает его свободным от болезней.

Мы живем в потенциально враждебном мире, наполненном огромным множеством инфекционных агентов, которые имеют различные размеры, форму, строение и разрушительную способность. Они были бы рады использовать нас для размножения своих “паразитических генов”, если бы мы, в свою очередь, не выработали целый ряд защитных механизмов, по меньшей мере равных по эффективности и изобретательности. Действие этих защитных механизмов обеспечивает возникновение иммунитета к инфекциям (от лат. immunitas - свободный от чего-либо).

Каждая система в организме выполняет свои жизненно необходимые функции. Функции и м м у н н о й с и с т е м ы - р а с п о з н а в а н и е и у д а л е н и е из организма всего чужеродного - микробов, вирусов, грибков и даже собственных клеток и тканей, если они под действием факторов окружающей среды изменяются и становятся чужеродными. К ним относятся мутантные и опухолевые, поврежденные и состарившиеся клетки, которые появляются на протяжении всей жизни организма. Особые случаи конфликта между иммунной системой организма и чужеродными клетками возникают при хирургических пересадках органов и тканей.

I. Иммунная система

Простейший путь избежать инфицирования - это предотвратить проникновение возбудителя в организм. Главной линией обороны служит, конечно, кожа. Будучи неповрежденной, она непроницаема для большинства инфекционных агентов. Вдобавок, большинство бактерий не способны долго существовать на поверхности кожи из-за прямого губительного воздействия молочной кислоты и жирных кислот, содержащихся в поте и секрете сальных желез.

Слизь, выделяемая стенками внутренних органов, действует как защитный барьер, препятствующий прикреплению бактерий к эпителиальным клеткам. Микробы и другие чужеродные частицы, захваченные слизью, удаляются механическим путем - за счет движения ресничек эпителия, с кашлем и чиханием. К другим механическим факторам, способствующим защите поверхности эпителия, можно отнести вымывающее действие слез, слюны и мочи. Во многих жидкостях, секретируемых организмом, содержатся бактерицидные компоненты - кислота в желудочном соке, лактопероксидаза в молоке и лизоцим в слезах, носовых выделениях и слюне.

На определенном этапе эволюции в многоклеточном организме появились клетки, призванные защищать организм от микробов - паразитов. Постепенно сформировалась особая система органов и клеток, обеспечивающих защиту (иммунитет) организма.Она получила название и м м у н н о й с и с т е м ы. Клетки, входящие в состав иммунной системы, были названы и м м у н о к о м п е т е н т н ы м и.

И м м у н и т е т о м называют способность иммунной системы к отторжению чужеродных тел. Защита организма осуществляется с помощью двух систем - н е с п е ц и - ф и ч е с к о г о (врожденного, естественного) и с п е ц и ф и ч е с к о г о (приобретенного) иммунитета. Эти две системы могут рассматриваться и как две стадии единого процесса защиты организма. Неспецифический иммунитет выступает как первая линия защиты и как заключительная ее стадия. Система приобретенного иммунитета выполняет промежуточные функции специфического распознавания и запоминания болезнетворного агента (или чужеродного вещества) и подключения мощных средств врожденного иммунитета на заключительном этапе процесса.

Система врожденного иммунитета действует на основе воспаления и фагоцитоза. В этом случае распознаются и удаляются инородные тела без учета их индивидуальной специфики. Поэтому такой иммунитет называют н е с п е ц и ф и ч е с к и м. Фактором неспецифического иммунитета могут быть бактериолизин, лизоцим, фагоцитоз - пожирание и разрушение инородных тел макрофагами и лейкоцитами и т. д. Эта система реагирует только на корпускулярные агенты (микроорганизмы, занозы) и на токсические вещества, разрушающие клетки и ткани.

Вторая и наиболее сложная система - приобретенного иммунитета. Она основана на специфических функциях лимфоцитов. Эти клетки крови распознают чужеродные макромолекулы и реагируют на них либо непосредственно, либо выработкой защитных белковых молекул.

С п е ц и ф и ч е с к и й иммунитет - более совершенный механизм защиты организма от биологической агрессии. Он возник в эволюции позже и означает распознавание самых тонких различий между чужеродными агентами. Для удобства такие чужеродные молекулы назвали а н т и г е н а м и. Современное представление о структуре и функциях иммунной системы в первую очередь связано со специфическим иммунитетом.

Место проникновения бактерий в организм, называется входными воротами инфекции. Здесь на борьбу с бактериями поднимаются фагоцитирующие клетки. Первый сигнал мобилизации эти клетки получают от самих бактерий-агрессоров в виде молекул их токсинов. Одновременно с фагоцитозом бактерий макрофаги начинают синтезировать и выделять воспалительные цитокины - интерлейкин-1, фактор некроза опухолей и другие. Под влиянием цитокинов усиливается прилипание циркулирующих лейкоцитов к эндотелию сосудов и мобилизация в очаг инфекции. Те же цитокины усиливают антибактериальную активность фагоцитов. Если фагоцитирующие клетки не справляются с очищением очага инфекции от бактерий, интерлейкин-1 выполняет роль межклеточного сигнала. Он вовлекает в процесс активации Т-лимфоциты и включает механизмы специфического иммунного ответа.

Активированные Т-лимфоциты пополняют ресурсы воспалительных цитокинов, синтезируя гамма-интерферон, активирующий макрофаги. Существенную помощь фагоцитирующим клеткам в борьбе с бактериями оказывают продукты В-лимфоцитов - специфические антитела-иммуноглобулины. Взаимодействуя с антигенами бактерий, антитела как бы подготавливают бактерии в пищу фагоцитам, делают их более удобоваримыми. Кроме того, специфические антитела против бактериальных токсинов расправляются с последними самостоятельно: токсин, связавшийся со своими специфическими антителами, утрачивает токсичность и больше не представляет опасности для организма.

Встречаясь с вирусом в крови или в межклеточных пространствах, специфические антитела способны обезвредить этот вирус. Однако особенность вируса как паразита состоит в том, что он предпочитает внутриклеточный паразитизм, то есть жизнь и размножение исключительно внутри клеток хозяина и за их счет. Как в таких условиях бороться против вируса-паразита? Остается два пути: или атаковать и убивать зараженные вирусами клетки вместе с вирусами, или каким-то образом воспрепятствовать внутриклеточному размножению вирусов, если не удалось помешать внедрению вирусов во входных воротах. По первому пути идут разные типы цитотоксических клеток-киллеров, защищающие организм от вирусов. Распознав на поверхности зараженной клетки чужеродные антигены, клетки-киллеры впрыскивают в такую клетку-мишень содержимое своих цитоплазматических гранул (куда входит фактор некроза опухолей и другие молекулы, повреждающие клетку-мишень). Результатом атаки киллера, как правило, является гибель клетки-мишени вместе с внутриклеточными паразитами. Правда, гибель и разрушение собственных клеток организма не безразлично для его жизнедеятельности. При некоторых вирусных инфекциях такого рода защитные реакции приносят больше вреда, чем пользы.

Другой механизм защиты против вирусов - молекулярный. Ответственны за противовирусную защиту молекулы интерферонов. Они способны “интерферировать”, то есть противодействовать процессам биосинтеза вирусных частиц в клетке хозяина. Интерферон синтезируется клеткой-продуцентом в ответ на заражение вирусом и соединяется с соответствующими рецепторами на поверхности зараженных клеток. Взаимодействие цитокина (в данном случае интерферона) со своим специфическим рецептором влечет за собой передачу внутриклеточного сигнала к ядру клетки. В клетке включаются гены, ответственные за синтез белков и ферментов, препятствующих самовоспроизведению вируса. Таким образом, интерферон блокирует биосинтез вирусных частиц в зараженной клетке. Это позволяет использовать препараты интерферона в качестве лечебных при вирусных инфекциях.

Клеточные и молекулярные механизмы при защите от вирусов, как и при защите от бактерий, работают согласованно, приходя на помощь друг другу. Молекулы интерферонов, кроме антивирусного действия, оказывают влияние на функции защитных клеток. Гамма-интерферон, как уже было сказано выше, является активатором макрофагов.

Активированные гамма-интерфероном макрофаги могут пополнить армию клеток-киллеров, но только при участии специфических противовирусных антител, которые образуют своеобразные мостики между макрофагами и зараженными клетками-мишенями. Специфический ответ на вирусные антигены неизбежно вовлекает популяцию Т-хелперов, которые в ответ на активацию начинают усиленно синтезировать и секретировать интерлейкин-2. А этот цитокин известен своей способностью резко активизировать клетки-киллеры.

Иммунная система представляет собой иерархическое единство органов, свободных клеток и молекул, имеющих общее происхождение и функционирующих как единое целое.

Клетки, осуществляющие иммунологические функции, имеют общее происхождение, -- они являются производными полипотентной стволовой кроветворной клетки. Стволовые кроветворные клетки -- самоподдерживающаяся популяция мезенхимных клеток костного мозга. Они составляют менее 0,01% всех клеток костного мозга, но их роль исключительно велика: они являются родоначальниками всех клеток крови и клеток иммунной системы. Стволовые клетки полиморфны. 80-90% из них находится в Go фазе клеточного цикла, т.е. в состоянии покоя. Это обеспечивает относительную устойчивость популяции и широкие возможности мобилизации клеток для их дифференцировки. 10-20% стволовых клеток находятся в разных фазах деления. В результате митоза из них формируется два вида дочерних клеток. Одни сохраняют свойства родительских, оставаясь в популяции недифференцированных стволовых кроветворных клеток.

Другие дочерние клетки дифференцируются в клетки-предшественники лимфоцитов или миелоцитов. Первые в дальнейшем превращаются в В- или Т-лимфоциты, вторые дают начало гранулоцитам, макрофагам, эритроцитам и тромбоцитам. Направление и интенсивность дифференцировки клеток регулируются гуморальными факторами -- цитокинами, гормонами, гормоноподобными веществами, что обеспечивает потребность организма в тех или иных клетках. В ходе дифференцировки клетки покидают костный мозг, распределяются по органам и тканям и лишь часть из них завершают дифференцировку на месте.

Центральными органами иммунной системы называют органы, где происходит формирование и созревание иммуноцитов. К ним относят костный мозг, вилочковую железу (тимус) и сумку Фабрициуса у птиц. Периферические органы иммунной системы содержат зрелые лимфоциты. Здесь после антигенного воздействия происходит их дальнейшая пролиферация и дифференцировка, продуцируются антитела и эффекторные лимфоциты. К периферическим органам относятся селезенка, лимфатические узлы, скопления лимфоидной ткани под слизистыми поверхностями желудочно-кишечного, дыхательного, мочеполового трактов (групповые лимфатические фолликулы, тонзиллы, пейеровы бляшки).

Тимус, или вилочковая железа, -- лимфоэпителиальный орган. Он состоит из долек, каждая из которых содержит корковый и мозговой слой. Клетки-предшественники тимоцитов формируются в костном мозге и через кровь попадают в кору тимуса. Основным элементом коры являются фолликулы Кларка, в которых вокруг приводящего кровеносного сосуда концентрируются эпителиальные и дендритные клетки, макрофаги и лимфоциты. Клетки и их гуморальные продукты (цитокины, гормоны) стимулируют деление незрелых лимфоцитов, поступивших в кору. В процессе деления они созревают. На их поверхности появляются новые структуры, а некоторые стадиоспецифические структуры утрачиваются. Структуры, определяющие особенности клеток иммунной системы, обладают антигенными свойствами. Они получили название «Cluster of differentiation» (показатель дифференцировки) и обозначение CD. Лимфоциты, созревающие в тимусе, -- Т-лимфоциты обладают характерными для них молекулами CD2, определяющими их адгезивные свойства и молекулами CD3, являющимися рецепторами для антигенов. В тимусе Т-лимфоциты дифференцируются на две субпопуляции, содержащие антигены CD4 либо СD8). Лимфоциты CD4 обладают свойствами клеток-помощников -- хелперов (Тх), лимфоциты CD8 -- цитотоксическими свойствами, а также супрессорным эффектом, заключающимся в их способности подавлять активность других клеток иммунной системы.

За одни сутки в тимусе образуется 300-500 млн. лимфоцитов. При этом на клетках формируются рецепторы как к чужеродным, так и к собственным антигенам. В ходе созревания Т-лимфоциты проходят позитивную селекцию -- отбор клеток, обладающих рецепторами для молекул главного комплекса тканевой совместимости (МНС), обеспечивающих возможность последующих контактов Т-лимфоцитов с клетками, представляющими им чужеродный антиген. В корковом слое тимуса происходит и негативная селекция: клетки с рецепторами для собственных антигенов, вступающие в контакт с ними погибают. В результате в мозговой слой тимуса поступает 3-5% клеток сформировавшихся в корковом слое. Это лимфоциты с рецепторами к чужеродным антигенам способны впоследствии после контакта с соответствующим антигеном реализовать специфическую иммунную реакцию. В мозговом слое дифференцировка лимфоцитов завершается формированием CD4+- и СD8+-лимфоцитов. Созревание клеток в тимусе длится 4-6 сут., после чего лимфоциты поступают в кровь, лимфу, ткани, во вторичные органы иммунной системы.

Эпителиальные клетки тимуса образуют пептидные гормоны и гормоноподобные пептиды: тимулин, a- и Р-ТИМОЗИН, тимопоетин, способствующие созреванию и дифференцировке Т-лимфоцитов в тимусе и вне него. Выделение этих гормонов и создание их синтетических аналогов производится для создания лекарственных средств, регулирующих иммунологические функции.

Тимус начинает функционировать у шестинедельного эмбриона человека, к рождению его масса достигает 10-15 г, к началу полового созревания -- 30-40 г. Далее происходит постепенная инволюция тимуса с утратой до 3% активной ткани ежегодно.

Инволюция тимуса сопровождается снижением продукции Т-лимфоцитов. Их уровень в организме поддерживается за счет долгоживущиx клеток, внетимусного созревания части клеток под действием цитокинов. Предполагают, что последствия инволюции тимуса входят в число причин старческой патологии и определяют продолжительность жизни человека.

Костный мозг, общая масса которого у человека достигает 3 кг, выполняет несколько иммунологических функций. Как уже упоминалось, костный мозг служит местом происхождения всех клеток иммунной системы. Здесь же происходит созревание и дифференцировка В-лимфоцитов. Костный мозг функционирует и как вторичный орган иммунной системы. Макрофаги костного мозга обладают фагоцитарной активностью, а В-лимфоциты дифференцируются в плазматические клетки, которые продуцируют антитела.

Направления дифференцировки стволовых клеток костного мозга определяются клетками стромы костного мозга, макрофагальными клетками, лимфоцитами и образуемыми ими цитокинами. Клетки костного мозга продуцируют гормоноподобный пептидный фактор способствующий активации В-лимфоцитов.

Лимфатические узлы -- скопления лимфоидной ткани, расположенные по ходу лимфатических и кровеносных сосудов. У человека имеется 500-1000 лимфатических узлов, а также более мелкие скопления лимфоидной ткани под слизистыми поверхностями и коже. Лимфатические узлы обеспечивают неспецифическую резистентность организма, выполняя функции барьеров и фильтров, удаляющих из лимфы и крови чужеродные частицы. Вместе с тем лимфатические узлы служат местом формирования антител и клеток, ocyществляющих клеточные иммунные реакции.

Кожа, эпителиальные и паренхиматозные органы содержат многочисленные лимфатические капилляры, собирающие тканевую жидкость, именуемую лимфой. Лимфа поступает далее в лимфатические сосуды, по ходу которых последовательно располагается множестве лимфатических узлов, строма которых служит фильтром, удаляющие из лимфы практически все чужеродные частицы, в том числе и вирусы, и до 2% растворимых антигенных молекул. В лимфоузлах иммунного организма задерживаются практически все водорастворимые антигены.

Лимфатический узел покрыт соединительнотканной капсулой, от которой внутрь узла отходят трабекулы, разделяющие его на доли, я которых содержится корковое и мозговое вещество, а между ними лежит паракортикальный слой. Основной структурой коркового вещества являются скопления лимфоидных фолликулов, содержащий лимфоциты, преимущественно В-группы, дендритные клетки и макрофаги. Лимфоидные фолликулы могут быть первичными и вторичными. Первичные фолликулы преобладают в покоющемся лимфоузле, содержащиеся в них клетки малоактивны, митозы встречаются редко. В случаях формирования реакции на антиген первичные фолликулы превращаются во вторичные фолликулы, называемые также зародышевыми центрами.

В-лимфоциты, находившиеся в первичном фолликуле, в ответ на поступивший в узел антиген активируются с помощью Т-клеток, начинают быстро делиться и дифференцироваться в антителообразующие клетки -- зрелые лимфоциты и плазматические клетки, а также клетки иммунологической памяти, обеспечивающие быстрый ответ на новое поступление антигена. Часть антителообразующих лимфоцитов перемещается в мозговой слой лимфоузла, в другие лимфоузлы где продолжают продуцировать антитела. Пространство между фолликулами коркового слоя и паракортикальные зоны мозгового слоя заполнены преимущественно Т-лимфоцитами, из которых при иммунной реакции формируются цитотоксические и другие эффекторные лимфоциты, осуществляющие клеточные реакции иммунной защиты. В мозговом слое лимфатического узла содержится большое количество макрофагов, осуществляющих фагоцитоз поступающих в лимфоузел микроорганизмов и других чужеродных частиц.

Функции периферических органов иммунной системы выполняют также лимфоидные структуры глоточного кольца, кишечника, мочеполовых органов, кожи, бронхов и легких. Структуры, обеспечивающие защиту слизистых, получили название -- лимфоидная ткань, ассоциированная со слизистыми -- MALT (Mucosa-associated lymphoid tissue). В состав MALT входят GALT, BALT -- лимфоидные ткани, (ассоциированные с кишечником, с бронхолегочной системой. К ним примыкают лимфоидные структуры кожи-SALT (Skin associated lymphoid tissue). Клеточные структуры этих лимфоидных образований, а также лимфоциты, находящиеся в тканях, имеют то же происхождение, что и структуры других периферических органов иммунной системы. Вместе с тем системы защиты покровов и связанных с ними образований (молочная железа, печень и др.) обладают особенностями, главная из которых состоит в продукции секреторных иммуноглобулинов класса А и Е, которые поступают на поверхность слизистых и в секреты -- молозиво и молоко, желчь, слюну, семенную жидкость. Механизмы клеточной защиты покровов связаны главным образом с цитотоксическими лимфоцитами, имеющими гамма/дельта рецепторы. Лимфоциты кожи и слизистых обладают сродством к этим тканям и, перемещаясь по организму, обеспечивают солидарную защиту всей системы. Так, например, В-лимфоциты после стимуляции микробными антигенами в кишечнике перемещаются в молочную железу, превращаются в плазматические клетки и продуцируют там антитела, поступающие в молозиво и молоко, которые защищают от инфекции вскармливаемого ими ребенка. Иммунизация человека через рот может обеспечить образование антител и защиту всех слизистых оболочек от возбудителей инфекций.

Селезенка, как и другие периферические органы иммунной системы, принимает участие в обеспечении неспецифической резистентности, играя роль фильтра, удаляющего из циркуляции чужеродные частицы и собственные поврежденные или отжившие свой срок клетки крови. Вместе с тем селезенка входит в число основных органов иммуногенеза и образования антител, особенно выраженного в тех случаях, когда антиген поступает с током крови непосредственно в селезенку, которая по строению сходна с лимфатическими узлами. От покрывающей орган капсулы отходят трабекулы, составляющие каркас органа. Селезенка содержит белую пульпу -- аналог коры лимфоузлов, заполненную в основном лимфоидными клетками, и красную пульпу, где преобладают эритроциты и макрофаги. В белой пульпе и пограничной зоне между белой и красной пульпой имеются Т-зависимые зоны, где сосредоточены преимущественно Т-лимфоциты, и Т-независимые зоны или зародышевые центры, содержащие преимущественно В-лимфоциты.

Удаление селезенки (травма, лечение анемий) снижает способность организма к продукции антител, но не влияет на Т-зависимые формы иммунного ответа, продукцию иммуноглобулинов, процессы фагоцитоза. Функции селезенки дублируются другими органами иммунной системы.

Клетки иммунной системы (иммуноциты) могут быть разделены на три группы:

1. Иммунокомпетентные клетки, способные к специфическому ответу на действие антигенов. Этими свойствами обладают исключительно лимфоциты, каждый из которых изначально обладает рецепторами для какого-либо антигена.

2. Вспомогательные (антиген-представляющие) клетки, способные отличать собственные антигены от чужеродных и представлять их иммунокомпетентным клеткам, без чего невозможен иммунный ответ на большинство чужеродных антигенов

3. Клетки антиген-неспецифической защиты, отличающие компоненты собственного организма от чужеродных частиц, в первую очередь от микроорганизмов, и уничтожающих последние путем фагоцитоза или цитотоксического воздействия.

Направление

=>

=>

=>

=>

^

®

Этапы созревания

Стволовая клетка

Пре- Т-лимфоцит

Незрелый Т-лимфо-цит

Зрелый Т-лимфо-цит

Активированный Т-лимфоцит

Эффек-торная клетка

Функция

Предок всех клеток

Предок Т-кле-ток

Толеро-генез

Ожидание антигена

Начало клеточной реакции

Клеточная реакция

Место-нахождение

Костный мозг

Тимус

Тимус

Периферические органы

Органы и ткани

Органы и ткани

Роль антигена

Роли не играет

Роли не играет

Толеро-ген

Иммуно-ген

Иммуно-ген

Мишень

Рецепторы для антигена

Отсутствуют

Отсутствуют

ТКРдля всех антигенов

ТКРдля чужеродных антигенов

ТКРдля чужеродных антигенов

ТКРдля чужеродных антигенов

2. Состав скелета человека

Основой скелета человека является позвоночник -- стержень, состоящий из 33 отдельных сегментов -- позвонков, расположенных в виде столба. Позвоночник -- наиболее древняя часть скелета человека. В эволюции он появился около 500 млн лет назад. У наших эволюционных предков было больше костей, чем в скелете современных людей. Поэтому в теле развивающегося ребенка около 300 костей -- гораздо больше, чем в теле взрослого человека. В процессе развития некоторые кости срастаются.

Каждый позвонок состоит из тела и дуги, между которыми расположено отверстие. В позвоночнике эти отверстия образуют канал, внутри которого находится спинной мозг. Таким образом, позвоночник является не только главной опорой для тела, но и прочным футляром для главного «нервного кабеля» человеческого организма.

Скелет человека -- сложнейшая инженерная конструкция. Достаточно сказать, что верхняя конечность человека состоит из 32 различных костей. Большую часть из них составляют маленькие кости запястья, пястные кости, а также фаланги пальцев. Нижняя конечность человека состоит из 31 кости. Большую часть из них составляют маленькие кости предплюсны, плюсневые кости и фаланги пальцев. Вероятно, не существует отдельных генов, которые так или иначе контролируют каждую отдельную косточку человека. Некоторые гены кодируют белки соединительной ткани, которые входят в состав скелета. Другие являются регуляторными, то есть играют определенную роль в формировании костей в эмбриогенезе и влияют на развитие и рост костей.

Скелет взрослого человека состоит примерно из 220 костей, которые соединены между собой и образуют 4 отдела.

1. Скелет головы. Череп состоит из мозгового и лицевого отделов.

Мозговой отдел черепа образован прочно и неподвижно соединенными между собой костями. Эти парные теменные височные, непарные лобная и затылочная кости. В височной кости имеется отверстие наружного слухового прохода. На нижней поверхности затылочной кости есть большое затылочное отверстие, через которое полость черепа соединяется с позвоночным каналом. Кости основания черепа пронизаны мелкими отверстиями. Через них проходят черепно-мозговые нервы и кровеносные сосуды.

В лицевом отделе черепа 15 костей. Самые крупные из них челюстные.

Нижнечелюстная кость - единственная подвижная кость черепа. На обеих челюстях имеются ячейки, в которых расположены корни зубов.

2. Скелет туловища. Позвоночник, или позвоночный столб, состоит из 33 - 34 коротких костей - позвонков. Каждый позвонок имеет тело и несколько отростков. Позвонки расположены друг над другом. Между позвонками находятся прослойки упругой хрящевой ткани, обеспечивающих гибкость позвоночника. Внутри позвоночника в позвоночном канале расположен спинной мозг.

В позвоночнике человека различают: шейный - 7, грудной - 12, поясничный - 5, крестцовый - 5 и копчиковый отделы - 4 - 5.

Шейный-1-й позвонок сочленен с черепом в виде кольца - атлант, 2-й позвонок - эпистрофей имеет зубовидный отросток, который входит в углубление кольца 1-го.

Грудная клетка, образована 12 парами ребер и грудиной. С каждым грудным позвонком сочленена одна из 12 пар ребер. Ребра с 1 по 7 истинные, соединяется хрящами с грудиной, 8-10 - присоединяются к вышележащим ребрам, 11, 12 - заканчиваются свободно в брюшной полости.

Глядя на изображение скелета, можно подумать, что он является не живым каркасом, а составляющие его кости напоминают прочные пластмассовые стержни и пластины. Это не так. Каждая кость в теле человека является живым образованием, способным постепенно увеличиваться в размерах. Поврежденные кости срастаются после переломов. Неживые образования на такое не способны. Любая кость является результатом деятельности клеток остеоцитов (от греч. osteon -- кость и cytos -- клетка). Множество остеоцитов и выделяемое ими межклеточное вещество образуют костную ткань, которая является разновидностью соединительной ткани. Поверхность любой кости покрыта плотной оболочкой -- надкостницей . Находящиеся в ней остеоциты работают как каменщики на стройке. Они создают все новые и новые пластинки из солей кальция, из которых постепенно слагается плотная часть кости. В результате кость растет в толщину. Чем интенсивнее работают остеоциты, тем быстрее идет процесс увеличения размеров скелета.

Часть остеоцитов, так называемые остеобласты, строит кость в зонах роста, которые расположены главным образом в местах перехода средней части кости в ее оконечность. Именно там расположен так называемый эпифизарный хрящ, за счет роста которого кость вытягивается в длину. Другая группа клеток, называемых остеокластами, постоянно разрушает кость. Такой процесс тоже необходим для нормального роста скелета, ведь диаметр полости трубчатых костей по мере их увеличения в длину тоже увеличивается.

Это происходит именно благодаря остеокластам.

У мужчин рост скелета наиболее быстро происходит в 15--16 лет и заканчивается к 20--24 годам. У женщин он идет наиболее интенсивно в 12--13 лет и заканчивается к 18--22 годам. До 50 лет рост взрослого человека остается неизменным, а потом начинает уменьшаться на 1--2 см каждое десятилетие. Средний рост у различных народностей колеблется от 135 до 178 см.

Строение кости. Кость имеет сложный химический состав и представлена органическими и неорганическими веществами. Основную массу составляют 65-70% неорганические вещества (соли фосфора и кальция) и 30-35% органические.

Минеральные вещества придают твердость, органические - эластичность и упругость. По твердости кость можно сравнить с чугуном или бронзой. Костная система очень динамична и в течение жизни человека претерпевает значительные изменения. Возрастные изменения костной системы столь характерны, что позволяют специалистам судить по обнаруженным в раскопках костям о возрасте людей, живших многие столетия назад. Изменчив и химический состав костей в зависимости от возраста. Так, в детском возрасте кости более эластичные и упругие, так как в них преобладают органические вещества. С возрастом же их становится меньше, и поэтому у пожилых людей костный аппарат более хрупкий и ломкий. Скелет как опора несет большой груз: в среднем 60-70 кг (это средняя масса взрослого человека).

Большинство костей состоит из наружного плотного вещества (располагается в местах, где требуется особая прочность) и внутреннего губчатого вещества (обеспечивает уменьшение массы кости). Их количественное соотношение и распределение зависит от участка скелета и выполняемых функций. Снаружи располагается надкостница - тонкая оболочка, прочно соединенная с костью, богатая нервами и сосудами, проникающими в глубь через особые отверстия. Она участвует в питании и росте костей в толщину за счет деления клеток надкостницы, тогда как в длину кости растут за счет хрящей. Развитие скелета у мужчин заканчивается к 20-25 годам, у женщин - в 18-21 год.

3. Основные этапы развития организма человека

Таблица 1. Основные периоды жизни человека (по Н.П. Гундобину)

Период жизни

Мужчины

Женщины

Период новорожденности

От рождения до 1 месяца

Период грудного возраста

От 1 месяца до 1 года

Ясельный возраст

От 1 года до 3 лет

Дошкольный возраст

От 3 до 7 лет

Младший школьный возраст

7-13 лет

7-11 лет

Подростковый возраст (пубертатный возраст)

13-17 лет

11-15 лет

Юношеский

17-21 год

15-20 лет

Зрелый возраст, первый период

21-35 лет

20-35 лет

Зрелый возраст, второй период

35-60 лет

35-55 лет

Пожилой возраст

60-75 лет

55-75 лет

Старческий возраст

От 75 до 90 лет

Долгожители

Старше 90 лет

От момента рождения ребенок не только растет физически: развивается его костно-мышечная система, увеличивается рост и масса тела, но и “созревает” функционально: постепенно активируются ферментные системы печени и желудочно-кишечного тракта, стабилизируется терморегуляция, претерпевают функциональные изменения сердечно-сосудистая, дыхательная и другие системы. Например, у новорожденного частота сердечных сокращений (ЧСС) составляет 120-140 ударов в минуту, у 3-летнего ребенка - уже 105, а в 8-9 лет ЧСС практически соответствует параметрам взрослого - 90 ударов в минуту. Такое “урежение ритма” объясняется постепенной оптимизацией сердечной деятельности - нарастанием эффективности сердечного сокращения: если у новорожденного в течение одной минуты сердце перекачивает 450-550 мл крови, то есть с каждым сердечным выбросом в аорту выталкивается около 4 мл крови, то у 8-летнего ребенка этот объем уже составляет более 30 мл (2800 мл за 1 минуту). Однако наибольший прогресс наблюдается в развитии нервной системы и психики: становятся более дифференцированными эмоциональные реакции, богаче - мимика, активируются познавательные процессы, формируются механизмы запоминания, концентрации и сохранения внимания, закладываются основы логического и абстрактного мышления и многое другое. В пубертатный период начинает меняться гормональный фон, организм готовится к выполнению репродуктивных функций. По разным данным, до 20-25 лет развитие организма идет по нарастающей, далее наступает фаза плато (с 25 до 30-35 лет), характеризующаяся максимальной активностью всех функций организма. После 35 лет постепенно уменьшаются резервные возможности организма, в организме начинают более интенсивно протекать процессы старения. Отчего это происходит? Ученые утверждают, что дело в генетической программе, записанной в ДНК клетки, и поиск “гена старения” продолжается. Ни для кого не секрет, что первые морщины - первые проявления процессов старения - обнаруживаются уже в 20-25 лет, однако темпы угасания второстепенных, а затем и основных функций организма нарастают после 35-40 лет. Наиболее показательны в этом отношении процессы высшей нервной деятельности и реакции психики. Более трудным становится усвоение нового материала, больше времени приходится тратить на запоминание информации, усложняются процессы быстрого реагирования на ситуацию или принятия нестандартных решений. После 60 лет обычно наблюдается угнетение интеллектуальной деятельности, значительно ухудшается память на текущие события, эмоциональные реакции становятся не всегда адекватными, отмечается склонность к депрессии, что обусловлено ухудшением кровоснабжения и обмена веществ в головном мозге, уменьшением числа нейронов и возрастными дегенеративными изменениями нервной системы. Однако процессы восприятия информации, к которой человек привык в силу своей профессиональной деятельности, и мышления могут долгое время сохраняться на достаточно высоком уровне. Отчего это зависит? Тут действует простой закон биологии: “В первую очередь угасает та функция организма, которая активно не используется”.

На протяжении истории человечества продолжительность жизни увеличивалась. Так, в XIV-XVII веках средняя продолжительность жизни человека составляла всего 24-29 лет. В конце XIX века в странах Европы люди в среднем жили 42 года, а во второй половине ХХ века - свыше 70 лет. По статистике, основными причинами смерти современного человека являются хронические неинфекционные заболевания - атеросклероз, артериальная гипертензия, ишемическая болезнь, злокачественные опухоли. Предполагают, что эффективная профилактика только сердечно-сосудистых заболеваний может привести к увеличению продолжительности жизни до 85 лет. Резервы повышения продолжительности жизни кроются в оптимизации двигательной активности, питания, ритмов жизни и эмоциональных реакций человека. Хотя по-прежнему актуальным остается высказывание “Нужно не только добавить годы к жизни, но и жизнь к годам”. А пути достижения обеих целей одинаковы!

Заключение

Мы рассмотрели сложную и индивидуально целесообразно устроенную систему защитных реакций организма. Одной из важнейших проблем современной биологии является вопрос о том, как и из чего она могла возникнуть в процессе эволюции. Подходы к этой проблеме лишь только намечаются.

Ясно, что защиту организма от внешней и внутренней биологической агрессии иммунная система обеспечивает путем двух основных механизмов - распознавания и разрушения чужеродных молекул и клеток. Это достигается благодаря слаженной работе иммуноцитов различного функционального предназначения. Основным молекулярным инструментом для реализации иммунного ответа служат антитела и поверхностные рецепторы. Причем те и другие могут выполнять как функцию распознавания, так и функцию разрушения чужеродных тел. Межклеточная связь между иммуноцитами выполняют интерлейкины, интерфероны и другие медиаторы. Нарушение этих механизмов приводит к различным формам иммунопатологии, опасной для здоровья и жизни.

Список использованной литературы

Абелев Г.И. Основы иммунитета. - “Соросовский Образовательный журнал”, 1996г., №5, С. 4-10.

Галактионов В.Г. Графические модели в иммунологии. -- М. Медицина, 1986. -- 236с.

Грутенко Е.В. Иммунитет "за" и "против".-- М.: Знание, 1982.-- 185с.

Петров Р.В. Контроль регуляции иммунного ответа.-- М.: Медицина, 1982.-- 250с.

Ройт А. Основы иммунологии, пер. с англ. - Т.В. Великодворской.-- М.: Мир, 1991.-- 325с.

Томсон Р.А. Последние достижения в клинической иммунологии.-- М.: Медицина, 1983.-- 495с.

Ульянкина Т.И. Зарождение иммунологии. - М., “Наука”, 1995г., С.206.

Хью Р.К. Барбер Иммунобиология для практических врачей, пер. с англ. - В.И. Литвинова, А.А. Мороза. -- М.: Медицина, 1980.-- 351с.

Физиология человека: Учебник / Под ред. В.М. Смирнова. - М.: Медицина, 2001. - 608 с., ил.

Человек. Наглядный словарь. (серия наглядных словарей) / Пер. с англ. О. Лосевой; Гл. ред. Е. Мирская. - М.: Слово/Slovo. - 2001. - 64 с., ил.

Энциклопедический словарь медицинских терминов / Гл. ред. Б.В. Петровский: в 3-х томах. - М.: Советская энциклопедия, 1982. - Т. 1, 2, 3.

Краткая медицинская энциклопедия / Гл. ред. Б.В. Петровский: в 3-х томах. - 2-е изд. - М.: Советская энциклопедия, 1989. - Т. 1, 2, 3.

Популярная медицинская энциклопедия / Гл. ред. В.И. Покровский. - 5-е изд. - М.: “Издательский Дом Оникс”, “Альянс-В”, 1998. - 688 с., ил.

Сапин М.Р., Брыскина З.Г. Анатомия и физиология человека. - М.: Просвещение, 1998. - 256 с., ил.


Подобные документы

  • Понятие и виды иммунитета, назначение иммунной системы. Факторы и признаки ослабления иммунитета, методы его повышения. Механизм действия иммунитета: макрофаги, Т-хэлперы, В-лимфоциты, выработка иммуноглобулинов (антител), Т-супрессоры, клетки-киллеры.

    реферат [15,0 K], добавлен 09.02.2009

  • Система иммунитета организма и ее функции. Виды клеток иммунной системы (лимфоциты, фагоциты, гранулярные лейкоциты, тучные клетки, некоторые эпителиальные и ретикулярные клетки). Селезенка как фильтр крови. Клетки-убийцы как мощное оружие иммунитета.

    презентация [4,1 M], добавлен 13.12.2015

  • Основные вехи развития иммунологии и этапы эволюции иммунной системы. Определение понятия "иммунитет", основные функции и строение иммунной системы человека. Центральные и периферические органы иммунной системы. Врожденный и приобретенный иммунитет.

    презентация [5,3 M], добавлен 26.03.2019

  • Основные функции иммунной системы. Генез Т- и В-лимфоцитов. Общие закономерности нарушений иммунной системы. Способность организма отвечать на действие антигена клеточными и гуморальными реакциями. Процессы развития патологических процессов в организме.

    реферат [391,2 K], добавлен 23.09.2014

  • Общая характеристика и функции иммунной системы. Органы и клетки иммунной системы. Основные виды иммунитета. Обеспечение оптимальной для метаболизма массы циркулирующей крови и количества форменных элементов крови (эритроцитов, лейкоцитов и тромбоцитов).

    презентация [1001,2 K], добавлен 21.01.2015

  • Специфичность и ее значение, взаимодействие антигена и антитела. Основные элементы иммунной системы организма, селекция антител, структура белковой молекулы. Теория "клональной селекции", возникновение разнообразия лимфоцитов или их предшественников.

    реферат [21,8 K], добавлен 05.06.2010

  • Пассивная часть опорно-двигательного аппарата - комплекс костей и их соединений. Характеристика и классификация соединительных тканей. Строение и форма костей скелета. Функции позвоночного столба. Грудная клетка, грудина и ребра, скелет конечностей.

    реферат [24,0 K], добавлен 20.01.2011

  • Иммунитет – способ защиты организма от болезнетворных микроорганизмов за счет выработки антител. Обзор схемы клеточного и гуморального иммунитета. Нарушения фагоцитарной системы. Методы оценки иммунитета. Реакция иммунного гемолиза и цитотоксический тест.

    презентация [1,1 M], добавлен 11.11.2014

  • Структура и функции скелета. Строение и форма костей скелета. Позвоночный столб. Грудная клетка. Грудина и ребра. Скелет верхней конечности. Скелет нижней конечности. Скелет головы. Особенности строения черепа новорожденного.

    реферат [2,0 M], добавлен 20.02.2007

  • Исследование иммунной системы человека. Изучение особенностей формирования неспецифического иммунитета. Анализ естественной, врожденной и приобретенной форм иммунитета. Описания функций клеток памяти и эффекторов, системы комплемента, структуры антигена.

    презентация [4,0 M], добавлен 13.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.