ДНК и РНК. Митоз

Модель ДНК (дезоксирибонуклеиновой кислоты): строение и состав, ее информационная функция; значение РНК (рибонуклеиновой кислоты). Роль АТФ (аденозинтрифосфорной кислоты) в реализации функции ДНК. Митоз эукариотных клеток: подготовка к делению, его фазы.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 17.12.2009
Размер файла 86,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

РЕФЕРАТ

по биологии

ТЕМА: «ДНК И РНК. МИТОЗ»

Подготовила студентка 1курса

Кузнецова Виктория

1 ДНК и РНК

Наука располагает определенными фактами, относящимися к проблеме происхождения и сущности жизни, но очевидно их недостаточно для однозначного ответа.

Особую роль играют исследования вопроса о переходе от неживого к живому. Данные исследований показывают, что переходные формы от неживого к живому имеют свойства и неживого, и живого (например вирусы), что еще больше подчеркивает как единство неживого и живого, так и их качественное различие.

Известно, что живые организмы и тела неживой природы состоят из одних и тех же химических элементов. (В клетках ~ 60 химических элементов). Сходство органического и неорганического мира на атомном уровне указывает на связь и единство живой и неживой природы.

К свойствам живого обычно относят: обмен веществ, способность к росту, воспроизведение себе подобных, способность к эволюционному развитию, раздражимость, подвижность. Наличие только некоторых этих свойств не является достаточным для определения жизни.

Например: ледник, река - характеризуются ростом, подвижностью, развитием, но не обладают воспроизводством. Звезды, планеты, звездные системы (галактики) рождаются, стареют и умирают, т.е. эволюционируют, они подвижны и даже могут образовывать новые звезды, но эти новые образования не будут подобны исходным. С другой стороны, мы не задумываясь к живому относим растения. Хотя подвижность им не свойственна.

Таким образом, лишь комплекс свойств: раздражимость, обмен веществ, способность к росту, индивидуальному и историческому развитию, воспроизведение себе подобных - может считаться необходимым и достаточным для определения жизни.

Исходя из определения жизни Ф. Энгельсом («Жизнь - есть способ существования белковых тел...»), некоторые ученые были склонны считать живыми уже единичные молекулы белка. Но нельзя согласится с этим, т.к. белки не обладают способностью к самовоспроизведению и обмену веществ. Следовательно, образование белка в результате химического процесса не равносильно возникновению жизни.

Свойством воспроизведения себе подобных обладают нуклеиновые кислоты и даже отдельные фрагменты молекулы ДНК (дезоксирибонуклеиновая) - обнаружена в 1868 г. в клеточных ядрах - являются веществом наследственности. В 1953 г. - Ф. Крик и Д. Уотсон построили модель ДНК, которая состоит из двух полимерных цепочек, закрученных одна вокруг другой с образованием двойной спирали. Согласно этой модели каждая из цепочек молекулы ДНК состоит из четырех типов мономеров - нуклеотидов. В свою очередь, в состав нуклеотидов входят три компонента, соединенные прочными химическими связями:

1) азотистое основание;

2) углевод (дезоксирибоза);

3) остаток фосфорной кислоты.

Азотистые основания - это пурины, имеющие двойное углеродно-азотное кольцо, и пиримидины имеющие одно такое кольцо. Пурины представлены - аденином (А) и гуанином (Г), пиримидины - тимином (Т) и цитозином (Ц). За счет фосфорной кислоты нуклеотиды могут соединяться друг с другом за счет химической связи, образуя нуклеиновые кислоты. Модель Крика - Уотсона подтвердилась. Интересно, что спираль - самая распространенная форма во Вселенной, от атомов до галактик. Не случайно, что молекулы ДНК имеют форму двойной спирали. Эта форма выгодна в тесноте микромира. У некоторых растений длина ДНК достигает 40 м и заключается в клеточном ядре размером ~ микрон.

Функция ДНК - информационная - порядок расположения ее четырех нуклеотидов несет важную информацию, определяет порядок расположения аминокислот в линейных молекулах белков, т.е. их первичную структуру. Набор белков (ферментов, гормонов) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколениях потомков, т.е. ДНК - носитель наследственной информации. Ген - часть ДНК.

РНК - рибонуклеиновая кислота - похожа на ДНК и тоже построена из мономерных нуклеотидов 4 типов. Только в состав РНК вместо тимидинового нуклеотида входит похожий на него - уридиловый (У) (урацил). Также в состав РНК входит сахар - рибоза. Но Равное отличие: спираль - одинарная. РНК участвуют в реализации наследственной информации, хранящейся в ДНК, через синтез белка.

Так вот, можно ли считать молекулы ДНК носителями жизни? Доказано, что самокопирование ДНК и реализация заключенной в ней информации происходит только при наличии ферментов, источников энергии - молекул АТФ воды и других соединений. Очевидно, что отдельные молекулы нуклеиновых кислот тоже не являются живыми.

АТФ - аденозинтрифосфорная кислота - универсальный биологический аккумулятор энергии: световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ.

2. МИТОЗ

Способность к делению - важнейшее свойство клеток. Без деления невозможно представить себе увеличение числа одноклеточных существ, развитие сложного многоклеточного организма из одной оплодотворенной яйцеклетки, возобновление клеток, тканей и даже органов, утраченных в процессе жизнедеятельности организма.

Деление клеток осуществляется поэтапно. На каждом этапе деления происходят определенные процессы. Они приводят к удвоению генетического материала (синтезу ДНК) и его распределению между дочерними клетками. Период жизни клетки от одного деления до следующего называется клеточным циклом.

2.1 Подготовка к делению

Эукариотические организмы, состоящие из клеток, имеющих ядра, начинают подготовку к делению на определенном этапе клеточного цикла, в интерфазе.

Именно в период интерфазы в клетке происходит процесс биосинтеза белка, удваиваются все важнейшие структуры клетки. Вдоль исходной хромосомы из имеющихся в клетке химических соединений синтезируется ее точная копия, удваивается молекула ДНК. Удвоенная хромосома состоит из двух половинок - хроматид. Каждая из хроматид содержит одну молекулу ДНК.

Интерфаза в клетках растений и животных в среднем продолжается 10 - 20 ч. Затем наступает процесс деления клетки - митоз.

Во время митоза клетка проходит ряд последовательных фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был в материнской летке.

Митоз (от греч. Mitos - нить), непрямое деление, основной способ деления эукариотных клеток. Биол. значение М. состоит в строго одинаковом распределении редуплицированных хромосом между дочерними клетками, что обеспечивает образование генетически равноценных клеток и сохраняет преемственность в ряду клеточных поколений. В 1874 И. Д. Чистяков описал ряд стадий (фаз) М. в спорах плаунов, ещё не ясно представляя себе их последовательность. Детальные исследования по морфологии М. впервые были выполнены Э. Страсбургером на растениях (1876-79) и В. Флеммингом на животных (1882). Продолжительность митоза в среднем 1-2 ч., различна для разных видов клеток. Процесс зависит также и от условий внешней среды (температуры, светового режима и других показателей).

2.2 Фазы митоза

В процессе М. условно выделяют несколько стадий, постепенно и непрерывно переходящих друг в друга: профазу, прометафазу, метафазу, анафазу и телофазу. Длительность стадий М. различна и зависит от типа ткани, физиол. состояния организма, внеш. факторов; наиб. продолжительны первая и последняя.

В профазе хорошо видны центриоли - образования, находящиеся в клеточном центре и играющие роль в делении дочерних хромосом животных. (Напомним, что у высших растений нет центриолей в клеточном центре, который организует деление хромосом.) Мы же рассмотрим митоз на примере животной клетки, поскольку присутствие центриолей делает процесс деления клетки более наглядным. Центриоли делятся и расходятся к разным полюсам клетки. От центриолей протягиваются микротрубочки, образующие нити веретена деления, которое регулирует расхождение хромосом к полюсам делящийся клетки.

Важнейшие признаки профазы - конденсация хромосом, распад ядрышек и начало формирования веретена деления, снижение активности транскрипции (к концу профазы синтез РНК прекращается). Веретено деления образуется либо с участием центриолей, образуя митотический аппарат (в клетках животных и некоторых низших растений), либо без них (в клетках высших растений и некоторых простейших). У водорослей, низших грибов и ряда простейших веретено может формироваться внутри ядра (т. н. закрытый М.). Прометафаза начинается распадом ядерной оболочки на фрагменты и беспорядочными движениями хромосом в центральной части клетки, соответствующей зоне бывшего ядра. При «закрытом М.» оболочка ядра сохраняется в течение всего М. Хромосомы спирализуются и в результате этого укорачиваются и утолщаются, и их уже можно наблюдать в световой микроскоп. Еще лучше они видны на следующей стадии митоза - метафазе.

В Метафазе завершается формирование веретена деления. Хромосомы перестают двигаться и выстраиваются по экватору веретена, образуя экваториальную пластинку. При этом хорошо видно, что каждая хромосома, состоящая из двух хроматид, имеет перетяжку - центромеру (рис 2).

Хромосомы своими центромерами прикрепляются к нитям веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой. Синтез белка снижен на 20-30% по сравнению с интерфазой. На этой стадии М. клетки наиб. чувствительны к холоду, колхицину, его производным и др. агентам, воздействие которых разрушает веретено деления и приводит к пекращению деления клеток (К-митоз). При низких дозах повреждающих агентов нормальное течение М. восстанавливается через несколько часов после их воздействи; более высокие дозы приводят либо к гибели клетки, либо к ее полиплоидизации.

Анафаза - самая короткая стадия М. Характеризуется разделением сестринских хроматид и расхождением хромосом к противоположным полюсам клетки. Скорость их движения в среднем 0,2-5 мкм/мин. В ряде случаев движение хромосом к полюсам клетки сопровождается дополнит. расхождением полюсов друг от друга.

Телофаза длится с момента прекращения движения хромосом до окончания процессов, связанных с реконструкцией дочерних ядер (десприрализация и активизация хромосом, образование ядерной оболочки, формирование ядрышек), с разрушением веретена деления, разделением тела материнской клетки на 2 дочерние и образованием (в клетках животных) остаточного тельца Флемминга. Она начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды (митохондрии, комплекс Гольджи, рибосомы и др.) распределяются между дочерними клетками более или менее равномерно.

По завершении цитотомии клетки вступают в интерфазу, которая начинается G1-периодом следующего клеточного цикла.

ЗАКЛЮЧЕНИЕ

В опытах с температурно-зависимыми мутантами дрожжей и клеточных линий млекопитающих показано, что протекание М. обусловливается активацией определённых генов и синтезом специфич. РНК и белка. Иногда М. считают только деление ядра (кариокинез), которое не всегда сопровождается цитотомией - образованием двух отд. клеток.

Таким образом, в результате митоза из одной клетки получаются две, каждая из которых имеет характерно для данного вида организма число и форму хромосом, а, следовательно, постоянное количество ДНК.

Биологическое значение митоза заключается в том, что он обеспечивает постоянство числа хромосом во всех клетках организма. В процессе митоза происходит распределение ДНК хромосом материнской клетки строго поровну между возникающими из нее двумя дочерними клетками. В результате митоза все клетки тела, кроме половых, получают одну и ту же генетическую информацию. Такие клетки называются соматическими (от греч. «сома» - тело).

СПИСОК ЛИТЕРАТУРЫ

1. Советская энциклопедия «Биология и Химия».

2. Советская энциклопедия «Хочу всё знать».

3. Советская энциклопедия «Секреты природы».


Подобные документы

  • Основная роль дезоксирибонуклеиновой кислоты. Ученые, создавшие в 1953 г. модель структуры молекулы. Система выделения и очистки нуклеинов. Схематичное изображение отрезка дезоксирибонуклеиновой кислоты в окружении различных белковых структур человека.

    презентация [1,9 M], добавлен 02.02.2014

  • Основные фазы клеточного цикла: интерфаза и митоз. Определение понятия "митоз" как непрямого деления клетки, наиболее распространенного способа репродукции эукариотических клеток. Характеристика и особенности процессов деления: амитоза и мейоза.

    презентация [799,4 K], добавлен 25.10.2011

  • Митоз как непрямое деление клетки, в результате которого образуются соматические клетки. Стадии клеточного цикла. Подготовка к делению эукариотических организмов. Основные этапы кариокинеза. Разделение цитоплазмы с органоидами между дочерними клетками.

    презентация [2,3 M], добавлен 06.11.2013

  • Нуклеиновые кислоты, их структура, функциональные группы. Осмотическое давление различных клеток и тканей растения. Роль пигментов в жизни растений. Биосинтез углеводов, ферменты углеводного обмена. Роль аденозинтрифосфорной кислоты в обмене веществ.

    контрольная работа [843,8 K], добавлен 12.07.2010

  • Значение роста и развития клеток. Жизненный и митотический циклы клеток. Продолжительность жизни разных типов клеток в многоклеточном организме. Рассмотрение митоза как универсального способа размножения, сохраняющего постоянство числа хромосом в клетках.

    презентация [4,1 M], добавлен 05.12.2014

  • Митотическое деление клетки, особенности ее строения. Митоз как универсальный способ деления клеток растений и животных. Постоянство количества и индивидуальность хромосом. Продолжительность жизни, старение и смерть клеток. Формы размножения организмов.

    реферат [22,8 K], добавлен 07.10.2009

  • Этапы развития генетики, ее связь с другими науками. Вклад отечественных учёных в ее развитие. Строение ядра и хромосом. Свойство хромосом и понятие о кариотипе. Особенности кариотипов разных видов с/х животных. Митоз, его биологическое значение.

    шпаргалка [98,7 K], добавлен 08.05.2009

  • Признаки и уровни организации живых организмов. Химическая организация клетки. Неорганические, органические вещества и витамины. Строение и функции липидов, углеводов и белков. Нуклеиновые кислоты и их типы. Молекулы ДНК и РНК, их строение и функции.

    реферат [13,5 K], добавлен 06.07.2010

  • Фазы желудочной секреции. Функции обкладочных, пепсиновых, слизистых клеток, соляной кислоты и гастрина. Пищеварение в тонком кишечнике. Ферменты поджелудочной железы. Состав и образование желчи. Кишечно-печеночный круговорот. Моторика желчного пузыря.

    презентация [4,5 M], добавлен 04.02.2013

  • Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.

    презентация [7,6 M], добавлен 21.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.