Корпускулярная и континуальная концепции описания природы

Антитеза бытия и становления в основе противостояния корпускулярной и континуальной концепций. Кантор о природе континуума. Вещество и поле как основные формы материи. Волновая и корпускулярная теории света. Непрерывное взаимодействие полей с частицами.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 27.11.2009
Размер файла 26,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

16

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

АМУРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

(ГОУВПО «АмГУ»)

РЕФЕРАТ

по дисциплине: Концепция современного естествознания

на тему: Корпускулярная и континуальная концепции описания природы

Исполнитель

Студент группы

Руководитель

г. Благовещенск

2008

Содержание

Введение

1. Корпускулярная и континуальная концепции описания природы

2. Вещество и поле

Заключение

Библиографический список

Введение

С древнейших времен существовали два противоположных представления о структуре материального мира. Одно из них - континуальная концепция Анаксагора - Аристотеля - базировалось на идее непрерывности, внутренней однородности и, по-видимому, было связано с непосредственными чувственными впечатлениями, которые производят вода, воздух, свет и т.п. Материю, согласно этой концепции, можно делить до бесконечности, и это является критерием ее непрерывности. Заполняя все пространство целиком, материя не оставляет пустоты внутри себя.

Другое представление - атомистическая (корпускулярная) концепция Левкиппа - Демокрита - было основано на дискретности пространственно-временного строения материи, «зернистости» реальных объектов и отражало уверенность человека в возможность деления материальных объектов на части лишь до определенного предела - до атомов, которые в своем бесконечном разнообразии (по величине, форме, порядку) сочетаются различными способами и порождают все многообразие объектов и явлений реального мира. При таком подходе необходимым условием движения и сочетания реальных атомов является существование пустого пространства. Таким образом, корпускулярный мир Левкиппа - Демокрита образован двумя фундаментальными началами - атомами и пустотой, а материя при этом обладает атомистической структурой.

Эти представления о структуре материи просуществовали фактически без существенных изменений до начала XX века, оставаясь двумя антиномиями, определяющими «поле битвы» крупнейших мыслителей. Триумф ньютоновской механики значительно укрепил позиции сторонников корпускулярной структуры материи. И хотя эмпирических доказательств «зернистости» газов, жидкостей, твердых тел, световых пучков в то время не существовало, сама идея считать эти объекты состоящими из взаимодействующих материальных точек была слишком привлекательной, чтобы ею не воспользоваться.

Надо признать, что корпускулярный подход оказался чрезвычайно плодотворным в различных областях естествознания. Прежде всего, это, конечно, относится к ньютоновской механике материальных точек. Очень эффективной оказалась и основанная на корпускулярных представлениях молекулярно-кинетическая теория вещества, в рамках которой были интерпретированы законы термодинамики. Правда, механистический подход в чистом виде оказался здесь неприменимым, так как проследить за движением 10 материальных точек, находящихся в одном моле вещества, не под силу даже современному компьютеру. Однако если интересоваться только усредненным вкладом хаотически движущихся материальных точек в непосредственно измеряемые макроскопические величины, то получалось прекрасное согласие теоретических и экспериментальных результатов.

1. Корпускулярная и континуальная концепции описания природы

Время непрерывно (или дискретно, как полагают некоторые). Поэтому для понимания его необходимо разобраться в природе континуума. В своей работе, посвященной анализу математического континуума, Георг Кантор подчеркивал, что невозможно определить континуум, если исходить из представлений о времени или пространстве, потому что сами эти представления могут быть объяснены только с помощью понятия континуума, которое должно быть исходным и простым и не должно зависеть в своем содержании от других понятий. Это утверждение Кантора связано с его пониманием теории множеств как общего фундамента и математики в целом, и теории континуума в особенности.

Надо сказать, что размышления о природе времени с первых шагов научной и философской мысли в Древней Греции были неразрывно связаны с попытками решить проблему континуума. Ведь время, так же как и пространство, и движение представляет собой континуум, который можно мыслить либо как состоящий из неделимых элементов (моментов-“мигов” -- времени, неделимых частей -- точек -- пространства или “частей” движения), либо же как бесконечно делимую -- в точном смысле непрерывную -- величину. Вот что пишет в этой связи Герман Вейль, чьи работы по философии математики можно отнести к классическим: “Издавна противостоят друг другу атомистическая концепция, согласно которой континуум состоит из отдельных точек, и противоположная точка зрения, считающая невозможным понять таким образом непрерывное течение. Первая концепция дает нам построенную логически систему неподвижно сущих элементов, но она не в состоянии объяснить движение и действие; всякое изменение сводится для нее к иллюзии. Второй же концепции не удалось ни во времена античного мира, ни позже, вплоть до Галилея, вырваться из сферы туманной интуиции, чтобы проникнуть в область абстрактных понятий, необходимых для рационального анализа действительности. Достигнутое в конце концов решение -- это то, математически-систематическим образцом которого служит дифференциальное и интегральное исчисление. Но современная критика анализа снова разрушает изнутри это решение, хотя, правда, она и не дает себе ясного отчета во всем значении старой философской проблемы и приходит в итоге к хаосу и бессмыслице”.

Противостояние двух точек зрения на природу континуума -- атомистической, представители которой мыслят непрерывное состоящим из неделимых элементов, и антиатомистической, защитники которой отрицают возможность составить континуум из неделимых в качестве их суммы, в основе своей имеет онтологическую дилемму, сформулированную еще древними философами, обсуждавшуюся на протяжении многих веков и не утратившую своей актуальности и сегодня: что является реально существующим и составляет подлинный предмет научного знания: бытие или становление? С V в. до н. э., прежде всего в учениях элеатов, а затем Платона получает свое первое и достаточно глубокое обоснование точка зрения, что реально существует лишь то, что неизменно и самотождественно; оно и получает название бытия. В силу именно своей неизменности и тождества самому себе бытие только и может быть постигнуто разумом с помощью понятий и, таким образом, стать предметом строгого научного знания. Что же касается окружающего нас чувственного мира, в котором происходит непрерывное изменение, движение, все явления которого претерпевают трансформации и никогда не остаются тождественными и равными себе, то он являет собой не бытие, а становление и в качестве такового есть предмет не знания, а лишь изменчивого и недостоверного мнения.

При обсуждении вопроса о природе континуума и особенно о природе времени как одномерного и необратимого континуума эта антитеза бытия и становления играет важную роль. Что касается времени, то тут ситуация особенно наглядна: те, кто считают предметом науки бытие как начало устойчивости и постоянства, а потому ищут неизменную основу изменчивых явлений, склонны устранять фактор времени при изучении природы. Напротив, те, кто отождествляют понятия “природа” и “становление” и пытаются создать средства для познания самого изменения и движения, убеждены в том, что время есть ключевой фактор в жизни природы и соответственно играет ведущую роль в ее познании.

Предположим, что пулемет обстреливает броневой щит с двумя близко расположенными отверстиями 1 и 2, так что часть пуль пролетает сквозь эти отверстия и попадает на экран, который мы будем рассматривать как наблюдательный. Пролетающие через отверстия пули сильно рассеиваются и поэтому довольно равномерно покрывают значительную площадь экрана. Очевидно, что если I 1 - плотность потока пуль в некоторой точке экрана, проходящих через отверстие 1 (при закрытом отверстии 2), а I 2 - плотность потока пуль в той же точке экрана, проходящих через отверстие 2 (при закрытом отверстии 1), то плотность потока пуль через оба отверстия будет равна .

Таков закон сложения двух потоков частиц или корпускул. Кроме того, в принципе возможен точный расчет траектории полета и места попадания на экран любой пули.

Рассмотрим теперь вместо пулемета источник волн на поверхности моря. Эти волны распространяются вплоть до заградительного ряда из барж, между которыми оставлены два близко расположенных прохода, проход 1 и проход 2. Волны, прошедшие через эти проходы, в конце концов, достигают наблюдательного экрана.

Рассматриваемые волны характеризуются отклонением H поверхности воды от равновесного уровня. H является функцией координат и времени и аналогична волновой функции квантовой механики. Она представляет собой бегущую волну, например, синусоидального вида:

,

где r - расстояние до прохода, - длина волны, T - период колебаний.

Распространение волн, однако, значительно отличается от полета пуль. Во-первых, волновая функция H принимает отрицательные значения, потому что уровень воды отклоняется то вверх, то вниз. Во-вторых, плотность потока энергии волн зависит от квадрата волновой функции: .

В-третьих, нельзя говорить, что волна прошла от источника до экрана либо через проход 1, либо через проход 2, как это было в случае пуль, волна использует оба прохода. Если закрыть один из проходов, волнение перед экраном изменится качественно, а не просто уменьшится вдвое, как в случае пуль. Волнение H , возникающее, если открыт только проход 1, складывается с волнением H , возникающим, если открыт только проход 2: H = H + H

Это называется суперпозицией. При этом образуются зоны, где суммарная волновая функция равна нулю: H = H + H = 0

Это зоны спокойной воды, где отсутствует волнение, где одна волна погасила другую. Такое явление называется интерференцией. При интерференции складываются волновые функции, а не плотности потоков. Результирующая плотность потока может быть вычислена как квадрат суммарной волновой функции:

В частности, плотность потока равна нулю в зонах, где отсутствует волнение.

Электромагнитные волны, которые мы для краткости будем называть светом, на первый взгляд, похожи на морские волны. Мы снова рассмотрим конструкцию того же типа: источник освещает непрозрачный экран с двумя близко расположенными отверстиями, 1 и 2, за которым находится наблюдательный экран. На этом экране наблюдается интерференционная картина. Однако при уменьшении интенсивности света становится очевидно, что интерференционная картина распадается на отдельные вспышки. Если наблюдательный экран покрыт светочувствительным слоем, он постепенно покроется черными фотографическими зернами. Это происходит потому, что свет распространяется и поглощается порциями. Эти порции называются квантами света или фотонами. Атомы светочувствительного слоя, захватывая порции света, возбуждаются и при проявлении становятся зародышами фотографических зерен.

Квантование света использовал Планк, занимаясь тепловым излучением и доказал Эйнштейн, объяснив фотоэффект. Энергия фотонов равна

,

а импульс фотонов

,

где h = 6,6·10-34 Дж·с - постоянная Планка, - частота света, - длина волны.

Задолго до Эйнштейна, во времена торжества волновой теории света, только Ньютон с прозорливостью гения последовательно отстаивал корпускулярную теорию света, несмотря на полную невозможность совместить ее с результатами интерференционных опытов. Интерференция фотонов действительно не может быть объяснена в том смысле, что не существует аналогичного явления в знакомом нам макроскопическом мире вещей.

Переход от механики точки к механике континуума его предшественники и современники пытались осуществить на основе молекулярных представлений. Материальные точки -- это корпускулы (тельца) и центры сил. Иначе говоря, имели в виду, собственно, не механику континуума, а механику на уровне молекулярного строения вещества. Для успешного решения такой проблемы в то время не была еще подготовлена почва ни в физике, ни в математике. Огромным достижением Эйлера в математической физике является то, что он смог преодолеть традицию и найти новый плодотворный подход: подход с точки зрения теории поля (по современной терминологии). Такой подход можно заметить и в некоторых работах Эйлера 40-х годов; вполне четко он выступает в классической работе 1753 г. «Общие принципы состояния равновесия жидкостей», Эйлер окончательно освободился от корпускулярной традиции и настаивает на том, что принципы механики нужно применять непосредственно к реальным телам, исходя из непрерывного распределения в них вещества. В этой континуальной модели корпускула становится математической точкой -- носителем трех координат, и только.

Если закрыть отверстие 2, интерференционная картина исчезнет. Магнитная составляющая H электромагнитной световой волны, прошедшей через отверстие 1, сделается примерно одинаковой в различных точках экрана. Соответственно, экран будет равномерно покрываться фотографическими зернами. В этом не было бы ничего удивительного. Однако после открывания отверстия 2 фотоны перестанут попадать в те места, где суммарная волновая функция H = H + H = 0, несмотря на то, что отверстие 1 по-прежнему остается открытым. Невозможно понять, каким образом фотоны могут гасить фотоны.

Однако самые удивительные явления возникают, если свет заменить потоком электронов. Оказывается, электроны создают примерно такую же интерференционную картину, как фотоны. Другими словами, электроны, как и фотоны, могут интерферировать друг с другом, в частности, гасить друг друга. Больше того, выяснилось, что все элементарные частицы ведут себя подобным удивительным образом. Для того чтобы рассчитывать подобные явления ученые и создали квантовую механику.

2. Вещество и поле

Основные формы материи часто делят на вещество и поле. Такое деление имеет некоторый смысл, но оно ограничено. Под веществом понимают различные частицы и тела, которые обладают массой покоя. Поля и их кванты массы покоя не имеют, хотя обладают энергией, импульсом и множеством других свойств. Поле и вещество нельзя противопоставлять друг другу. В структуре вещества все внутреннее пространство «занято» полями. На долю собственно частиц приходится ничтожная часть общего объема системы- примерно 10-36 - 10-40 объема, т.е. поля входят в структуру вещества. В тоже время квантами полей выступают частицы, относящиеся к веществу. В этой неразрывной связи видно одно из важнейших проявлений единства прерывности и непрерывности в структуре материи. Частицы обладают относительной прерывностью и локализованностью в пространстве, поля же непрерывно распределены в нем. При этом поля не являются абсолютно континуальными средами, т.е. не являются сплошными материальными средами.

При излучении и поглощении они проявляются относительно дискретно - в виде квантов, фотонов, мезонов и т.д. Кванты полей взаимодействуют с частицами вещества как дискретные образования. Частицы вещества также нельзя представлять в виде каких-то микроскопических шариков с абсолютно четко очерченными гранями. Частицы неотделимы от полей и не существует абсолютно резкой границы, где кончается частица и начинается ее внешнее поле. В пограничной области существует непрерывный взаимопереход полей и частиц. Микрочастицы вещества обладают двойственной природой: природой частицы и волны одновременно. Их волновые свойства описываются уравнением волны де Бройля

mv h = л ,

где h- постоянная Планка,

m -масса частицы,

v - скорость ее движения.

И поле, и вещество обладают определенными физическими параметрами. Так, волна описывается длиной, фазой, амплитудой и их изменениями во времени и пространстве. Частица характеризуется иным набором параметров: спин, заряд, масса покоя, время жизни и ряд квантовых чисел.

Важнейшей характеристикой микрочастицы является спин, собственный момент количества движения. В классической механике такая величина характеризует вращение тела. Но для микрочастиц такое определение теряет смысл, так как элементарные частицы невозможно представить вращающимися крохотными волчками. Для микрочастиц спин характеризует внутреннюю степень свободы, обеспечивающую ей дополнительное физическое состояние. В отличие от классического момента количества движения, который может принимать любые значения, спин квантуется, т.е. принимает определенные дискретные значения, пропорциональные постоянной Планка. Коэффициент пропорциональности называется спиновым квантовым числом. У одних частиц он имеет целочисленное значение (0,1,2….), а у других - полуцелые значения (1/2, 3/2…).

Мировой эфир - это предполагавшаяся ранее универсальная сплошная среда, заполняющая все мировое пространство, в том числе и промежутки между атомами и молекулами в телах. Изучение оптических и электромагнитных явлений показало несостоятельность гипотезы о существовании эфира как универсальной механической среды: современная физика считает, что в пространстве между телами существуют различные физические поля, являющиеся особыми формами материи.

К настоящему времени известны четыре вида основных фундаментальных взаимодействий: гравитационное; электромагнитное; сильное; слабое.

Между двумя точечными телами действует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Предполагается, что гравитационное взаимодействие обуславливается некими элементарными частицами - гравитонами, существование которых к настоящему времени экспериментально не подтверждено.

Электромагнитное взаимодействие связано с электрическими и магнитными полями. Электрическое поле возникает при наличии электрических зарядов, а магнитное поле - при их движении. В природе существуют как положительные, так и отрицательные заряды, что и определяет характер электромагнитного взаимодействия (притяжение или отталкивание).

Сильное взаимодействие обеспечивает связь нуклонов в ядре и определяет ядерные силы. Предполагается, что ядерные силы возникают при обмене между нуклонами виртуальными частицами - мезонами.

Слабое взаимодействие описывает некоторые виды ядерных процессов. Оно короткодействующее и характеризует все виды бета - превращений.

Обычно для количественного анализа перечисленных взаимодействий используют две характеристики: безразмерную константу взаимодействия, определяющую величину взаимодействия, и радиус действия.

Микромир - мир микроскопических частиц, для которых характерны преимущественно квантовые свойства. Поведение и свойства физических тел, состоящих из микрочастиц и составляющих макромир, описываются классической физикой.

Пространственные масштабы нашей Вселенной и размеры основных материальных образований, в том числе и микрообъектов, можно представить из следующей таблицы, где размеры даны в метрах (для простоты приведены лишь порядки чисел, т. е. приближенные числа в пределах одного порядка).

Под структурой материи обычно понимается ее строение в микромире, существование в виде молекул, атомов, элементарных частиц и т. д. Но если рассматривать материю в целом, во всех доступных и потенциально возможных формах ее существования, то понятие структуры материи будет охватывать также различные макроскопические тела, все космические системы мегамира, причем в любых, сколь угодно больших пространственно-временных масштабах. С этой точки зрения структура материи проявляется в ее существовании в виде бесконечного многообразия целостных систем, тесно связанных между собой в закономерном движении и взаимодействии, в упорядоченном строении каждой системы. Эта структура неисчерпаема и бесконечна в количественном и качественном отношениях.

Проявлениями структурной бесконечности материи выступают: неисчерпаемость объектов и процессов микромира, бесконечность пространства и времени, бесконечность изменений и развития материи.

В доступных пространственно-временных масштабах структурность материи проявляется в ее системной организации, существовании в виде множества иерархически взаимосвязанных систем, начиная от элементарных частиц и кончая Метагалактикой. Последнюю иногда отождествляют со всей Вселенной, но для этого нет никаких оснований, ибо Вселенная в целом, понимаемая в предельно широком смысле этого слова, тождественна всему материальному миру и движущейся материи, которая может включать в себя бесконечное множество Метагалактик или других космических систем. Понятие же Вселенной, используемое в различных космологических моделях, обозначает наблюдаемую Вселенную (Метагалактику) либо же различные аспекты последней, как они представляются через содержание принятых моделей.

Заключение

Одним из наиболее важных и существенных вопросов как философии, так и естествознания является проблема материи. Представления о строении материи находят свое выражение в борьбе двух концепций: прерывности (дискретности) -- корпускулярная концепция, и непрерывности (континуальности) -- континуальная концепция. Эти представления о структуре материи просуществовали фактически без существенных изменений до начала XX века, оставаясь двумя антиномиями, определяющими «поле битвы» крупнейших мыслителей.

Сложившиеся к началу XIX в. представления о строении материи были односторонними и не давали возможности объяснить ряд экспериментальных факторов. Разработанная М. Фарадеем и Дж. Максвеллом в XIX в. теория электромагнитного поля показала, что континуальная концепция не может быть единственной для объяснения структуры материи. В своих работах М. Фарадей и Дж. Максвелл показали, что поле -- это самостоятельная физическая реальность.

Таким образом, в науке произошла определенная переоценка основополагающих принципов, в результате которой обоснованное И. Ньютоном дальнодействие заменялось близкодействием, а вместо представлений о дискретности выдвигалась идея непрерывности, получившая свое выражение в электромагнитных полях.

Вся обстановка в науке в начале XX в. складывалась так, что представления о дискретности и непрерывности материи получили свое четкое выражение в двух видах материи: веществе и поле, различие между которыми явно фиксировалось на уровне явлений микромира. Однако дальнейшее развитие науки в 20-е гг. показало, что такое противопоставление является весьма условным.

Библиографический список

1 Верин О.Г. Энергия, Вещество и поле / О.Г. Верин. - М.: Изд-во Контур, 2006. - 128 с.

2 Дубнищева Т.Я. Концепции современного естествознания / Т.Я. Дубнищева. - Новосибирск: Изд-во ЮКЭА, 1997. - 832 с.

3 Новоженов В.А. Концепции современного естествознания / В.А. Новоженов. - Барнаул: Изд-во Алтайского гос. ун-та, 2001. - 553 с.

4 Хорошавина С. Г. Концепции современного естествознания: Курс лекций / С.Г. Хорошавина. - Ростов-на-Дону: Феникс, 2005. - 480 с.


Подобные документы

  • Представления о строении материи. Борьба концепций прерывности (дискретности) — корпускулярная концепция, и непрерывности. Основополагающие признаки атомистики, квантовая теория строения атома, переосмысление соотношения дискретности и непрерывности.

    реферат [14,1 K], добавлен 29.11.2009

  • Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.

    курс лекций [545,5 K], добавлен 05.10.2009

  • Естественнонаучные и социальные представления о видах, структуре и свойствах материи. Вещество как вид материи, обладающей массой. Физическое поле и физический вакуум. Концепция атомизма, дискретность и непрерывность как неотъемлемые свойства материи.

    реферат [19,6 K], добавлен 29.07.2010

  • Волновая концепция света О. Френеля. Концепции классической электродинамики. Электромагнитное поле Максвелла и эфир. Возникновение предпосылок ядерной физики. Эволюционная теория Дарвина. Концепции классической термодинамики. Достижения биологии XIX века.

    реферат [61,7 K], добавлен 22.03.2011

  • Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения. Идея построения материального мира из элементарных, фундаментальных "кирпичиков".

    реферат [888,7 K], добавлен 07.01.2010

  • Естествознание как система научных знаний о природе, обществе и мышлении взятых в их взаимной связи. Формы движения материи в природе. Предмет, цели, закономерности и особенности развития, эмпирическая, теоретическая и прикладная стороны естествознания.

    реферат [25,4 K], добавлен 15.11.2010

  • Аристотель и философские основания античной космологии. Гелиоцентрическая картина мира и её доказательства. Волновая и электромагнитная теории света. Теория относительности. Концепция большого взрыва. Теория радиоактивности Резерфорда. Кварковая теория.

    шпаргалка [128,2 K], добавлен 17.01.2011

  • Зависимость сил взаимодействия между молекулами от расстояния между ними. Взаимодействие агрегатных состояний вещества, характер движения молекул в газах, жидкостях и твердых телах. Закон трех взаимодействий (активной, пассивной и нейтрализующей сил).

    контрольная работа [29,1 K], добавлен 11.10.2010

  • Естественнонаучная и гуманитарная культура. Дифференциация, интеграция и математизация в современной науке. Культурный уровень организации материи. Квантовомеханическая концепция описания микромира. Пространство и время в общей теории относительности.

    курс лекций [47,9 K], добавлен 16.11.2009

  • Характеристика зависимости сил взаимодействия между молекулами от расстояния между ними. Ввзаимодействие агрегатных состояний вещества. Закон трех взаимодействий. Отражение трех первоначал Творения Вселенной. Активная, пассивная и нейтрализующая сила.

    контрольная работа [28,2 K], добавлен 30.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.