Ионы кальция

Регулирование ионами кальция нейромышечного возбуждения, свертывания крови, процессов секреции, поддержания целостности мембран и транспорт через мембраны. Гормоны, участвующие в гомеостазе кальция. Положения о роли кальцитриола в гомеостазе кальция.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 22.09.2009
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

34

Содержание

  • I. Введение
    • II. Общие характеристики
    • III. Клиническое значение
    • IV. Гомеостаз кальция
    • V. Гормоны, участвующие в гомеостазе кальция
    • 1. Паратиреотропный гормон
    • V.1.1 Структура
    • V.1.2 Участие ПТГ в минеральном гомеостазе
    • V.1.3 Биохимия
    • V.1.4 Механизм действия
    • V.1.5 Патофизиология
    • V.2 Кальцитриол [1,25- (OH) 2-D3]
    • V.2.1 Общие положения о роли кальцитриола в гомеостазе кальция
    • V.2.2 Биохимия
    • V.2.3 Механизм действия
    • V.2.4 Патофизиология
    • V.3 Кальцитонин
    • V.3.1 Происхождение и структура
    • V.3.2 Регуляция секреции
    • V.3.3 Механизм действия
    • V.3.4 Патофизиология
    • Заключение
    • Список литературы

I. Введение

Ионы кальция регулируют ряд важнейших физиологических и биохимических процессов, в частности нейромышечное возбуждение, свертывание крови, процессы секреции, поддержание целостности мембран и транспорт через мембраны, многие ферментативные реакции, высвобождение гормонов и нейромедиаторов, внутриклеточное действие ряда гормонов. Кроме того, для минерализации костей необходимо поддержание определенных концентраций Са2+ и РО43 - во внеклеточной жидкости и надкостнице Нормальное протекание этих процессов обеспечивается тем, что концентрация Са2+ в плазме крови поддерживается в очень узких пределах.

II. Общие характеристики

Содержание кальция в организме человека составляет примерно 1 кг.99% кальция локализовано в костях, где вместе с фосфатом он образует кристаллы гидроксиапатита, составляющие неорганический компонент скелета. Кость - это динамическая ткань, претерпевающая перестройку в зависимости от нагрузки; в состоянии динамического равновесия процессы образования и резорбции костной ткани сбалансированы. Большая часть кальция кости не может свободно обмениваться с кальцием внеклеточной жидкости (ВЖ). Итак, в дополнение к своей роли механической опоры кости служат огромным резервуаром кальция. Около 1% кальция скелета составляет легкообменивающий пул, еще 1% общего количества находится в периостальном пространстве (надкостнице), и вместе эти два источника составляют мобильный (смешанный) пул Ca2+.

Активный транспорт кальция происходит, главным образом, в проксимальных отделах тонкой кишки, хотя определенное количество кальция поглощается во всех ее отделах. Для всасывания кальция необходима соляная кислота, особенно для расщепления мало растворимых солей кальция, в частности карбоната кальция.

Поглощение кальция может нарушаться при заболеваниях печени и поджелудочной железы. Поступивший внутрь кальций необратимо связывается с жирными кислотам или другими компонентами пищи и выводится почками. Около 8-10 г/сут кальция фильтруется через клубочки, из которых только 2-3% появляются в моче

В плазме кальций распределен между тремя пулами в зависимости от концентрации белка, анионов, pH и многих других факторов. Около 50% всего кальция находится в свободном состоянии, 40% - связано с белками плазмы и около 10% - с разными неорганическими и органическими анионами, включая бикарбонат, лактат, фосфат и цитрат и др.

Фракция "свободного" кальция является его биологически активной формой. Его концентрация в плазме напрямую регулируется гормонами: паратгормоном, кальцитонином и кальцитриолом [1,25- (ОН) 2D3]. Сам термин "ионизированный" кальций не вполне корректен, поскольку весь кальций плазмы или сыворотки находится в ионизированной форме, вне зависимости от того, связан ли он с белками или небольшими по размерам анионами. В этом смысле термин "свободный" кальций аналогичен понятию "свободный" гормон, например "свободный" тироксин или "свободный" тестостерон. "Свободный" кальций считают лучшим индикатором кальциевого обмена, поскольку он биологически активен и его уровень непосредственно регулируется паратгормоном и 1,25- (ОН) 2D3. Хотя определение концентрации свободного кальция в сыворотке клинически более полезно, оно не может полностью вытеснить определение общего кальция.

Ион кальция и парный ему ион фосфата присутствуют в плазме крови в концентрациях, близких к пределу растворимости их соли; отсюда следует, что связывание Са2+ с белками предупреждает возможность образования осадка и эктопической кальцификации Изменения концентрации плазменных белков (прежде всего альбумина, хотя глобулины тоже связывают кальций) сопровождаются соответствующими сдвигами уровня общего кальция в плазме крови. Например, при гипоальбуминемии падение уровня общего кальция в плазме составляет 0,8 мг % на каждый г % снижения концентрации альбумина. Соответственно при возрастании количества альбумина плазмы наблюдается противоположное явление. Связывание кальция с белками плазмы зависит от рН: ацидоз способствует переходу кальция в ионизированную форму, а алкалоз повышает связывание с белками, т.е. снижает концентрацию Са2+. Вероятно, этим обусловлены звон в ушах и потеря кожной чувствительности, возникающие при синдроме гипервентиляции, которая вызывает острый респираторный алкалоз.

III. Клиническое значение

Нарушения кальциевого обмена могут приводить к гипокальциемии или гиперкальциемии. Снижение концентрация общего кальция в сыворотке (гипокальциемия) может быть обусловлена уменьшением количества кальция, связанного с альбумином, или свободной фракции, либо их сочетанием.

Гипоальбуминемия является самой частой причиной псевдогипокальциемии (уменьшение общего и свободного кальция), поскольку 1 г/100 мл альбумина связывает около 0,8 мг/100 мл кальция. Концентрация альбумина в сыворотке снижена при хронических заболеваниях печени, почек, сердца и при нарушении питания. Частой причиной гипокальциемии является хроническая почечная недостаточность и гипомагниемия. При хронической почечной недостаточности гипопротеинемия, гиперфосфатемия, низкий уровень сывороточного 1,25- (ОН) 2D3 (замедление синтеза в результате снижения массы почек) и/или резистентности костной ткани к паратгормону вносит свой вклад в гипокальциемию. Дефицит магния приводит к нарушению секреции паратгормона и вызывает резистентность к нему тканей.

Гипопаратиреоз, часто развивающийся в результате повреждения ткани паращитовидной железы при различных операциях на шее, приводит к гипокальциемии.

При псевдогипопаратиреозе в результате резистентности клеток к паратгормону может развиваться гипокальциемия. Молекулярная основа самой часто встречающейся формы псевдогипопратиреоза I типа (наследственная остеодистрофия Олбрайта) заключается в снижении способности ГТФ-регуляторного компонента Ns активировать аденилатциклазу под влиянием паратгормона. Быстрая реминерализация костной ткани (так называемый синдром "голодной кости") после операции по поводу первичного гиперпаратиреоза, лечения гипертиреоза или заболеваний крови может привести к гипокальциемии. Острый геморрагический или отечный панкреатит часто осложняется гипокальциемией. Дефицит витамина D в организме способен привести к гипокальциемии из-за нарушения всасывания кальция в кишечнике и резистентности скелета к паратгормону.

С гиперкальциемией в клинической практике сталкиваются в тех случаях, когда поток кальция во внеклеточный пул из скелета, кишечника превышает скорость его выведения из организма.

В частности, ускоренная резорбция костной ткани при злокачественных опухолях приводит к гиперкальциемии и гиперкальциурии. Гиперкальциемия может быть вызвана увеличением всасывания кальция из кишечника (интоксикация препаратами, содержащими витамин D), задержкой выведения почками (тиазидовые мочегонные средства), ускорением резорбции костной ткани при длительной иммобилизации.

Самой частой причиной гиперкальциемии у амбулаторных больных является гиперпаратиреоз, тогда как у госпитализированных больных ее причиной являются злокачественные новообразования. Все это объясняет 90-95% всех случаев гиперкальциемии. Первичный гиперпаратиреоз характеризуется повышенной секрецией паратгормона, приводящей к гиперкальциемии. На ранних стадиях у 80% больных с гиперпартиреозом заболевание может протекать бессимптомно и диагноз часто устанавливают по результатам лабораторных исследований, если в так называемую "биохимическую" панель включено определение кальция.

Определение уровня интактного паратгормона с одновременным определением содержания общего и свободного кальция относится к самому чувствительному и надежному методу оценки функции паращитовидной железы, и результаты этих тестов являются определяющими в дифференциальной диагностике гиперкальциемии.

Пациенты с подтвержденным первичным гиперпаратиреозом подвергаются хирургическому вмешательству. При бессимптомном течении заболевания решение о его необходимости принимают в зависимости от концентрации ионизированного и общего кальция в сыворотке, моче, величины клиренса креатинина и плотности кости.

Гиперкальциемия встречается у 10-20% больных со злокачественными опухолями. Опухоли наиболее часто приводят к гиперкальциемии за счет продукции паратгормонподобного белка (PTHrP), секреция которого в кровь стимулирует рассасывание кости, и/или инвазии в кость метастатической опухоли, продуцирующей местные факторы, стимулирующие резорбцию кости. Сам PTHrP связывается с рецепторами к паратгормону, выступая основными посредником "злокачественной" гиперкальциемии. Цитокины типа интерлейкина-1, фактора некроза опухоли и PTHrP являются важными посредниками гиперкальциемии при множественной миеломе и других гематологических заболеваниях.

IV. Гомеостаз кальция

Первичный океан содержал преимущественно К+ и Mg2+, и потому появившиеся в ходе эволюции белки функционируют наилучшим образом именно в такой среде. Со временем состав морской воды изменился так, что преобладающими ионами стали Na+ и Са2+. В результате для обеспечения условий функционирования внутриклеточных белков потребовался механизм ограничения концентрации Na+ и Са2+ в клетках при сохранении К+ и Mg2+. Таким механизмом стали связанные с мембраной натриевый и кальциевый насосы, способные поддерживать высокий (1000-кратный в случае Са2+) градиент концентрации иона между цитозолем и внеклеточной жидкостью. У современных многоклеточных организмов Na+ и Са2+-это основные ионы внеклеточной среды. Гормоны и другие биологически активные вещества вызывают быстрые кратковременные изменения тока ионов кальция через плазматическую мембрану клетки и от одного внутриклеточного компартмента к другому. В итоге ионы кальция служат внутриклеточным медиатором, воздействующим на разнообразные обменные процессы.

Переход от водной среды, богатой Са2+ к наземной, где этот элемент относительно дефицитен, был сопряжен с развитием сложного механизма гомеостаза кальция, обеспечивающего экстракцию Са2+ из источников питания и предотвращения резких изменений концентрации Са2+ во внеклеточную жидкость. В этот механизм включены три гормона - паратиреоидный (ПТГ), кальцитриол [l,25 (OH) 2-D3] и кальцитонин (КТ), - которые действуют на три органа: кости, почки и кишечник. При падении уровня ионизированного кальция в плазме крови ниже допустимой границы (< 1,1 ммоль/л) увеличивается секреция ПТГ паращитовидными железами. ПТГ стимулирует переход кальция и фосфата из костей в кровь, а также резорбцию кальция и экскрецию фосфата в почках.

Второй важный аспект действия ПТГ на почки - стимуляция образования 1,25 (OH) 2-D3. Это соединение, называемое теперь кальцитриолом, - активная форма того, что раньше называли витамином D. Кальцитриол влияет на кишечник, усиливая всасывание кальция, и, по-видимому, играет пермиссивную роль в эффекте ПТГ на кости и почки. Координированные действия этих агентов направлены на увеличение уровня Са2+ во внеклеточной жидкости при постоянстве или снижении уровня фосфата. Как только концентрация внеклеточного Са2+ возвращается к норме, секреция ПТГ по механизму обратной связи снижается. Увеличение концентрации Са2+ тормозит и образование кальцитриола (частично через снижение ПТГ), причем одновременно возрастает количество неактивных продуктов метаболизма этого соединения. Все это приводит к уменьшению всасывания кальция в кишечнике и снижению влияния ПТГ на почки и скелет. У некоторых животных при возрастании внеклеточного уровня Са2+ усиливается секреция кальцитонина (КТ) К-клетками щитовидной железы или ультимобранхиальными тельцами. У человека роль КТ в гомеостазе кальция (в норме) остается неясной; по некоторым данным, полученным in vitro, КТ может тормозить резорбцию костей.

V. Гормоны, участвующие в гомеостазе кальция

1. Паратиреотропный гормон

V.1.1 Структура

ПТГ - одноцепочечный пептид, состоящий из 84 аминокислотных остатков (молекулярная масса 9500) и не содержащий углеводов или каких-либо иных ковалентно связанных компонентов. Вся биологическая активность принадлежит N-концевой трети молекулы: ПТГ1-34 полностью активен. Область 25-34 ответственна в первую очередь за связывание с рецептором.

ПТГ синтезируется в виде молекулы-предшественника, состоящего из 115 аминокислотных остатков. Непосредственный предшественник ПТГ - это проПТГ, отличающийся от активного гормона тем, что содержит на N-конце дополнительный гексапептид с выраженными основными свойствами и неясной функцией. Первичным генным продуктом и непосредственным предшественником проПТГ оказался препроПТГ; он отличается от проПТГ наличием дополнительной N-концевой последовательности из 25 аминокислотных остатков, обладающей (как и другие лидерные или сигнальные последовательности, характерные для секреторных белков) гидрофобными свойствами.

ПрепроПТГ оказался первым идентифицированным препрогормоном. По мере того как молекулы препроПТГ синтезируются, на рибосомах, происходит их перенос внутрь цистерн эндоплазматического ретикулума. Во время переноса отщепляется препептид из 25 аминокислотных остатков (сигнальный или лидерный пептид) образуется проПТГ. Далее проПТГ транспортируется в аппарат Гольджи, где происходит ферментативное отщепление пропептида и образование конечного продукта - ПТГ. Из аппарата Гольджи ПТГ поступает в секреторные пузырьки (везикулы) и далее этот гормон может 1) накапливаться,

2) распадаться,

3) немедленно секретироваться.

V.1.2 Участие ПТГ в минеральном гомеостазе

А. Кальциевый гомеостаз.

На центральную роль ПТГ в обмене кальция указывает следующее наблюдение: в процессе эволюции этот гормон впервые появляется у животных, пытающихся адаптироваться к наземному существованию. В основе физиологического механизма поддержания баланса кальция лежат долгосрочные эффекты ПТГ, который регулирует всасывание кальция в кишечнике путем стимуляции образования кальцитриола. В случаях хронической недостаточности Са2+ в пище его поступление путем всасывания в кишечнике оказывается неадекватным потребностям и тогда включается сложная регуляторная система, в которой тоже участвует ПТГ. При этом ПТГ восстанавливает нормальный уровень кальция во внеклеточной жидкости путем прямого воздействия на кости и почки и опосредованного (через стимуляцию синтеза кальцитриола) на слизистую кишечника. ПТГ 1) повышает скорость растворения кости (вымывание как органических, так и неорганических компонентов), что обеспечивает переход Са2+ во внеклеточную жидкость;

2) снижает почечный клиренс, т.е. экскрецию кальция, тем самым способствуя повышению концентрации этого катиона во внеклеточную жидкость;

3) посредством стимуляции образования кальцитриола увеличивает эффективность всасывания Са2+ в кишечнике. Быстрее всего проявляется действие ПТГ на почки, но самый большой эффект дает воздействие на кости. Таким образом, ПТГ предотвращает развитие гипокальциемии при недостаточности кальция в пище, но этот эффект осуществляется за счет вещества кости.

Б. Гомеостаз фосфата.

Парным кальцию ионом обычно является фосфат; кристаллы гидроксиапатита в костях состоят из фосфата кальция. Когда ПТГ стимулирует растворение минерального матрикса кости, фосфат высвобождается вместе с кальцием. ПТГ повышает также почечный клиренс фосфата. В итоге суммарный эффект ПТГ на кости и почки сводится к увеличению концентрации кальция и снижению концентрации фосфата во внеклеточной жидкости. Очень важно, что тем самым предотвращается возможность перенасыщения плазмы крови кальцием и фосфатом.

V.1.3 Биохимия

А. Регуляция синтеза.

Концентрация Са2+ в среде не влияет на скорость синтеза проПТГ, но скорость образования и секреции ПТГ значительно возрастает при снижении концентрации Са2+. Оказалось, что 80-90% синтезированного проПТГ не удается обнаружить в виде ПТГ, накапливаемого в клетках, либо в среде инкубации при проведении опытов in vitro. Отсюда был сделан вывод, что большая часть синтезированного проПТГ быстро распадается. Позднее было обнаружено, что скорость процесса распада снижается при низких концентрациях Са2+ и увеличивается при высоких. Таким образом, кальций влияет на продукцию ПТГ путем регуляции процесса распада, а не синтеза. Об уровне общего синтеза проПТГ можно судить по количеству ПТГ мРНК; оказалось, что и оно не меняется при значительных колебаниях концентраций внеклеточного Са2+. По-видимому, увеличение синтеза ПТГ в организме может произойти лишь в результате возрастания числа и размеров вырабатывающих ПТГ главных клеток паращитовидных желез.

Б. Регуляция метаболизма.

Распад ПТГ начинается спустя примерно 20 минут после синтеза проПТГ и на первоначальном этапе не зависит от концентрации Са2+; распаду подвергаются молекулы гормона, находящиеся в секреторных везикулах. Вновь образованный ПТГ либо немедленно секретируется, либо накапливается в везикулах для последующей секреции. Процессы распада начинаются после того, как секреторные везикулы попадают в компартмент накопления.

В ходе протеолитического расщепления ПТГ образуются весьма специфические фрагменты, причем большое количество С-концевых фрагментов ПТГ поступает в кровь. Их молекулярная масса составляет около 7000. В основном это последовательность ПТГ37-84, в меньшей степени - ПТГ34-84. Большая часть новосинтезированного ПТГ подвергается протеолизу; в целом на один моль интактного ПТГ секретируются примерно два моля С-концевых фрагментов. Таким образом, ПТГ в крови представлен в основном этими молекулами. Биологическая роль С-концевых фрагментов ПТГ не выявлена, но возможно, что они удлиняют время существования гормона в кровотоке. В ткани паращитовидных желез был обнаружен ряд протеолитических ферментов, в том числе катепсины В и D. Катепсин В расщепляется ПТГ на два фрагмента - ПТГ1-36 и ПТГ37-84; последний не подвергается дальнейшему протеолизу, а ПТГ1-36 быстро последовательно расщепляется до ди- и трипептидов. ПроПТГ не поступает в кровь; ПТГ1-34 выходит из железы в минимальных количествах (если вообще выходит). ПрепроПТГ удалось идентифицировать путем расшифровки кодирующей последовательности гена ПТГ. Протеолиз ПТГ проходит в основном в паращитовидной железе, но, кроме того, как показано в ряде работ, секретированный ПТГ подвергается протеолизу и в других тканях. Однако вклад этого протекающего вне эндокринной железы процесса в общий протеолитический распад ПТГ не определен; неизвестно также, какие протеазы участвуют в расщеплении и насколько сходны последовательность и продукты протеолиза.

В периферическом обмене секретированного ПТГ участвуют печень и почки. После гепатоэктомии фрагменты 34-84 практически исчезают из крови, из чего следует, что печень служит основным органом, в котором они образуются. Роль почек состоит, по-видимому, в удалении из крови и экскреции этих фрагментов. Периферический протеолиз протекает главным образом в купферовых клетках, выстилающих просвет синусоидов печени. Эндопептидаза, ответственная за начальный этап протеолиза (расщепление на N - и С-концевые фрагменты), локализована на поверхности этих макрофагоподобных клеток, непосредственно контактирующих с плазмой крови. Этот фермент, который также является катепсином В, расщепляет ПТГ между 36 и 37 остатками; аналогично событиям в паращитовидной железе образовавшийся С-концевой фрагмент продолжает циркулировать в кровотоке, а N-концевой быстро распадается.

В. Регуляция секреции.

Секреция ПТГ находится в обратной зависимости oт концентрации ионов кальция и магния в среде, а также от уровня иммунореактивного ПТГ в крови. Как показано на рис.2 между содержанием ПТГ в сыворотке крови и концентрацией кальция в ней (в пределах от 4 до 10,5 мг% сыворотки) существует линейная зависимость. Присутствие биологичеки активного ПТГ в сыворотке крови в случаях, когда уровень кальция достигает 10,5 мг% и более служит признаком гиперпаратиреоза.

Рис.2. Концентрация кальцитонина и паратиреоидного гормона как функция концентрации кальция в плазме крови.

Существует также линейная зависимость между высвобождением ПТГ и уровнем сАМР в клетках паращитовидных желез. Вероятно, эта зависимость опосредована изменениями уровня Са2+ в клетках, поскольку между внутриклеточными концентрациями Са2+ и сАМР существует обратная связь. В основе ее может лежать хорошо известный активирующий эффект кальция на фосфодиэстеразу (через Са2+/кальмодулин-зависимую протеинкиназу) либо ингибирующий эффект (по аналогичному механизму) на аденилатциклазу. Фосфат не влияет на секрецию ПТГ.

В паращитовидных железах сравнительно мало накопительных гранул, и количество гормона в них может обеспечить максимальную секрецию лишь в течение 1,5 ч. Это составляет контраст с островковой тканью поджелудочной железы, где содержание инсулина достаточно для нескольких дней секреции, а также со щитовидной железой, содержащей запас гормона на несколько недель. Таким образом, процессы синтеза и секреции ПТГ должны идти беспрерывно.

V.1.4 Механизм действия

А. Рецептор ПТГ.

ПТГ связывается с мембранным рецептором, представленным простым белком с мол. массой около 70000. В клетках почек и кости рецепторы, по-видимому, идентичны; в клетках, не являющихся мишенями ПТГ, этот белок отсутствует. Взаимодействие гормона с рецептором инициирует типичный каскад событий: активация аденилатциклазы - увеличение клеточной концентрации сAMP - увеличение содержания кальция в клетке - фосфорилирование специфических внутриклеточных белков киназами - активация определенных внутриклеточных ферментов или белков, определяющих в конечном счете биологическое действие гормона. Система, отвечающая на действие ПТГ, подобно системам других белковых и пептидных гормонов, является объектом понижающей регуляции количества рецепторов; кроме того, ей свойствен феномен "десенситизации", механизм которой связан не с увеличением содержания сAMP, а с последующими реакциями каскада.

Б. Влияние ПТГ на кости.

ПТГ проявляет множественные эффекты на костную ткань, влияя, по-видимому, на разные типы ее клеток. Суммарный эффект ПТГ - деструкция кости, сопровождающаяся высвобождением кальция, фосфора и элементов органического матрикса, в том числе продуктов распада коллагена. Клетками, ответственными за этот процесс, могут быть остеокласты, относительно которых доказано, что они разрушают кость при хронической стимуляции посредством ПТГ, либо остеоциты, которые тоже способны резорбировать кость. Возможно, ПТГ стимулирует дифференцировку клеток-предшественников и их превращение в клетки, резорбирующие кость. В низких концентрациях. вероятно соответствующих физиологическим, ПТГ оказывает анаболический эффект и ответственен за перестройку кости. При воздействии этих концентраций гормона наблюдается увеличение числа остеобластов, возрастание активности щелочной фосфатазы, свидетельствующее о формировании новой костной ткани, и повышенное включение радиоактивной серы (в виде сульфата) в хрящ. В действии ПТГ на кость пермиссивную роль может играть кальцитриол.

Внутриклеточным посредником ПТГ служит, видимо, Са2+. Первое проявление эффекта ПТГ состоит в снижении концентрации Са2+ в перицеллюлярном пространстве и возрастании его внутри клетки. Увеличение внутриклеточного кальция стимулирует синтез РНК в клетках кости и высвобождение ферментов, участвующих в резорбции кости. Эти процессы, по-видимому, опосредованы присоединением кальция к кальмодулину. В отсутствие внеклеточного кальция ПТГ по-прежнему повышает концентрацию сAMP, но уже не стимулирует резорбцию кости. Таким образом, важным условием для проявления стимулирующего действия ПТГ на резорбцию кости может быть парадоксальное увеличение входа ионизированного кальция в резорбирующие кость клетки.

В. Влияние ПТГ на почки.

ПТГ оказывает на почки целый ряд эффектов, а именно он влияет на транспорт некоторых ионов и регулирует синтез кальцитриола. В нормальных условиях свыше 90% Са2+, содержащегося в клубочковом фильтрате, подвергается ресорбции (реабсорбции), но ПТГ увеличивает эту величину до 98% и более. Ресорбция фосфата в норме составляет 75-90% в зависимости от диеты и некоторых других факторов; ПТГ тормозит ресорбцию фосфата независимо от ее базального уровня. ПТГ ингибирует также транспорт ионов натрия, калия и бикарбоната. Эффект ПТГ на метаболизм кальцитриола осуществляется, видимо, через те же участки (сайты) клеток, что и действие на минеральный обмен.

При вливании ПТГ наблюдается быстрое увеличение концентрации сАМР в почечных клетках и выведение сAMP с мочой. Этот эффект предшествует характерной для действия ПТГ фосфатурии и, очевидно, ответствен за нее. ПТГ-стимулируемая аденилатциклаза находится в базолатеральной части клеток, расположенных в кортикальных участках почечных канальцев; она отличается от аденилатциклазы почек, стимулируемой кальцитонином, катехоламином и АДГ. Внутриклеточные белки-рецепторы сАМР (т.е., как принято считать, протеинкиназы) - выявляются в щеточной каемке этих клеток, на люминальной поверхности канальцев. Следовательно, сАМР, синтезированная под влиянием ПТГ, мигрирует от базолатеральной области клетки к ее поверхности, обращенной в просвет канальца, где и оказывает эффект на транспорт ионов.

Кальций, видимо, вовлечен в механизм действия ПТГ на почки. В самом деле, первый физиологический эффект введения ПТГ - снижение содержания Са2+ во внеклеточной жидкости и увеличение его внутри клетки. Однако эти сдвиги происходят после изменения внутриклеточной концентрации сАМР, так что в почках связь между током Са2+ в клетки и действием ПТГ не столь отчетлива, как в кости.

Г. Влияние ПТГ на слизистую кишечника.

ПТГ по-видимому, не оказывает прямого эффекта на транспорт Са2+ через слизистую кишечника, но он служит решающим фактором регуляции биосинтеза кальцитриола и оказывает безусловно важное непрямое действие на кишки.

V.1.5 Патофизиология

Недостаток ПТГ приводит к гипопаратиреозу. Биохимические признаки этого состояния - сниженный уровень ионизированного кальция и повышенный уровень фосфата в сыворотке крови. К числу симптомов относится высокая нейромышечная возбудимость, вызывающая (при умеренной тяжести) судороги и тетанические сокращения мышц. Тяжелая острая гипокальциемия ведет к тетаническому параличу дыхательных мышц, ларингоспазму, сильным судорогам и смерти. Длительная гипокальциемия сопровождается изменениями в коже, развитием катаракт и кальцификацией базальных ганглиев мозга. Причиной гипопаратиреоза обычно служит случайное удаление или повреждение паратиреоидных желез при операциях на шее (вторичный гипопаратиреоз), но иногда болезнь возникает вследствие аутоиммунной деструкции паратиреоидных желез (первичный гипопаратиреоз).

При псевдогипопаратиреозе эндокринная железа продуцирует биологически активный ПТГ, но органы-мишени к нему резистентны, т.е. он не оказывает эффекта. В результате возникают те же биохимические сдвиги, что и при гипопаратиреозе. Они сопряжены обычно с такими нарушениями развития, как малый рост, укороченные пястные и плюсневые кости, задержка умственного развития. Существует несколько типов псевдогипопаратиреоза; их связывают 1) с частичным дефицитом регуляторного Gs-белка аденилатциклазного комплекса либо 2) с нарушением какого-то этапа, не относящегося к механизму образования сAMP.

Гиперпаратиреоз, т.е. избыточная продукция ПТГ, возникает, как правило, вследствие аденомы паратиреоидных желез, но может быть обусловлен и их гиперплазией либо эктопической продукцией ПТГ злокачественной опухолью. Биохимические критерии гиперпаратиреоза - повышенные уровни ионизированного кальция и ПТГ и сниженный уровень фосфата в сыворотке крови. В запущенных случаях гиперпаратиреоза можно наблюдать выраженную резорбцию костей скелета и различные повреждения почек, включая камни в почках, нефрокалъциноз, частое инфицирование мочевых путей и (в отдельных случаях) снижение функции почек. Вторичный гиперпаратиреоз, характеризующийся гиперплазией паратиреоидных желез и гиперсекрецией ПТГ можно наблюдать у больных с почечной недостаточностыо. Считается, что развитие гиперпаратиреоза у этих больных обусловлено снижением синтеза 1,25- (OH) 2-D3 из 25-OH-D3 в патологически измененной паренхиме почек и, как следствие, нарушением всасывания кальция в кишечнике; это нарушение в свою очередь вызывает вторичное высвобождение ПТГ как компенсаторную реакцию организма, направленную на поддержание нормальных уровней кальция во ВЖ.

V.2 Кальцитриол [1,25- (OH) 2-D3]

V.2.1 Общие положения о роли кальцитриола в гомеостазе кальция

А. История вопроса

Рахит - заболевание детей, характеризующееся нарушением минерализации скелета и сильно выраженными, уродующими деформациями костей, - был широко распространен в Северной Америке и Западной Европе в начале века. Результаты серии исследований позволили предположить, что рахит обусловлен недостаточностью какого-то компонента диеты. После того как было обнаружено, что рахит можно предотвратить добавлением в пищу жира тресковой печени, но при этом не витамин А является ее активным компонентом, этот фактор предупреждения рахита обозначили как жирорастворимый витамин D. Примерно в то же время было показано, что ультрафиолетовое облучение (искусственное или солнечным светом) также предупреждает развитие заболевания. В последующем было выявлено заболевание взрослых, эквивалентное рахиту, а именно остеомаляция. Это заболевание, характеризующееся нарушением минерализации костей, также поддавалось лечению витамином D. В развитии дальнейших исследований ключевую роль сыграли данные, показавшие, что лечение витамином D больных, имевших повреждения печени или почек, не давало ожидаемого эффекта. На протяжении последних 50 лет велось изучение структуры витамина D и механизма его действия, причем особенно быстро оно продвинулось в последнее десятилетие.

Б. Роль в гомеостазе.

Основная биологическая роль кальцитриола - это стимуляция всасывания кальция и фосфата в кишечнике. Кальцитриол - единственный гормон, способствующий транспорту кальция против концентрационного градиента, существующего на мембране клеток кишечника. Поскольку продукция кальцитриола очень строго регулируется (рис.3), очевидно, что существует тонкий механизм, поддерживающий уровень Са2+ во ВЖ, несмотря на значительные колебания в содержании кальция в пище. Этот механизм поддерживает такие концентрации кальция и фосфата, которые необходимы для образования кристаллов гидроксиапатита, откладывающихся в коллагеновых фибриллах кости. При недостаточности витамина D (кальцитриола) замедляется формирование новых костей и нарушается обновление (ремоделирование) костной ткани. В регуляции этих процессов участвует в первую очередь ПТГ, воздействующий на клетки кости, но при этом необходим и кальцитриол в небольших концентрациях. Кальцитриол способен также усиливать действие ПТГ на реабсорбцию кальция в почках.

Рис. 3. Образование и гидроксилирование витамина D3.25 - Гидроксилирование происходит в печени, гидроксилирование по иным положениям - в почках. Вполне вероятно образование 25, 26- (ОН) 2-D3. Изображены формулы 7-дегидрохолестерола, витамина D3 и 1,25- (ОН) 2-D3.

V.2.2 Биохимия

А. Биосинтез.

Кальцитриол - это во всех отношениях гормон. Он образуется в сложной последовательности ферментативных реакций, которая включает перенос кровью молекул-предшественников, поступающих в различные ткани. (рис.3). Далее активное соединение - кальцитриол-транспортируется в другие органы, где активирует определенные биологические процессы по механизму, сходному с механизмом действия стероидных гормонов.

1. Кожа. Небольшие количества витамина D содержатся в продуктах питания (жир, печень рыб, желток яйца), но большая часть витамина D, используемого в синтезе кальцитриола, образуется в мальпигиевом слое эпидермиса из 7-дегидрохолестерола в ходе неферментативной. зависимой от ультрафиолетового света реакции фотолиза. Активность процесса находится в прямой зависимости от интенсивности облучения и в обратной - от степени пигментации кожи. С возрастом содержание 7-дегидрохолестерола в эпидермисе снижается, что может иметь прямое отношение к развитию отрицательного баланса кальция у стариков.

2. Печень. Специфический транспортный белок называемый D-связывающим белком, связывает витамин D3 и его метаболиты и переносит D от кожи или кишечника в печень, где он подвергается 25-гидроксилированию, составляющему первый обязательный этап в образовании кальцитриола. Гидроксилирование происходит в эндоплазматическом ретикулуме в ходе реакции, протекающей с участием магния, NADPH, молекулярного кислорода и неидентифицированного цитоплазматического фактора. В реакции участвуют два фермента: NADPH-зависимая цитохром Р-450-редуктаза и цитохром Р-450. Реакция не регулируется; она протекает не только в печени, но (с малой интенсивностью) также в почках и кишках. Продукт реакции OH-D3 поступает в плазму крови (составляя основную форму витамина D, присутствующего в крови) и при посредстве D-связывающего белка транспортируется в почки.

3. Почки. .25-OH-D3 является слабым агонистом. Для проявления полной биологической активности соединение должно быть модифицировано путем гидроксилирования при С-1. Это происходит в митохондриях проксимальных извитых почечных канальцев в ходе сложной монооксигеназной реакции, протекающей при участии NADPH, Mg2+, молекулярного кислорода и по крайней мере трех ферментов:

1) почечной ферредоксин-редуктазы (флавопротеин),

2) почечного ферредоксина (железосодержащий сульфопротеин) и 3) цитохрома Р-450. В этой системе образуется 1,25- (OH) 2-D3 - самый активный из природных метаболитов витамина D.

4. Другие ткани. В плаценте содержится 1б-гидроксилаза, которая, по-видимому, играет важную роль как источник внепочечного кальцитриола. Активность этого фермента выявляется и в других тканях, включая костную, однако физиологическое значение фермента этих тканей минимально, судя по тому, что у небеременных животных после нефроэктомии уровень кальцитриола очень низок.

Б. Регуляция метаболизма и синтеза.

Подобно другим стероидным гормонам, кальцитриол является объектом жесткой регуляции по механизму обратной связи (рис.3 и табл.1).

Табл. 1. Регуляция почечной 1б-гидроксилазы.

Первичные регуляторы

Вторичные регуляторы

Гипокальциемия (^)

ПТГ (^)

Гипофосфатемия (^)

Кальцитриол (^)

Эстрогены

Андрогены

Прогестерон

Инсулин

Гормон роста

Пролактин

Тиреоидный гормон

У интактных животных низкое содержание кальция в пище и гипокальциемия вызывают значительное повышение 1б-гидроксилазной активности. В механизме этого эффекта участвует ПТГ, который также высвобождается в ответ на гипокальциемию. Роль ПТГ при этом пока не ясна, но установлено, что он стимулирует 1б-гидроксилазную активность как у D - авитаминозных животных, так и у животных, получавших витамин D. Недостаток фосфора в диете и гипофосфатемия тоже индуцируют 1б-гидроксилазную активность, но служат, видимо, более слабым стимулом, чем гипокальциемия.

Кальцитриол - важный регулятор своего собственного продуцирования. Повышение уровня кальцитриола тормозит 1б-гидроксилазу почек и активирует синтез 24-гидроксилазы, что ведет к образованию побочного продукта - 24,25- (OH) 2-D3, лишенного, по-видимому, биологической активности. Эстрогены, прогестероны и андрогены значительно увеличивают количество 1б-гидроксилазы у овулирующих птиц. Какую роль в синтезе кальцитриола играют эти гормоны (наряду с инсулином, гормоном роста и пролактином) у млекопитающих, остается неясным.

Стерольная структура, составляющая основу кальцитриола, может подвергаться модификациям в альтернативных метаболитечких последовательностях, а именно гидроксилироваться по положениям 1, 23, 24, 25 и 26 с образованием различных лактонов. Было обнаружено свыше 20 метаболитов, но ни для одного из них не удалось однозначно доказать наличие биологической активности.

V.2.3 Механизм действия

Действие кальцитриола на клеточном уровне аналогично действию других стероидных гормонов (рис.4) В исследованиях, проведенных с радиоактивным кальцитриолом, было показано, что он накапливается в ядре клеток кишечных ворсинок и крипт, а также остеобластов и клеток дистальных почечных канальцев. Кроме того, он был обнаружен в ядре клеток, в отношении которых и не предполагалось, что они являются клетками-мишенями кальцитриола; речь идет о клетках мальпигиевого слоя кожи и островков Лангерганса поджелудочной железы, некоторых клетках головного мозга, а также некоторых клетках гипофиза, яичников, семенников, плаценты, матки, грудных желез, тимуса, клетках-предшественниках миелоидного ряда. Связывание кальцитриола было обнаружено и в клетках паращитовидных желез, что крайне интересно, так как указывает на возможное участие кальцитриола в регуляции обмена ПТГ.

Рис. 4. Кальцитриол (К) функционирует подобно другим стероидным гормонам. Он индуцирует генные продукты, обеспечивающие перенос кальция из просвета кишечника во внеклеточную жидкость. КСБ - кальций-связывающий белок.

А. Рецептор кальцитриола.

Присутствующий в клетках кишечника белок с мол. массой 90000-100000 связывает кальцитриол с высокой степенью сродства и малой емкостью. Связывание насыщаемо, специфично и обратимо. Таким образом, этот белок отвечает основным критериям, характеризующим рецептор; он обнаружен во многих из перечисленных выше тканей. Если при анализе используют физиологические концентрации солей, то большая часть незанятого рецептора выявляется в ядре в связанном с хроматином виде. Это аналогично локализации рецепторов если не всех стероидных гормонов, то во всяком случае прогестерона и Т3. Остается не ясным, требуется ли для связывания с хроматином предварительная активация комплекса кальцитриол-рецептор, как это имеет место с типичными стероид-рецепторными комплексами.

Б. Кальцитриол-зависимые генные продукты.

Как известно уже на протяжении ряда лет, изменение процессов транспорта в кишечных клетках в ответ на добавление кальцитриола требует участия РНК и синтеза белка. Исследования, показавшие связывание в ядре рецепторов калъцитриола с хроматином, позволили предположить, что кальцитриол стимулирует транскрипцию генов и образование специфических мРНК. Действительно, удалось выявить один такой пример, а именно индукцию мРНК, кодирующей кальций-связывающий белок (КСБ).

Существует несколько цитозольных белков, связывающих Са2+ с высокой степенью сродства. Часть из них принадлежит к группе кальцитриол-зависимых. В группу входит несколько белков, различающихся по молекулярной массе, антигенности и тканевому происхождению (кишки, кожа, кость). Из этих белков лучше всего изучен КСБ клеток кишечника. У D-авитаминозных крыс КСБ в таких клетках практически отсутствует; в целом концентрация КСБ в высокой степени коррелирует с количеством кальцитриола ядерной локализации.

В. Влияние кальцитриола на слизистую кишечника.

Для переноса Са2+ и РО3 - через слизистую кишки необходимы 1) захват и перенос через мембрану щеточной каемки и микроворсинок,

2) транспорт через мембрану клетокво слизистой,

3) выведение через базальную латеральную мембрану во ВЖ Совершенно очевидно, что кальцитриол активирует один или более из этих этапов, но конкретный механизм его действия не установлен. Предполагалось, что непосредственное участие в этом принимает КСБ, но впоследствии было показано, что перенос Са2+ происходит через 1-2 ч после введения калъцитриола, т.е. задолго до увеличения концентрации КСБ в ответ на кальцитриол. Вероятно, КСБ, связывая Са2+, защищает от него клетки слизистой в периоды активного транспорта этого иона. Некоторые исследователи продолжают поиски белков, могущих участвовать в транспорте Са2+, тогда как другие считают, что этот процесс, в особенности начальное увеличение тока Ca2+, может быть опосредован изменением заряда мембраны. Обсуждается также роль метаболитов полифосфоинозитидов.

Г. Влияние кальцитриола на другие ткани.

О действии кальцитриола на иные ткани известно гораздо меньше. Его ядерные рецепторы выявлены в клетках кости, причем показано, что обусловленное кальцитриолом увеличение концентрации Са2+ сопряжено с синтезом РНК и белка. Однако генные продукы предположительно индуцируемые кальцитриолом не идентифицированы; не известен также механизм связи между кальцитриолом и ПТГ в их действии на клетки кости.

Любопытное указание на роль кальцитриола в клеточной дифференцировке получено в исследованиях, продемонстрировавших, что этот гормон способствует превращению клеток промиелоцитарной лейкемии в макрофаги. Поскольку, как предполагают, остеокласты либо являются родственными макрофагам клетками, либо непосредственно происходят из них, вполне вероятно, что кальцитриол учавствует в этом процессе, способствуя дифференцировке клеток кости.

V.2.4 Патофизиология

Рахит - заболевание детского возраста, которое характеризуется низким уровнем кальция и фосфата в плазме крови и нарушением минерализации костей, ведущим к деформациям скелета. Чаще всего рахит вызывается недостатком витамина D. Различают два типа наследственного витамин D-зависимого рахита. Тип I обусловлен аутосомным рецессивным геном, детерминирующим нарушение превращения 25-OH-D3 в кальцитриол. Тип II представляет собой аутосомный рецессивный дефект, при котором, по всей видимости, отсутствуют рецепторы кальцитриола.

У взрослых недостаточность витамина D вызывает остеомаляцию. При этом наблюдается снижение как всасывания кальция и фосфата, так и уровня этих ионов во ВЖ. Вследствие этого нарушается минерализация остеоида и формирование кости; такая недостаточная минерализация костей обусловливает их структурную слабость. В случаях, когда значительная часть паренхимы почек повреждена патологическим процессом или утрачена, образование кальцитриола снижается и соответственно уменьшается всасывание кальция. Последующая гипокальциемия вызывает компенсаторное увеличение секреции ПТГ, который воздействует на костную ткань таким образом, чтобы вызвать увеличение уровня Са2+ во ВЖ. Этому сопутствует интенсивное обновление костей, их структурные изменения; развиваются симптомы заболевания, известного как почечная остеодистрофия. Своевременное, на ранней стадии лечение витамином D позволяет ослабить проявление болезни.

V.3 Кальцитонин

V.3.1 Происхождение и структура

Кальцитонин (КТ) - пептид, состоящий из 32 аминокислотных остатков (рис.5); у человека он секретируется парафолликулярными К-клетками щитовидной железы (реже - паращитовидной железы или тимуса), а у других видов - аналогичными клетками, расположенными в ультимобранхиальных железах. Эти клетки происходят из нервного гребешка и в биологическом отношении родственны клеткам многих других эндокринных желез.

Рис. 5. Структура кальцитонина человека.

Для проявления биологической активности необходима вся молекула КТ целиком, включая 7-членную N-концевую петлю, образованную с помощью цистеинового мостика Существует огромная межвидовая вариабельность в аминокислотной последовательности кальцитонинов (в КТ человека и свиньи имеется только 14 общих аминокислотных остатков из 32), но несмотря на различия, они проявляют перекрестно-видовую биологическую активность (т.е. КТ одного вида животных биологически активен при введении животным других видов). Самый активный из природных КТ был выделен из лосося.

V.3.2 Регуляция секреции

Уровни секреции КТ и ПТГ связаны обратной зависимостью и регулируются концентрацией ионизированного кальция (и, вероятно, магния) во ВЖ. Секреция КТ возрастает пропорционально концентрации Са2+ при изменении последней в пределах от 9,5 до 15 мг %. Мощными стимуляторами секреции КТ служат глюкагон и пентагастрин, причем последний используется в качестве провоцирующего агента при диагносцирующем тестировании модулярной тиреокарциномы (злокачественное перерождение парафолликулярных К-клеток).

V.3.3 Механизм действия

История изучения КТ уникальна. За семь лет (1962-1968) КТ был открыт, выделен, секвенирован и синтезирован, но его роль в физиологии человека до сих пор не вполне ясна. Удаление щитовидной железы у животных не вызывает гиперкальциемии, а введение КТ здоровым испытуемым не приводит к заметному снижению уровня кальция в крови.

В тест-системах первичной мишенью КТ служит кость, где этот гормон тормозит резорбцию матрикса и тем самым снижает высвобождение кальция и фосфата. Этот эффект КТ не зависит от ПТГ. КТ увеличивает содержание сАМР в кости, влияя, по-видимому, на те клетки, которые не являются мишенями ПТГ.

Кт оказывает также значительный эффект на метаболизм фосфата. Он способствует входу фосфата в клетки кости и периостальную жидкость, снижая при этом выход кальция из костей в плазму крови. Этот вход фосфата может сопровождаться и входом кальция, судя по тому, что гипокальциемический эффект КТ зависит от фосфата. Такое действие КТ наряду с его способностью тормозить опосредованную остеокластами резорбцию костей позволяет объяснить эффективность применения данного гормона в борьбе с гиперкальциемией при раке.

V.3.4 Патофизиология

Клинические проявления недостаточности КТ не выявлены. Избыточность КТ наблюдается при медуллярной тиреокарциноме (МТК) - заболевании, которое может быть спорадическим или семейным. Уровень КТ при МТК нередко в тысячи раз превышает норму, однако это очень редко сопровождается гипокальциемией. Хотя биологическое значение такого возрастания уровня КТ не понятно, сам по себе этот факт важен в диагностическом отношении. Измерение КТ в плазме крови, причем часто на фоне провоцирующих секрецию агентов - кальция или пентагастрина, позволяет диагностировать это тяжелое заболевание на ранней стадии, когда оно поддается лечению.

Заключение

Итак, кальций внутри клетки играет ключевую роль в обеспечении многих важных физиологических функций, включая сокращение мышц, секрецию гормонов, активацию многих внутриклеточных процессов. Внутриклеточная концентрация его в цитоплазме клеток низкая - менее 10-6 моль/л, что, практически, в 1000 раз меньше, чем во внеклеточной жидкости (10-3 моль/л). Внеклеточный кальций участвует в обеспечении кальцием клетки, обеспечивает процессы минерализации костей, свертывания крови, влияет на проводимость и возбудимость мембран.

Регуляция кальциевого обмена достаточно сложный механизм. В него включены три гормона - паратиреотропный, кальцитонин и кальцитриол, которые действуют на три органа - кости, почки и кишечник. Координированные действия ПТГ и кальцитриола направлены на увеличение уровня Са2+ во внеклеточной жидкости при постоянстве или снижении уровня фосфата. Как только концентрация внеклеточного Са2+ возвращается к норме, секреция ПТГ по механизму обратной связи снижается. Увеличение концентрации Са2+ тормозит и образование кальцитриола (частично через снижение ПТГ), причем одновременно возрастает количество неактивных продуктов метаболизма этого соединения. Все это приводит к уменьшению всасывания кальция в кишечнике и снижению влияния ПТГ на почки и скелет. У некоторых животных при возрастании внеклеточного уровня Са2+ усиливается секреция кальцитонина (КТ) К-клетками щитовидной железы или ультимобранхиальными тельцами. У человека роль КТ в гомеостазе кальция (в норме) остается неясной; по некоторым данным, полученным in vitro, КТ может тормозить резорбцию костей.

Список литературы

1. Cohn D. V., Elting J. Biosynthesis, processing, and secretion of parathormone and secretory protein-1, Recent Prog. Horm. Res., 1983, 39, 181.


Подобные документы

  • Кальциевые потенциалы действия. Описание процессов активации и инактивации каналов. Вклад открытых калиевых каналов в реполяризацию. Результаты экспериментов на аксоне кальмара с фиксацией потенциала. Роль кальция и натрия в возбуждении мембраны клетки.

    контрольная работа [140,6 K], добавлен 26.10.2009

  • Знакомство с особенностями метаболизма кальция в организме. Роль кальция в формировании кратковременной памяти и обучающих навыков. Рассмотрение основных причин разрушения костей. Остеопороз как системное заболевание скелета. Анализ препаратов с кальцием.

    презентация [2,3 M], добавлен 21.11.2014

  • Строение мембран. Мембраны эритроцитов. Миелиновые мембраны. Мембраны хлоропластов. Внутренняя (цитоплазматическая) мембрана бактерий. Мембрана вирусов. Функции мембран. Транспорт через мембраны. Пассивный транспорт. Активный транспорт. Ca2+ –насос.

    реферат [18,2 K], добавлен 22.03.2002

  • Анализ роли кальция в обмене веществ, формировании костей, зубов, в процессах деления клеток и синтеза белка. Обзор регуляторов образования костной ткани, работы желез внутренней секреции, продуцирующих гормон, участвующий в регуляции кальциевого обмена.

    реферат [33,1 K], добавлен 14.12.2011

  • Живая протоплазма клеток организма. Состав гемоглобина крови. Элементы, которые содержатся в организме человека в относительно больших количествах. Процессы возбудимости и расслабления. Значение кальция в обмене веществ. Регуляция водного равновесия.

    презентация [14,1 M], добавлен 11.01.2014

  • Обзор особенностей структуры, биосинтеза, транспорта, рецепции, действия и метаболизма мужских половых гормонов андрогенов. Изучение полового поведения и агрессивности у самцов млекопитающих. Характеристика регуляции сперматогенеза и гомеостаза кальция.

    реферат [2,1 M], добавлен 20.04.2012

  • Клиническое применение фотодинамической терапии. Механизм действия фотосенсибилизаторов на клеточном уровне. Роль митохондрий и ионов кальция в фотодинамически индуцированном апоптозе. Участие сигнальных процессов и защитных белков в реакциях клеток.

    контрольная работа [1,1 M], добавлен 19.08.2015

  • Паратирин как основной гормон паращитовидных желез, анализ эффектов. Характеристика механизмов регуляции обмена кальция в организме. Знакомство с гормонами поджелудочной железы: инсулин, глюкагон, соматостатин. Рассмотрение схемы головного мозга человека.

    презентация [1,2 M], добавлен 08.01.2014

  • Химический состав и строение биологических мембран. Процессы трансформации и запасания энергии путем фотосинтеза и тканевого дыхания. Транспорт веществ через клеточные мембраны, способность генерировать биоэлектрические потенциалы и проводить возбуждение.

    реферат [223,3 K], добавлен 06.02.2015

  • Единственный витамин, действующий и как витамин, и как гормон. Влияние на клетки кишечника, почек и мышц. Гормональная регуляция обмена кальция и фосфора. Онкозаболевания, повышение иммунитета организма. Витамин Д и костно-мышечная система человека.

    презентация [1,1 M], добавлен 22.09.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.