Нервная регуляция поведения животных

Нервные клетки (нейроны), их специализация для передачи информации от одной клетки другой, сенсорные рецепторы. Мышцы и железы, сложные белковые молекулы, способные к сокращению и расслаблению. Нервная система у беспозвоночных и позвоночных животных.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 08.08.2009
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

30

Нервная регуляция поведения животных

Введение

Рассмотрим нервную регуляцию поведения, начиная с изложения ее общих принципов; затем дадим обзор типов нервной системы, встречающихся у животных, и проследим, как общая организация нервной системы соотносится с поведением.

1. Нервные клетки
Нервная система состоит из нервных клеток, называемых нейронами, которые специализированы для передачи информации от одной клетки другой. У каждого нейрона имеется тело с ядром и множество ветвящихся отростков. Обычно у клетки много коротких отростков, называемых дендритами, и один длинный - аксон. Дендриты образуют связи с близлежащими нейронами, а аксоны проводят сигналы на сравнительно большие расстояния.
Мембрана нейрона обычно поляризована. Иными словами, между ее наружной и внутренней поверхностью имеется электрический потенциал, который в неактивном нейроне называется потенциалом покоя и создает устойчивое состояние готовности, сходное с состоянием электрической батареи, накопившей энергию, которая высвобождается в случае надобности. Потенциал покоя обусловлен неодинаковыми концентрациями ионов К + внутри и снаружи клетки. Когда клетка находится в состоянии покоя, внутренний заряд отрицателен по отношению к наружному. При деполяризации клетки ее мембранный потенциал снижается по направлению к нулю. Когда же мембранный потенциал становится более отрицательным, говорят, что клетка «гиперполяризована».
Если потенциал покоя падает ниже определенного порогового значения, вдоль мембраны распространяется потенциал действия. Он длится недолго и вызывается закономерными изменениями относительных концентраций ионов Na+ и К+ по обе стороны мембраны. Потенциал действия проходит к концу аксона в виде электрической волны. Он всегда имеет одну и ту же амплитуду, обычно зависящую от диаметра аксона. По более крупным аксонам распространяются более высокие потенциалы действия, чем по более тонким аксонам.
После прохождения каждого потенциала возникает рефрактерный период, в течение которого мембрана восстанавливает свое нормальное ионное равновесие и нормальный потенциал покоя. Поскольку во время рефрактерного периода новый потенциал действия возникнуть не может, рефрактерные свойства аксона определяют максимальную частоту потенциалов действия.
Когда возникает потенциал действия, говорят, что нейрон «разряжается». Этот потенциал часто проявляется в виде пика на экране осциллографа, приспособленного для измерения мембранных потенциалов с помощью электродов, введенных в нервную ткань. Нейрон разряжается по закону «все или ничего», причем частота разряда ограничена рефрактерными свойствами нейрона и зависит от силы его стимуляции. Таким образом, сообщение, которое посылает нейрон, кодируется частотой.
Рис. 1 1.1. Одна нервная клеткa образует синаптический контакт с другой.
Мембраны аксонов и дендритов не образуют физических связей с другими нейронами, а очень близко подходят к ним в соединениях. называемых синапсами. Обычно в синапсе выделяются очень малые количества химических нейромедиаторов, которые влияют на потенциал покоя воспринимающей мембраны и, следовательно, на готовность воспринимающего нейрона генерировать потенциалы действия.
Нейроны могут быть стимулированы другими нейронами, повреждением или сенсорными рецепторами. Во всех случаях принцип один и тот же. Стимуляция вызывает изменение мембранного потенциала, и когда он достигает порогового уровня, генерируется потенциал действия. Теперь рассмотрим, как этот процесс происходит в сенсорных рецепторах.
2. Сенсорные рецепторы
Сенсорные рецепторы - это специализированные клетки, ответственные за преобразование и передачу информации. Как и обычные нервные клетки, они имеют дендриты и один или более аксонов. Рецепторы специализированы в соответствии с той энергией среды, на которую они реагируют. Например, фоторецепторы содержат пигменты, которые химически изменяются под действием света, и при такой стимуляции возникает электрический потенциал.
Рис. 2. Потенциал действия гигантского аксона кальмара.
Рис. 3. Распространение потенциала действия благодаря прохождению ионов К+ и Na + через мембрану аксона.
В механорецепторах происходят электрохимические изменения вследствие деформации мембраны клетки. Преобразование энергии обычно совершается в теле клетки, и для всех рецепторов характерно, что энергия окружающей среды превращается в градуальный электрический потенциал, называемый генераторным потенциалом, который обычно пропорционален интенсивности стимуляции рецептора. Когда генераторный потенциал достигает определенного порогового уровня, он запускает потенциал действия, который бежит поаксону рецепторной клетки. В этом заключается передаточная часть сенсорного процесса, причем информация обычно кодируется так, что, чем сильнее стимул, тем выше частота потенциалов действия. В отсутствие стимуляции генераторный потенциал постепенно снижается до уровня покоя. Когда он падает ниже порогового значения, потенциалы действия перестают генерироваться. При возобновлении стимуляции может возникнуть короткая задержка, пока генераторный потенциал возрастает от уровня покоя до порогового. При прерывистой стимуляции он ритмически повышается и понижается, генерируя залпы потенциалов действия. Однако, если частота прерывистой стимуляции достаточно высока, генераторный потенциал может не успевать снизиться в перерывах между стимулами, и тогда генерация потенциалов действия станет непрерывной. Этим объясняется то, что при очень высокой частоте прерывистой стимуляции мы не способны отличать ее от непрерывной. Этот феномен слияния мельканий присущ всем органам чувств, что наиболее очевидно в случае зрения. Тот факт, что быстро мелькающий свет вызывает такое же зрительное ощущение, что и постоянный, делает возможным телевидение и кино.
Потенциалы действия, передающие сенсорную информацию, ничем не отличаются от любых других нервных импульсов. Их величина определяется размерами аксона, а частота - силой стимуляции. Каждый тип рецепторов посылает импульсы прямо или опосредованно в определенный отдел мозга.
Рис. 4. Внеклеточное отведение нервных импульсов от нейрона в зрительной системе кошки. Обратите внимание на повышение частоты импульсации при включении стимула.
Испытываемые ощущения зависят не от типа рецептора или сообщений, которые он посылает, а от той части мозга, которая принимает эти сообщения. От головного мозга зависит также локализация ощущения. Так, например, при боли нервные волокна от кисти посылают сигналы в одну часть мозга, от предплечья - в другую и т.п. «Боль», испытываемая мозгом, локализуется в той части тела, откуда пришло сообщение. Это явление иллюстрируется сообщениями людей, перенесших ампутацию конечностей. которые жалуются на болевые ощущения, идущие, как им кажется, от удаленной конечности. Раздражение перерезанных нервных окончаний посылает импульсы в те части мозга, которые были связаны с ампутированной конечностью. Мозг истолковывает поступающие сигналы как идущие от утраченной конечности, и возникающие ощущения зависят от того, какой нерв раздражен. От такой фантомной конечности могут приходить также ощущения тепла, холода или прикосновения.
3. Мышцы и железы
Нервная система управляет поведением и до некоторой степени внутренней средой животного. Это управление производится приказами, отдаваемыми мышцам и железам.
В мышечных клетках имеются сложные белковые молекулы, способные к сокращению и расслаблению. Нервные окончания связаны с мышцами через синапсы, сходные с теми, какими соединены друг с другом нейроны. Придя в нервно-мышечное соединение, нервные импульсы вызывают электрические потенциалы, заставляющие мышцу сокращаться. Ее расслабление возникает при отсутствии стимуляции. Сокращаясь, мышца укорачивается, если этому не препятствует удерживание обоих ее концов. При расслаблении мышца может удлиниться, но только если ее растягивают другие мышцы или какая-нибудь внешняя сила. Мышцы обычно расположены антагонистическими, противодействующими друг другу группами. У некоторых беспозвоночных, например у кольчатых червей, мышечному сокращению может препятствовать гидростатическое давление, повышающееся при сжатии мускулатурой части полости тела. Это давление заставляет мышцы удлиняться при расслаблении. У других беспозвоночных, например членистоногих, мышцы находятся внутри жесткого наружного скелета, который образует необходимую систему рычагов для антагонистических групп мышц. У позвоночных животных такой системой служит внутренний скелет, а мышцы расположены так, что тянут его части в противоположные стороны. Одна группа мышц расслабляется, когда другая сокращается.
Рис. 5. Механическое сопряжение мышц и скелета в ноге насекомого. Мышцы заключены в скелет. А. Мышца а - сгибатель, мышца б - разгибатель. Б. Мышцы проходят через сустав; отношения обратные: мышца а - разгибатель, мышца б - сгибатель.
Рис. 6. Механическое сопряжение мышц и скелета в руке человека. Мышцы лежат снаружи скелета. Мышца а - сгибатель, мышца б - разгибатель.
Некоторые железы находятся под нервным контролем. У позвоночных к ним относятся, например, слюнные железы, мозговая часть надпочечников, вырабатывающая адреналин, и задняя доля гипофиза, в которой образуется несколько важных гормонов. Секреты этих желез могут влиять на поведение косвенно, воздействуя на внутреннее состояние животного, как будет показано в конце этой главы.
4. Соместетическая система
Головному мозгу животного важно получать информацию о состоянии организма. За положением конечностей, давлением на внутренние органы, температурой разных частей тел и многими другими свойствами следит центральная нервная система посредством внутренних рецепторов, расположенных в «стратегически важных» пунктах. Эта система, ответственная за телесные ощущения, называется соместетической.
В коже, скелетных мышцах1 и внутренних органах позвоночных находится множество типов рецепторов. Некоторые из них показаны на рис. 7. Беспозвоночные также имеют широкий диапазон рецепторов. Человек обладает пятью типами кожных рецепторов, вызывающих ощущения прикосновения, давления, тепла, холода и боли. Болевых рецепторов много, в 27 раз больше, чем Холодовых, и в 270 раз больше, чем тепловых. Некоторые кожные рецепторы отличаются быстрой сенсорной адаптацией. В ответ на ступенчатое изменение стимуляции частота нервных импульсов быстро повышается, а затем снижается до уровня покоя. Это значит, что рецептор служит хорошим индикатором изменений в силе стимуляции, но плохим индикатором ее абсолютного уровня. Это дает преимущества в тех случаях, когда от кожных рецепторов требуется быстрая информация об изменениях среды, которые могут подействовать на организм, например об изменениях температуры.
Рецепторы, расположенные глубоко в теле, выполняют множество разнообразных функций, в том числе отмечают изменение кровяного давления, напряжение мышц, количество соли в крови и т. д. Мы не осознаем непосредственно информацию, передаваемую большинством интероцепторов. Они не вызывают ощущений. Иногда их действия комбинируются, давая ощущения голода, жажды или тошноты, но это происходит вследствие сложных процессов в мозгу, которые не всегда связывают ощущение с определенными частями тела. Вероятно, это объясняется тем, что действие, которое должно быть произведено в ответ на голод и жажду, является гораздо менее непосредственным, чем ответ на прикосновение или поверхностное изменение температуры.
Ориентация животных по отношению к силе тяжести или внешним стимулам, подобным свету, отчасти зависит от информации о пространственном соотношении разных частей тела. У млекопитающих такая информация поступает от вестибулярной системы и рецепторов в суставах, мышцах и сухожилиях. Суставные рецепторы дают информацию об угловом положении каждого сустава. В сухожилиях млекопитающих заложены сухожильные рецепторные органы Гольджи, чувствительные к напряжению. Они посылают сигналы в спинной мозг и участвуют в простом рефлексе, который противодействует повышению мышечного напряжения.
В мышцах находятся мышечные веретена, чувствительные к изменениям длины мышцы. Они состоят из видоизмененных мышечных волокон, вокруг средней части которых закручено спиральное нервное окончание, называемое первичным окончанием. При удлинении мышцы веретено растягивается и посылает быстрые сигналы в спинной мозг. Встречаются также вторичные гроздевидные окончания, посылающие более медленные сигналы. Во многих веретенах млекопитающих имеются и первичные, и вторичные окончания, а в других - только первичные. Эти веретена участвуют в простом рефлексе, который противодействует удлинению мышцы.
Рис. 7. Некоторые рецепторы, лежащие в коже, и виды чувствительности, с которой они связаны.
Мышечные веретена заключены в фузиформную соединительную ткань, и их мышечные волокна называются интрафузальными в противоположность обычным экстрафузальным. Последние иннервируются альфа-мотонейронами, тела которых находятся в спинном мозгу. У млекопитающих интрафузальные волокна интернируются более мелкими гамма-мотонейронами, поддерживающими веретено в тоническом состоянии активности, благодаря чему для его активации требуется меньшее мышечное растяжение. Поскольку мышечные веретена расположены параллельно экстрафузальным волокнам, при сокращении мышцы они склонны к расслаблению. Гамма-нейроны могут приказать интрафузальным волокнам напрячься, в результате чего веретено сохранит состояние готовности.
У птиц мышечные веретена напоминают веретена млекопитающих и экстра- и интрафузальные волокна расположены параллельно. Но у ящерицы Tiliqua мышечные веретена, по-видимому, лежат последовательно с экстрафузальными волокнами. Рептилии и амфибии лишены гамма-мотонейронной системы; как интра-, так и экстрафузальные волокна связаны у них с альфа-мотонейронами. У рыб нет мышечных веретен, но в их волокнах находятся рецепторы, чувствительные к их угловой скорости.
У членистоногих имеется множество видов рецепторов растяжения; они делятся на два главных типа: 1) лежащие между элементами наружного скелета и реагирующие на вибрации в кутикуле; 2) прикрепленные к сухожилиям и сигнализирующие об изменениях растяжения и давления. Так, крабы обладают рецепторами, которые сигнализируют о положении и движении сустава, а у падальных мух сигналы рецепторов растяжения в кишке тормозят поедание пищи, когда кишка заполнена.
Рис. 8. Мышечное веретено млекопитающего.
Большинство биологов согласится с тем, что одним из главных эволюционных направлений в животном мире является совершенствование нервной системы: Таким образом, чтобы проследить эволюцию сенсорных процессов, по-видимому, разумно ориентироваться на сложность ее устройства. Однако мы располагаем лишь очень немногими прямыми данными о нервной системе в прошлом, так как мягкая нервная ткань редко сохраняется в окаменелом состоянии. Косвенные сведения иногда можно получить по остаткам скелета, в особенности по хорошо сохранившемуся черепу позвоночных. Большая часть наших выводов об эволюции нервной системы получена при изучении современных представителей типов животных, о которых известно, что они мало изменились за миллионы лет.
Рис. 9. Иннервация мышечного веретена.
5. Нервная система у беспозвоночных животных
Нервную систему можно определить как организованную совокупность нервных клеток и сопутствующих им клеток иных типов. Это определение включает в себя рецепторы, но не касается эффекторных органов, т. е. желез и мышц. У всех животных нервные клетки обладают общими чертами, по которым их легко отличить от других клеток. К таким чертам относятся градуальные электрические потенциалы в рецепторных клетках и синапсах и имеющие характер импульсов потенциалы действия, которые проводят информацию по аксонам. Эти свойства являются хотя и не универсальными, но типичными для описанных выше нейронов. Важные исключения из общего правила встречаются у некоторых примитивных животных и простейших.
Простейшие, будучи одноклеточными организмами, не имеют настоящей нервной системы. Хотя они обладают несомненными сенсорными способностями и зачаточным поведением, у них, по-видимому, нет специализированных внутриклеточных органелл, проводящих возбуждение. Вместо этого они сами, очевидно, организованы по принципам, аналогичным тем, какие управляют физиологией нейронов. Таким образом, простейшее животное сходно с рецепторной клеткой, снабженной эффекторными органеллами.
Рис. 10. Нервная сеть гидры.
Кишечнополостные - самые простые животные с истинной нервной системой. Их нервные клетки передают информацию друг другу посредством различимых нервных импульсов и синапсов. У кишечнополостных нет ЦНС, хотя иногда нервные клетки могут быть организованы в простые ганглии. Часто эти клетки образуют нервные сети, способные к диффузному проведению возбуждения по всему телу, как у гидры.
Гидра имеет рецепторные клетки, реагирующие на прикосновение и химические стимулы. У некоторых кишечнополостных встречаются также фоторецепторы. Рецепторы посылают информацию через синапсы другим нервным клеткам, но по сравнению с позвоночными нервные импульсы распространяются у них очень медленно. Нервная сеть координирует движения животного еще не совсем ясным способом. Движения совершаются медленно, и поведенческий репертуар весьма ограничен. Научение не обнаружено, если не считать формы простого привыкания. При многократных прикосновениях к ротовому отверстию гидры или актинии они сначала рефлекторно закрывают его, но при дальнейшей повторной стимуляции эта реакция постепенно исчезает. Известно, что это привыкание объясняется сенсорной адаптацией и обычно не рассматривается как истинное научение.
Среди кишечнополостных медузы обладают двумя важными особенностями более развитых нервных систем. У них имеются образования, которые, вероятно, можно было бы назвать первыми ганглиями и органами чувств. Эти ганглии лежат в краевых тельцах, иннервирующих фоторецепторы и статоцисты. Краевые тельца содержат четыре или более разных типов нейронов, связанных между собой. Статоцисты служат для определения направления силы тяжести. В них находится маленький округлый камешек, статолит, положение которого в полости этого органа регистрируется механорецепторами в стенке статоциста, как показано на рис. Эти рецепторы дают информацию о силе тяжести на основе распределения окружающей их не-нервной ткани, это делает статоцист настоящим органом чувств. Интересно, что такое довольно замысловатое устройство появляется одновременно с относительно сложным элементом нервной системы - ганглиями в краевых тельцах. Сочетание специализированных образований нервной системы и особых органов чувств - общая черта эволюции сенсорных процессов.
Дальнейший прогресс в организации нервной системы прослеживается у плоских червей. В отличие от кишечнополостных, но подобно большинству других беспозвоночных плоские черви обладают двусторонней симметрией, имеют голову и хвост. Рецепторы преимущественно сосредоточены в области головы, а не рассеяны по всему телу. Нервная система тоже сконцентрирована в голове в форме переднего, или головного, ганглия, который представляет собой простой мозг. От головного ганглия вдоль тела идут два нервных ствола, соединенные друг с другом нервами в виде лестницы. От нервных стволов ко всем частям тела отходят в виде сети нервные волокна. Головной ганглий и нервные стволы образуют вместе ЦНС, а сеть из нервных волокон составляет периферическую нервную систему. Такое разделение присуще большинству беспозвоночных и всем позвоночным, а у плоских червей проявляется в самой примитивной форме. Как правило, в ЦНС сосредоточена большая часть тел эффекторных нейронов, а в периферической нервной системе находятся рецепторы.
У плоских червей, например у планарий, сенсорные клетки на голове реагируют на прикосновение, температуру и химический состав воды. У планарий имеются также два глаза, представляющие собой скопление фоторецепторов. Сигналы от сенсорных клеток передаются в головной ганглий. По нервным стволам импульсы проводятся быстрее, чем в нервных сетях, в связи с чем поведение у плоских червей более разнообразно и определенно, чем у кишечнополостных. Они быстро обнаруживают пищу и приближаются к ней, избегают сильного света и вредных химических веществ и, по-видимому, способны к зачаточному научению. В простом Т-образном лабиринте планарии научаются сворачивать предпочтительно в одну сторону, чтобы избежать прикосновения палочки. Имеются также данные о выработанных реакциях на свет, но сведения эти противоречивы.
Более развитые беспозвоночные организованы по общему плану, в основе которого лежит строение аннелид, или кольчатых червей. Эти черви обладают довольно сложной нервной системой, типичная формула которой представлена у дождевых червей рода Lumbricus. В области головы находится пара надглоточных ганглиев, которые соединены с парой ганглиев, лежащих под глоткой. Эти подглоточные ганглии являются первыми в цепочке ганглиев центрального нервного ствола - по одному в каждом сегменте червя. Многие аннелиды обладают системой гигантских волокон, содержащих аксоны большого диаметра с высокой скоростью проведения, которые участвуют в реакциях быстрого избегания опасности. Рецепторы кольчатых червей большей частью представлены отдельными элементами хемо-, механо- и фоторецепторами. У некоторых видов появляются настоящие органы чувств, например вкусовые почки в коже Lumbricus и глаза у свободноплавающей полихеты Alciope. Аннелиды обладают весьма ограниченным поведенческим репертуаром и способны лишь к зачаточному научению.
У членистоногих общий план строения нервной системы сходен с наблюдающимся у аннелид и включает центральную нервную цепочку с парой ганглиев в каждом сегменте и поперечными связями, называемыми комиссурами. У них имеется дорсальный передний мозг с окологлоточными связями, идущими к центральной цепочке. У примитивных членистоногих ясно различимо сегментарное строение, но у более развитых форм ганглии в значительной степени слиты друг с другом. Это слияние ганглиев характерно для эволюции нервной системы беспозвоночных и связано с возрастающей сложностью их сенсорной системы и поведения. Многие членистоногие, в том числе креветки, омары, скорпионы и некоторые насекомые, обладают системой гигантских волокон. Сигналы, проходящие по ним, обычно вызывают быстрый удар хвостом или прыжок, которые у этих животных составляют элемент поведения избегания.
У членистоногих больше разнообразных типов рецепторов, чем у любой другой группы, в том числе у позвоночных. В табл. 1 приведены эти основные типы. Тела сенсорных нейронов в таких рецепторах лежат близ чувствительной поверхности и не сгруппированы в сенсорные ганглии. Как показано на рис. 15, у одних членистоногих сенсорных нейронов мало, у других - много.
Рис. 15. Примеры органов чувств у членистоногих. А. Обонятельная пластинка шершня; Б. Обонятельный конус шершня; В. Волосок на антенне бабочки.
Ракообразным свойственно много типов механорецепторов, в том числе статоцисты. Особыми внутренними механорецепторами являются хордотоналъные органы, которые обычно выполняют функции проприоцепторов, отвечающих на механическое смещение. Они могут также участвовать в определении направления ветра, скорости течения воды, скорости полета, направления силы тяжести и разных типов вибраций. Механорецепторы обнаружены также в связках и мышцах, откуда они посылают информацию о положении конечностей и движении.
Особый интерес представляют фоторецепторы членистоногих, один из которых показан на рис. 17. Вообще членистоногие отличаются сложностью нервной системы и многими направлениями ее эволюционного развития, в том числе по степенным переходом от сегментарного строения, свойственного кольчатым червям, к крупному мозгу, образованному многими слившимися ганглиями. Они обладают удивительно богатым поведенческим репертуаром. Некоторые виды, например медоносная пчела, по сложности поведения.
Рис. 16. Хордотональный механорецептор насекомого
Таблица 1. Некоторые типы кутикулярных рецепторов членистоногих

Структура

Морфологическое строение

Функция

Трихоидная сенсилла

Сенсорные волоски и щетинки

Механорецепторы, проприоцепторы, звук, контактная хеморецепция, влажность, обонятельная в разных местах

Хетоидная сенсилла

Сенсорные шипики и щетинки

Механорецепторы, проприоцепторы

Лопастевидная сенсилла

Сенсорные чешуйки

Механорецепторы

Базиконическая сенсилла

Короткие толстые волоски; малое или большое число нейронов

Механорецепторы, контактные хеморецепторы

Целоконическая сенсилла

Погруженные кутикулярные конусы

Обонятельные рецепторы или рецепторы влажности

Ампуловидная сенсилла

Сенсорные трубочки

Обонятельные рецепторы

Колоколовидная сенсилла

Кутикулярные бугорки

Дирекциональные измерители натяжения

Плакоидная сенсилла

Кутикулярные и пористые пластинки

Неизвестна; во множестве на антеннах пчел

Рис. 17. Сложный глаз мухи. Каждый глаз состоит из множества омматидиев. Каждый омматидий связан с нервной клеткой, которая сигнализирует об интенсивности света в том направлении, куда обращен омматидий. Одиночный омматидий не создает образа, но, поскольку смежные омматидий обращены в слегка различных направлениях, ЦНС получает информацию о распределении интенсивности света во всем поле зрения.
Рис. 18. Примеры нервной системы моллюсков. Морское ушко обладает лестничной системой. У наземной улитки произошла значительная цефализация, а осьминог обладает самым высокоразвитым головным мозгом среди всех исследованных беспозвоночных.
Эти эволюционные тенденции еще заметнее у моллюсков, которые достигли самого высокого уровня развития ЦНС среди всех беспозвоночных. Так. брюхоногие моллюски отличаются огромным диапазоном сложности в организации нервной системы. Например, у Haliotis она сходна с системой кольчатых червей, а у сухопутной улитки произошло значительное слияние ганглиев. Наивысшего развития нервная система достигла у головоногих моллюсков. Они охотятся главным образом при помощи зрения и способны к сложному поведению, в том числе к опознанию сложных предметов и быстрому научению.
Среди головоногих, пожалуй, лучше всего изучен осьминог. Его головной мозг содержит около миллионов нервных клеток и состоит приблизительно из 30 разных долей, многие из которых обладают собственными функциями. Больше половины нервной ткани мозга составляют зрительные доли. Они соединены с парой крупных глаз, наиболее развитых среди беспозвоночных и соперничающих с глазами позвоночных.
По сложности поведения между моллюсками имеются большие различия, но наиболее продвинуты с этой точки зрения головоногие. Эта группа тщательно изучена исследователями поведения в связи с поразительной способностью к научению.
6. Нервная система позвоночных
Организация нервной системы у позвоночных иная, чем у беспозвоночных, хотя и не всегда более сложная. В эмбриогенезе позвоночных ЦНС развивается из дорсальной нервной трубки, образуя головной мозг и одиночный спинной тяж в отличие от характерных для беспозвоночных двойных брюшных нервных стволов.
Эволюция головного мозга позвоночных нашла отражение в эмбриональном развитии ЦНС отдельной особи.
Ход эмбриогенеза головного мозга удивительно постоянен у всех позвоночных. Как показано на рис. 19, в процессе развития нервная трубка образует три различные части: 1) прозэнцефалон, 2) мезэнцефалон и 3) ромбэнцефалон. Эти три полых пузыря традиционно связывают соответственно с обонятельной, зрительной и слуховой чувствительностью. Каждый главный отдел образует по вторичному выросту - соответственно телэнцефалон, зрительную покрышку и мозжечок. ЦНС состоит из головного и спинного мозга, прикрытых костями черепа и позвоночника. Периферическая нервная система делится в первую очередь на центростремительную и центробежную относительно ЦНС. Соматическая нервная система передает сенсорную информацию ЦНС и приказы от ЦНС к скелетным мышцам, отвечающим за движения тела. Автономная нервная система образует два типа иннервации внутренних органов, оказывающие противоположные воздействия. Ее симпатические пути выполняют экстренные функции и активны при напряжении или эмоции. Они вызывают, в частности, ускорение сокращений сердца, расширение ведущих к легким воздухоносных путей, снижение перистальтики кишечника и увеличение кровоснабжения мозга и мышц. Парасимпатические пути выполняют восстановительную функцию, приводя кровоснабжение к норме и противодействуя результатам симпатической активности. Более подробно работа автономной нервной системы описана в гл. 28.
Следует сказать, что большая часть интересных эволюционных тенденций у позвоночных касается ЦНС. Изменения в периферической нервной системе больше отражают анатомию конкретного животного и его приспособления к особой среде обитания, чем какой-либо эволюционный «прогресс». Более экологический подход к органам чувств будет обсуждаться в гл. 13.
Рис. 19. Эмбриональное развитие головного мозга человека; показаны главные отделы мозга.
Две важные эволюционные тенденции, о которых имеет смысл сказать здесь, заключаются в увеличении размеров головного мозга и усилении контроля поведения высшими мозговыми центрами.
Величина головного мозга у разных позвоночных очень различна. Однако прямое сравнение его размеров не позволяет делать выводов об интеллекте или о роли ЦНС в управлении поведением. У более крупных животных головной мозг обычно крупнее, поскольку, чем крупнее тело, тем больше нервных волокон входит в мозг и выходит из него для управления мышцами. Поэтому в качестве мерила надо пользоваться соотношением величины мозга и всего тела. Если мы примем во внимание разницу в общих размерах тела, то увидим, что размер головного мозга у рыб, амфибий и рептилий примерно одинаков.
Мозг птиц и млекопитающих обычно значительно крупнее. У грызунов и насекомоядных он сравнительно мал, у копытных и хищных гораздо больше. Самый крупный мозг у приматов и морских млекопитающих. У низших приматов мозг мало отличается от мозга других млекопитающих, но у обезьян он крупнее, чем у каких-либо других наземных представителей этого класса. Еще более крупным по отношению к телу мозгом обладают дельфины и киты. Но сделать какие-либо выводы, сравнивая животных, специализированных для жизни на суше и море, трудно. Человеческий мозг в три раза крупнее, чем можно было бы ожидать для другого примата таких же размеров. Однако и среди людей существует значительная изменчивость по этому признаку. Мозг нормального человека может иметь объем от 0 до почти 2000 см3. Норма для современного Homo sapiens составляет около 0 см3. Интересно, что черепа древних людей, живших около 45-75 тыс. лет тому назад, несколько более вместительны, чем у современного человека.
Рис. 20. Одно полушарие головного мозга крысы; видны отделы переднего, среднего и заднего мозга.
Величина головного мозга приблизительно указывает на число нервных клеток в нем. Более крупный мозг состоит из большего числа нервных клеток, которые, как правило, крупнее и расположены менее компактно, чем в меньшем по размеру мозге. В крупном мозге у каждого нейрона обычно более сложная система дендритов, и он может взаимодействовать с большим числом других нейронов. Возникает вопрос: можем ли мы, сравнивая мозг разных позвоночных с учетом величины их тела, говорить об определенной эволюционной тенденции, направленной на увеличение его размеров, что подразумевает более полный и более сложный контроль поведения?
Подобно другим системам органов, мозг развивался как приспособление к определенной экологической нише. Животные со специализированными сенсорными системами и формами поведения должны иметь соответственно специализированные механизмы мозга. Вопреки распространенному мнению нет равномерного увеличения размеров мозга при переходе от рыб к пресмыкающимся и далее к птицам и млекопитающим. У некоторых рыб мозг крупнее, чем у пресмыкающихся такой же массы, а у ряда птиц больше, чем у некоторых млекопитающих.
Набрасывая схему эволюции головного мозга и интеллекта, мы не находим постепенного перехода от примитивных к высшим животным. Джерисон вычислил коэффициент цефализации, относя размеры мозга каждого вида к размерам, предполагаемым для среднего млекопитающего с такой же массой тела. Эта мера выявляет ряд существенных различий между разными группами, но встречаются и аномалии. Так, некоторые мелкие обезьяны стоят по этому параметру гораздо выше других приматов. Если же размеры головного мозга относить не к размерам тела, а к размерам продолговатого мозга, то мозг крупных человекообразных обезьян окажется больше. Коэффициенты цефализации ископаемых гоминид показывают, что за последние 3 млн. лет головной мозг увеличился.
7. Гормоны позвоночных животных
У позвоночных имеется параллельная система обратных связей и управления поведением - эндокринная система. Гормоны представляют собой химические вещества, которые продуцируются эндокринными железами и выделяются в кровь. Каждый из них обладает своими особыми функциями и часто действует на специфические органы-мишени. Секреция гормонов эндокринными железами происходит только в определенные моменты; она управляется прямым нервным воздействием или другими гормонами. Обычно уровень гормона в крови регулируется по принципу отрицательной обратной связи. Гормоны вырабатываются в очень малых количествах, хотя продолжительность жизни большинства их молекул в крови составляет меньше часа. Для того чтобы их присутствие вызывало необходимый эффект, они должны выделяться непрерывно.
Рис. 21. Вверху. Коэффициент цефализации для разных млекопитающих: Н- насекомоядные; Г грызуны; К копытные; X хищники: /У- полуобезьяны; О обезьяны: Ч- человек. Внизу. Коэффициент цефализации у гоминид, живших в разные эпохи: A Australopithecus africanus; Кен -череп Homo из Кении: Я Homo erectus с Явы: Пек- Нота credits из Пекина; С современный человек.
Важнейшие гормоны, влияющие на поведение, перечислены в табл. 2. Некоторые из них, например фолликулостимулирующий и лютеинизирующий гормоны, действуют опосредованно, активируя другие эндокринные железы. Другие гормоны оказывают более прямое действие. Гормоны влияют на поведение тремя главными способами: 1) действуя на эффекторы, т. е. особые структуры, участвующие в поведении; 2) влияя на периферические рецепторы и видоизменяя таким образом поступление сигналов к головному мозгу; 3) действуя непосредственно на мозг.
Примером первого типа воздействия может служить брачное поведение африканской шпорцевой лягушки. Во время брачного сезона у самца на передних конечностях образуются особые подушечки. Они состоят из плотной массы сидящих в коже мелких шипиков, которые позволяют самцу при спаривании удерживать гладкую и скользкую кожу тазовой области самки. Подушечки появляются благодаря гормону тестостерону, который в нужное время выделяется из семенников. В конце брачного сезона образование тестостерона прекращается и подушечки исчезают.

Источник

Гормон

Главное действие

Почка

Ангиотензин

Стимулирует сужение сосудов и вызывает повышение кровяного давления. Стимулирует жажду

Семенники

Тестостерон

Стимулирует развитие и сохранение вторичных половых признаков и полового поведения самцов

Яичники

Эстроген

Стимулирует развитие и сохранение вторичных половых признаков и полового поведения самок

Прогестерон

Стимулирует вторичные половые признаки и половое поведение самок и поддерживает беременность

Мозговое вещество надпочечников

Адреналин

Стимулирует реакции «борьбы» или «бегства»

Передняя

доля гипофиза

Фолликулостимулирующий гормон

Стимулирует рост фолликулов в яичниках и семявыносящих канальцев в семенниках

Лютеинизирующий гормон

Стимулирует секрецию полового гормона яичниками и семенниками

Пролактин

Стимулирует секрецию молока молочными железами

Задняя доля гипофиза

Окситоцин

Стимулирует выделение молока молочными железами и сокращение мышц матки

Рис. 27. Гормоны, pегулирующие вскармливание молоком.
Примером влияния гормонов на периферические рецепторы служит родительское поведение голубей. Голуби и голубки кормят своих птенцов «голубиным молоком», образующимся в выстилке зоба. Это вещество отрыгивается в ответ на выпрашивание пищи птенцами. Его образование управляется гормоном пролактином. Лермен показал, что для индуцирования кормления необходима сенсорная стимуляция увеличившегося зоба. При ослаблении чувствительности зоба местной анестезией такое родительское поведение ослабевает. Таким образом, пролактин вызывает у родителей реакцию кормления, действуя на зоб.
Прямое действие гормонов на головной мозг - важнейший способ их влияния на поведение. Впервые оно было продемонстрировано путем введения мельчайших количеств синтетического эстрогена в определенные участки головного мозга кошек-самок. Это стимулировало половое поведение, даже если уровень эстрогенов в крови был гораздо ниже того, какой требуется для такого поведения в норме.
Гормональное влияние на поведение бывает двух типов: медленное и длительное или быстродействующее и кратковременное. В качестве примера рассмотрим кормление молоком у коз. Лютеинизирующий гормон стимулирует выработку яичниками эстрогенов и прогестерона, которые отвечают за развитие молочных желез при половом созревании и поддерживают их в состоянии готовности к секреции молока. Эту секрецию стимулирует во время беременности повышение уровня пролактина. Когда детеныш сосет, механическая стимуляция побуждает гипоталамус в головном мозгу запускать выделение окситоцина из задней доли гипофиза. Повышение уровня окситоцина в крови запускает выделение молока. Такой ответ происходит очень быстро, и детеныш обычно получает молоко в первые 40 секунд сосания.

Подобные документы

  • Предпосылки для возникновения нервной системы, сущность и этапы ее филогенеза. Образование единой нейрогуморальной регуляции при ведущей роли нервной системы. Функции и задачи нервной системы. Нервная система беспозвоночных и позвоночных животных.

    реферат [24,9 K], добавлен 06.11.2010

  • Открытие гидры Антини ван Левенгуком. Наблюдения за поведением и размножением (почкованием) животного. Клеточный состав тела гидры. Эпителиально-мускульные, интерстициальные и железистые клетки. Нервные клетки и нервная система. Раздражимость и рефлексы.

    презентация [1,1 M], добавлен 13.12.2010

  • Нервная система: анатомическое строение, отделы и виды, нервные связи, формирование энергии передачи информации. Переработка информации в центральной нервной системе. Понятие "сенсорная система". Локализация, особенности, свойства терморегуляторов.

    реферат [270,8 K], добавлен 15.08.2014

  • Сущность понятия "гипоталамус". Регуляция вегетативных функций в гипоталамусе. Нейроны гипоталамуса, высвобождающие гормоны. Секреция релизинг-фактора гонадотропина. Распределение GnRH-секретирующих клеток. Циркадные ритмы в жизнедеятельности животных.

    реферат [13,3 K], добавлен 27.10.2009

  • Основные черты нейрона; нейрофибрилы и секторные нейроны. Значения нервной ткани, нервные волокна. Регенерация нервных волокон, рецептор нервных окончаний, классификация нейронов по функциям. Анатомическое строение нейрона, вегетативная нервная система.

    реферат [25,4 K], добавлен 11.06.2010

  • Введение в анатомию человека. Кости и их соединения. Мышцы. Внутренние органы. Сердечно-сосудистая система. Нервная система. Центральная нервная система. Периферическая нервная система. Словарь анатомических терминов.

    курс лекций [141,1 K], добавлен 02.04.2007

  • Особенности строения, физиологии и химического состава клетки. Типы и свойства тканей. Характеристика системы органов - частей организма, имеющих только их свойственные форму и строение и выполняющих определенную функцию. Регуляция функций в организме.

    реферат [21,9 K], добавлен 03.07.2010

  • Координация нервной системой деятельности клеток, тканей и органов. Регуляция функций организма, взаимодействие его с окружающей средой. Вегетативная, соматическая (сенсорная, моторная) и центральная нервная система. Строение нервных клеток, рефлексы.

    реферат [27,6 K], добавлен 13.06.2009

  • Репликативный синтез ДНК и пролиферация, особенности организации хроматина в нервных клетках. Репарация (система "ремонта") ДНК в мозге животных. Рибонуклеиновые кислоты мозга. Экспрессия генов в нервной системе позвоночных. Онтогенез мозга животных.

    курсовая работа [575,0 K], добавлен 26.08.2009

  • Сенсорные и моторные клетки в ганглиях пиявки. Взаимодействие чувствительных и двигательных нейронов. Мембранный потенциал, пресинаптическое ингибирование и освобождение медиатора. Повторная активность и блок проведения сигнала, высшие уровни интеграции.

    реферат [15,2 K], добавлен 26.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.