ДНК-полимеразы
ДНК как первичный носитель генетической информации. Биосинтез, репликация и катализаторы. Реакция полимеризации нуклеиновых кислот. Классификация ДНК-полимераз. Эукариотические ДНК и ДНК-полимеразы археев. Скользящие зажимы как факторы процессивности.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 21.06.2009 |
Размер файла | 814,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1. Биосинтез ДНК. Общие определения
ДНК, служащая первичным носителем генетической информации, является линейным или кольцевым гетерополимером, состоящим из 4 дезоксирибонуклеотидов (dA, dT, dG и dC), соединенных (3'5')-фосфодиэфирными связями. ДНК чаще всего находится в форме двойной спирали Крика-Уотсона (двунитевая ДНК, или днДНК), в которой две нити спарены друг с другом водородными связями с соблюдением правила комплементарности (остатки А спарены с Т, а остатки G c C). Лишь у некоторых фагов и эукариотических вирусов геномная ДНК может находиться в однонитевом состоянии. Однако участки однонитевой онДНК (бреши) могут возникать в процессах репарации и рекомбинации в днДНК.
Под биосинтезом ДНК в широком смысле слова понимается ферментативное удлинение нити ДНК хотя бы на один нуклеотидный остаток с использованием в качестве субстратов дезоксирибонуклеотид-5'-трифосфатов (5'-дНТФ). Соединение друг с другом сегментов нити онДНК, катализируемое ДНК-лигазами, также вызывает удлинение нити, но не сопровождается синтезом ДНК de novo. Синтез нитей ДНК идет в направлении от 5'-конца к 3'-концу, т.е. добавление каждого нового нуклеотида увеличивает длину вновь синтезируемой нити на один остаток со стороны 3'-конца (рис. 1.1, А).
Синтез ДНК катализируется ферментами, относящимися к общему классу нуклеотидилтрансфераз, которые вызывают перенос нуклеотида на акцепторную ОН-группу. Большинство ферментов, катализирующих биосинтез ДНК, являются матричными ферментами: они копируют исходный «родительский» полинуклеотид (матрицу) с образованием комплементарной матрице нити вновь синтезированной ДНК. Исключение составляют терминальные дезоксинуклеотидилтрансферазы, нематричным образом присоединяющие нуклеотид к 3'-концу даже изолированной онДНК. Ферменты, использующие в качестве матрицы нить ДНК, называются ДНК-полимеразами. Ферменты, использующие для синтеза нити ДНК матрицу РНК, называются РНК-зависимыми ДНК-полимеразами, или обратными транскриптазами. Обратные транскриптазы используются для синтеза ДНК ретровирусами и параретровирусами и подвижными ретроэлементами в геномах преимущественно эукариотов. К обратным транскриптазам относится и теломераза, участвующая в сохранение терминальных областей линейных эукариотических хромосом (см. гл. 00). Все эти полимеразы во время синтеза ДНК перемещаются по матричной нити полинуклеотидов в направлении 3'5'. Важной характеристикой ферментов синтеза ДНК является процессивность - способность фермента последовательно осуществлять многие каталитические акты без отрыва от матрицы после каждого из них. Степень процессивности определяется числом нуклеотидных остатков, включенных в растущую цепь за всю серию таких непрерывных актов полимеризации. Полимеразы, отрывающиеся от матрицы после каждого акта включения нуклеотида в растущую цепь, называются дистрибутивными.
Механизм реакции полимеризации нуклеиновых кислот является общим для всех ДНК-полимераз, обратных транскриптаз и РНК-полимераз и состоит в нуклеофильном замещении типа SN2 ???-пирофосфатной части 5'-(д)НТФ 3'-атомом кислорода 3'-концевого остатка РНК или ДНК (рис. 1.1, А). В результате этой реакции новый остаток (д)НМФ присоединяется к 3'-концу цепи и освобождается неорганический пирофосфат PPi. В промежуточном (переходном) состоянии в этой реакции атом Р ?-фосфатной группы НТФ имеет пентаковалентную конфигурацию (рис. 1В). Он расположен в центре треугольной бипирамиды, в экваториальной плоскости, в которой находится треугольник атомов О-фосфатной группы, а в апикальных положениях - 3'-атом О- растущей цепи ДНК и атом O-связи дНТФ. Образование такой структуры обеспечивается 2 катионами Mg2+. Катион. А понижает рКa у 3'-ОН-группы и превращает ее в группу 3'-O-, а также стабилизирует угол 90o между связью 3'-O- - P и экваториальной плоскостью. Катион В также стабилизирует геометрию переходного состояния и способствует уходу пирофосфатного продукта. Оба катиона Mg2+ координационно связаны с карбоксильными группами остатков асп или глу в полимеразе.
Рисунок 1.1 - А. Элементарная стадия в процессе роста цепи ДНК, катализируемой ДНК-полимеразами и обратными транскриптазами (Bn-1, Bn и Bn+1 - основания n-1, n и n+1, считая с 5'-конца растущей линейной нити ДНК). В. Промежуточное (переходное) состояние в механизме ДНК-полимеразной реакции, катализируемой двумя катионами Mg2+ (нумерация остатков аспарагиновой кислоты D для ДНК-полимеразы I Escherichia coli)
Выравнивание первичных аминокислотных последовательностей, предсказанных на основании данных секвенирования структурных генов, позволил разбить все известные ДНК-полимеразы на 6 больших гомологических семейств. Три из этих семейств содержат как прокариотические, так и эукариотические ДНК-полимеразы. Семейство С встречается только у эубактерий, семейство D - только у археев и семейство Х - только у эукариотов (табл. 1.1).
Таблица 1.1 - Классификация ДНК-полимераз
Семейство |
ДНК-полимеразы |
Консервативные области* |
Функции |
||
А |
С |
||||
А |
ДНК-полимеразы I бактерий, ДНК-полимераза фага Т7 |
DhhxEh |
hHDЕhhxЕ |
Репарация, репликация |
|
В |
ДНК-полимераза II E. coli, ДНК-полимеразы фагов Т4 и RB69, ДНК-полимеразы , , и эукариотов, ДНК-полимераы В археев |
DххSLIPS |
YGDTDS |
Репликация, репарация |
|
С |
ДНК-полимеразы III бактерий |
Репликация, репарация |
|||
D |
ДНК-полимеразы D эуриархеев |
Репликация, репарация |
|||
X |
ДНК-полимеразы , , и эукариотов |
GHDVDFLLT |
RRVDLV |
Репарация |
|
Y |
ДНК-полимеразы IV и V E. coli, ДНК-полимеразы и REV1 эукариотов |
Синтез через повреждения ДНК |
Несмотря на низкую степень гомологии между ДНК-полимеразами из разных семейств, они содержат во многих случаях одни и те же группы консервативных аминокислотных остатков (области А и С), в которые входят два или чаще три кислых остатка аспарагиновой и глутаминовой кислот, необходимые для связывания двух катионов 2-валентных металлов, которые участвуют в каталитическом механизме, представленном на рис. 1.1А. Сайт-направленный мутагенез подтвердил, что эти консервативные кислые остатки абсолютно необходимы для полимеразной активности. Такие же сочетания существенных кислых аминокислотных остатков содержатся и в активных центрах обратных транскриптаз и РНК-полимераз. Таким образом, механизм катализа с участием 2 катионов Mg2+, координируемых остатками асп и глу, является универсальным для ферментов биосинтеза полинуклеотидов ДНК и РНК.
Кроме полимеразной активности, многие ДНК-полимеразы обладают экзонуклеазными активностями. Большинство ДНК-полимераз имеет (3'5')-экзонуклеазную активность, которая удаляет из вновь синтезированной нити последний включенный остаток на 3'-конце, укорачивая растущую цепь на один нуклеотид и освобождая 5'-дНМФ. Эта реакция очень специфична и требует присутствия 3'-ОН-группы в дезоксирибозе последнего нуклеотида цепи ДНК. Она идет наиболее эффективно, если последний включенный нуклеотид является «ошибочным» и не комплементарен соответствующему основанию матрицы. Такая реакция используется для исправления (коррекции) ошибок, допущенных ДНК-полимеразой в процессе синтеза ДНК (гл. 00).
Механизм (3'5')-экзонуклеазной активности формально аналогичен механизму самой полимеразной реакции и состоит в нуклеофильной атаке гидроксильного иона ОН- на (3',5')-фосфодиэфирную связь при участии двух катионов 2-валентных металлов (Mg2+, Mn2+ или Zn2+). Эти катионы связываются с консервативными кислыми остатками асп (или глу) в экзонуклеазном активном центре (рис. 1.2). Молекула воды, координационно связанная с катионом металла А, образует атакующий анион ОН-, который занимает правильное положение относительно мишенной фосфодиэфирной связи в переходном комплексе. В этом комплексе атом Р расщепляемой связи находится в центре треугольной бипирамиды, апикальные положения которой занимают атакующий гидроксильный анион и 3'-ОН-группа предпоследнего нуклеотида растущей нити ДНК. Катион металла В стабилизирует уходящую 3'-OH-группу этого остатка и помогает установлению правильных углов связей О-Р-О в симметричном переходном комплексе.
Рисунок 1.2 - Переходное состояние в (3'5')-экзонуклеазной реакции, катализируемой ДНК-полимеразой I E. coli
Главными лигандами двух катионов Mg2+ являются остатки D424 и D501. Роль карбоксильной группы Е357 как лиганда катиона металла является менее существенной, но этот остаток необходим для экзонуклеазной активности. Расположенный рядом с активным центром остаток Y497 может участвовать в установлении правильного положения субстрата.
Гораздо реже встречается (5'3')-экзонуклеазная активность, которая характерна, например, для бактериальных ДНК-полимераз I. Они обладают уникальной способностью начинать синтез ДНК in vitro на однонитевом разрыве (ОР, или «ник» на лабораторном жаргоне) в днДНК, имеющем смежные свободные 3'-гидроксильный и 5'-фосфатный концы, и используют 3'-ОН-конец в месте разрыва для удлинения нити ДНК. По мере синтеза нового сегмента ДНК он вытесняет гомологичный 5'-сегмент нити из дуплекса («синтез ДНК со смещением нити», displacement synthesis). Смещенный сегмент ДНК последовательно разрушается под действием (5'3')-экзонуклеазной активности полимеразы (рис. 1.4). В процессе деградации освобождаются преимущественно (в 80% случаев) 5'-мононуклеотиды - продукты гидролиза ближайшей к 5'-концу фосфодиэфирной связи. Однако могут освобождаться и олигонуклеотиды, т.к. фермент способен расщеплять фосфодиэфирные связи на расстоянии до 10 н. от 5'-фосфатного конца в области ОР. Строго говоря, (5'3')-экзонуклеазу ДНК-полимераз следует называть 5'-нуклеазой. Эта активность может гидролизовать не только нить ДНК, но и РНК, спаренную с комплементарной нитью ДНК, т.е. действовать как РНКаза Н. 5'-нуклеазная активность ДНК-полимераз используется в процессах репарации и для удаления праймеров РНК из отстающей нити (гл. 3). При согласованном синтезе-расщеплении ДНК-полимеразами I in vitro происходит простое перемещение ОР по нити ДНК в направлении 5'3' (рис. 1.3). Этот феномен называется «переносом ОР» (nick translation). Он часто используется для введения радиоактивной метки в днДНК in vitro.
Рисунок 1.3 - Схема процесса переноса ОР, катализируемого ДНК-полимеразой I, I - полимеразный домен ДНК-полимеразы, II - 5'-нуклеазный домен
В бактериальных и фаговых 5'-экзонуклеазах обнаружены 9 консервативных кислых аминокислотных остатков асп или глу. Сайт-направленный мутагенез показал, что многие из них существенны для нуклеазной активности. Это позволило предположить, что 5'-нуклеазная реакция, подобно полимеразной и (3'5')-экзонуклеазной реакциям, катализируется двумя катионами 2-валентных металлов, координационно связанными с карбоксильными группами остатков асп и глу. Однако рентгеноструктуктурный анализ нескольких родственных 5'-нуклеаз не позволил однозначно установить положения связанных с активным центром катионов металлов и геометрию их лигандов.
Процессы синтеза ДНК, катализируемые ДНК-полимеразами, разделяются на репаративные и репликативные. Репаративный синтез ДНК используется для заполнения однонитевых брешей в днДНК, образующихся во время эксцизионной репарации, коррекции ошибочно спаренных оснований или рекомбинационной репарации. Рассмотрим этот процесс на примере нуклеотидной эксцизионной репарации (рис. 1.3). Репаративные эндонуклеазы (эксцинуклеазы) узнают повреждение (например, циклобутановый пиримидиновый димер) в нити ДНК и разрезают ее на определенных расстояниях с 3'- и 5'-стороны от повреждения с образованием ОР. Фрагмент ДНК, расположенный между этими ОР и содержащий повреждение, должен быть освобожден из дуплекса, чтобы создать однонитевую матрицу ДНК для репаративного синтеза. Для этого используется расплетание нитей днДНК, катализируемое специализированными ферментами - ДНК-геликазами, например, ДНК-геликазой UvrD E. coli. В ДНК возникает однонитевая брешь длиной 13 н. в случае бактерий и 29 н. в случае эукариотов. Она служит посадочной площадкой для связывания с онДНК ДНК-полимераз, включая те, которые не могут инициировать синтез ДНК на ОР. ДНК-полимеразы используют 3'-ОН-конец нити ДНК в бреши в качестве сайта инициации (затравки) для репаративного ресинтеза и удлиняют этот конец, последовательно копируя матрицу неповрежденной нити и заполняя пробел. Синтез часто останавливается перед противоположным 5'-концом ДНК в бреши, и в ДНК остается ОР со смежными 3'-гидроксильным и 5'-фосфатным концами. Воссоединение этих концов ДНК-лигазами (гл. 2) восстанавливает целостность репарируемой нити.
Рисунок 1.4 - Репаративный синтез ДНК в процессе нуклеотидной эксцизионной репарации. 1 - инцизия поврежденного участка нити ДНК эксцизионными эндонуклеазами, 2 - расплетание сегмента нити ДНК между ОР ДНК-геликазой и освобождение этого сегмента из дуплекса, 3 - репаративный ресинтез однонитевой бреши ДНК. I - эксцизионная эндонуклеаза, II - ДНК-геликаза, III - ДНК-полимераза
Репликация ДНК состоит, как правило, в образовании двух дочерних копий днДНК всех компонентов генома (хромосом и эписом или плазмид). При репликации синтезируются две новые нити, комплементарные нитям родительского дуплекса ДНК. В результате каждый родительский дуплекс замещается двумя дочерними, состоящими из одной родительской и одной вновь синтезированной нитей. Репликация является полуконсервативной, т.к. консервативными единицами являются одиночные нити родительской днДНК. Главные ДНК-полимеразы, на долю которых приходится большая часть репликативного синтеза ДНК, иногда называют ДНК-репликазами. Остальные ДНК-полимеразы играют вспомогательную роль в репликации ДНК и/или участвуют в репаративном синтезе. Их иногда называют репаративными ДНК-полимеразами, но этот термин не является строгим.
Процесс репликации состоит из трех последовательных стадий: инициации (начала синтеза ДНК) , элонгации (роста цепи ДНК) и терминации (окончания синтеза). Репликация обычно начинается в одном или многих специфических сайтах генома, которые называются областями начала репликации (ОНР, или ori от origin). Область, в которой репликация ДНК останавливается, называется область окончания репликации (terminus). Эти контрольные элементы определяют единицу репликации ДНК, называемую репликоном. Первой существенной стадией в инициации репликации является локальное раскрывание (расплетание) двойной спирали ДНК, дающее ДНК-полимеразам доступ к одиночным матричным нитям ДНК. Сами ДНК-полимеразы неспособны вызывать раскрывание дуплекса во внутренних участках, хотя при репаративном синтезе со смещением нити могут проявлять ограниченную способность расплетать расположенную перед ними днДНК на ОР или однонитевых брешах. Существование специализированных ОНР повышает эффективность репликации ДНК, создавая места для сборки состоящих из многих белков комплексов репликативного синтеза ДНК, или реплисом. В сборке этих комплексов важную роль играют специфические ДНК-белковые и белок-белковые взаимодействия. Первичное открывание дуплекса ДНК обычно вызывается специфическим белком-инициатором, обладающим способностью узнавать нуклеотидную последовательность ОНР. Оно облегчается особенностями структуры ДНК ОНР (например, негативной суперспирализацией ДНК или присутствием в ОНР «легкоплавких» участков ДНК) и некоторыми вспомогательными белками (например, связывающими онДНК белками типа SSB).
Первичное раскрывание дуплекса создает предпосылки для образования репликативной вилки (точки ДНК, в которой комплементарные нити расходятся и дают ДНК-полимеразам возможность синтезировать ДНК). В установлении репликативной вилки важную роль играет погрузка на разошедшиеся нити ДНК-геликаз - ферментов, использующих энергию гидролиза НТФ для однонаправленной транслокации по нити ДНК и плавления дуплекса. На некоторых ОНР погрузка ДНК-геликазы осуществляется на обе разошедшиеся нити. Это приводит к образованию двух репликативных вилок, перемещающихся по дуплексу ДНК в разных направлениях, так что репликация ДНК является двунаправленной. На других ОНР устанавливается только одна репликативная вилка, и начинается однонаправленная репликация.
В отличие от РНК-полимераз, ДНК-полимеразы и обратные транскриптазы не могут инициировать синтез ДНК de novo, т.е. синтезировать первый динуклеотид из двух дНТФ. Они нуждаются для инициации в затравке, или” праймере” (primer). Во время репаративного синтеза ДНК-полимеразы элонгируют уже установившуюся нить ДНК, свободный 3'-OH-конец которой и служит затравкой. Роль праймера в репликации ДНК обычно играют короткие цепи РНК. Лишь некоторые фаговые и вирусные ДНК-полимеразы (например, у фага 29 Bacillus subtilis или аденовирусов) могут использовать для инициации репликации белковые праймеры, в которых боковые гидроксильные группы остатков тирозина, серина или треонина играют такую же роль акцептора дНТФ, как 3'-OH-группа на конце полинуклеотидной цепи. Ретровирусы могут использовать в качестве затравки для инициации обратной транскрипции готовые природные тРНК клеток хозяина. В остальных случаях затравки РНК необходимо синтезировать de novo. Наиболее часто синтез праймеров катализируется специальным классом ДНК-зависимых РНК-полимераз, так называемыми праймазами. Однако у бактерий иногда (например, при инициации репликации некоторых плазмид) затравка РНК может синтезироваться обычной РНК-полимеразой. У эукариотов в синтезе митохондриальной ДНК также участвует не стандартная праймаза, а митохондриальная РНК-полимераза. Праймазы вовлекаются в инициацию новых цепей ДНК геликазами, расположенными в репликативных вилок. Образовавшийся комплекс, содержащий геликазу и праймазу, называется праймосомой.
В зависимости от частоты и распределения событий синтеза праймеров процессы репликации ДНК разделяются на непрерывные и полунепрерывные. При непрерывной репликации комплементарные нити дочерней ДНК синтезируются по-очереди (рис. 1.5, А). Вначале образуется праймер для копирования нижней нити родительского дуплекса. ДНК-полимераза элонгирует этот праймер, ведя синтез со смещением верхней родительской нити до конца матрицы нижней нити. Затем происходит независимая репликация смещенной матрицы верхней нити, инициированная второй затравкой. Так реплицируются по механизму вращающегося кольца ДНК некоторых фагов и бактериальных плазмид и эукариотическая митохондриальная ДНК, а также молекулы линейной ДНК аденовирусов.
Рисунок 1.5 - Непрерывная (А) и полунепрерывная (В) репликация ДНК
Родительские нити ДНК изображены сплошными черными линиями, вновь синтезированные нити - прерывистыми красными линиями, а праймеры РНК - зелеными кружками. Тонкие красные стрелки указывают направление роста вновь синтезируемых нитей ДНК, а толстая красная стрелка - направление движения репликативной вилки. На рис. В красными цифрами обозначены ведущая нить (1) и отстающая нить (2).
При полунепрерывной репликации одна из дочерних нитей элонгируется непрерывно из одного праймера, использованного при инициации (рис. 1.6, В). Эта нить ДНК называется ведущей. Полимеризация непрерывной нити идет в том же направлении, в котором перемещается по дуплексу родительской ДНК репликативная вилка. Нить дочерней ДНК, комплементарная ведущей, называется отстающей. Синтез отстающей нити происходит одновременно с синтезом ведущей нити, но в направлении, противоположном движению репликативной нити. Такой синтез не может быть непрерывным, т.к. ДНК-полимеразы перемещаются по матричной нити ДНК только в одном направлении 3'5'. Отстающая нить создается из дискретных коротких цепей ДНК, синтезируемых на матрице для этой нити в результате перемещения ДНК-полимеразы в стандартном направлении. Эти короткие цепи называются фрагментами Оказаки. Каждый из таких фрагментов должен инициироваться заново из праймеров РНК, синтезируемых праймазой. При полунепрерывной репликации для завершения синтеза отстающей нити требуется участие «репаративной» системы, которая удаляет праймеры РНК, заполняет образующиеся бреши и соединяет друг с другом короткие отрезки вновь синтезированной ДНК. В процессе полунепрерыной репликации участвуют сложные многокомпонентные машины репликации, называемые реплисомами. Сборку и работу этих машин у прокариотов и эукаритов мы рассмотрим с гл. 2-3. Однако вначале необходимо остановиться на свойствах основных типов ДНК, полимераз, участвующих в репликации и репарации.
2. Эукариотические ДНК-полимеразы и ДНК-полимеразы археев
Основные характеристики пяти наиболее хорошо изученных эукариотических ДНК-полимераз приведены в табл. 1.3. Четыре из этих ДНК-полимераз являются ядерными ферментами и участвуют в репликации и/или репарации хромосомной ДНК, а пятая расположена в митохондриях и отвечает за репликацию митохондриальной ДНК. Особенности остальных эукариотических ДНК-полимераз, участвующих преимущественно в синтезе напротив повреждений ДНК, будут рассмотрены в гл. 00.
2.1 ДНК-полимераза
Эукариотические ДНК-полимеразы (Pol) входят в состав состоящего из 4 субъединиц белкового комплекса, в котором две самые большие субъединицы определяют ДНК-полимеразную активность, а две малые субъединицы - праймазную активность, т.е. способность синтезировать затравки РНК на матрице ДНК (см. 2.3). Поэтому главная функция комплекса ДНК-полимераза - праймаза состоит в синтезе фрагментов Оказаки при репликации отстающей нити, а также при инициации репликации ведущей нити.
Главная ДНК-полимеразная субъединица (субъединица А) этого комплекса имеет мол. массу 165 кД (р165) у дрожжей S. cerevisiae и 180 кД (р180) у человека. Ее центральный полимеразный домен (положения ~ 650-1110 у дрожжей) содержит типичные для ДНК-полимераз этого семейства элементы DxxSLYP (мотив А) и YGDTDS (мотив С), включающие триаду каталитических кислых остатков асп. Эти мотивы находятся в субдомене ладони в 3-мерной структуре Pol. Ближе к N-концу расположен домен, очень похожий на (3'5')-экзонуклеазные мотивы ДНК-полимераз семейства В (остатки ~330-650). Однако у ДНК-полимеразы заменены существенные для катализа остатки в 3 консервативных экзонуклеазных мотивах, и она не проявляет корректорскую (3'5')-экзонуклеазную активность in vitro и с высокой частотой (в среднем 10-4) включает в ДНК ошибочные основания. Поэтому Pol не может являться главной репликативной ДНК-полимеразой.
Таблица 1.3 - Главные эукариотические ДНК-полимеразы
ДНК-поли- мераза семейство |
Функции |
Мол. массы субъединиц в кД |
Гены (хромосомы) |
Функции субъединиц |
|||
S. cere- visiae |
Человек |
S. cere-visiae |
Человек |
||||
(B) |
ДНК-полимераза - праймаза, инициация и синтез отстающей нити |
165 |
180 |
POL1(XIV) |
Xq21.3-q221 |
Каталитическая субъединица |
|
86 |
68 |
POL12(II) |
11 |
Структурная субъединица |
|||
58 |
55 |
PRI2(XI) |
6p11-p12 |
Праймаза |
|||
49 |
48 |
Праймаза |
|||||
(Х) |
Эксцизионная репарация оснований |
- |
39 |
- |
? |
- |
|
(А) |
Митохондриальная ДНК-полимераза |
143,5 |
139,5 |
MIP1 |
15q25 |
Каталитическая субъединица |
|
- |
55 |
- |
17q |
Фактор процессивости |
|||
(В) |
Главная полимераза ведущей и отстающей нитей; репарация, рекомбинация |
125 |
125 |
POL3 (IV) |
19q13.3-q13.4 |
Каталитическая субъединица |
|
58 |
50 |
POL31 (X) |
?- |
Структурная субъединица |
|||
55 |
66 |
POL32 (X) |
11q14 |
Мультимеризация, связывание PCNA |
|||
- |
12 |
- |
11q13 |
Структурная |
|||
(В) |
Полимераза ведущей и отстающей нитей репарация, рекомбинация |
256 |
261 |
POL2 (XIV) |
12q24.3 |
Каталитическая субъединица |
|
80 |
59 |
DPB2 (XVI) |
14q21-q22 |
Мультимеризация |
|||
23 |
17 |
DPB3 (II) |
9q33 |
Структурная |
|||
22 |
17 |
DPB4 (IV) |
2p12 |
Структурная |
Более того, даже синтезированные при ее участии фрагменты Оказаки желательно удалить из отстающей нити.
На N-конце ДНК-полимеразы расположен домен (остатки 1-330), не существенный для полимеразной активности и сборки гетеротетрамерного комплекса. Этот домен может участвовать во взаимодействиях с другими белками и ассоциируется, например, с большим Т-антигеном вируса SV40. Взаимодействие Pol со связывающим онДНК белком RP-A (см. 2.2) стабилизирует связывание Pol с 3'-концом затравки РНК и повышает процессивность и точность синтеза ДНК. С-концевой домен (остатки 1300-1465) не нужен для каталитической активности, но участвует во взаимодействиях с праймазными субъединицами. В нем находится мотив цинковых пальцев, связывающий Zn2+.
Вторая по величине субъединица В (р86 у дрожжей и р68 у млекопитающих) комплекса Pol-праймаза не обладает какой-либо ферментативной активностью, но играет важную роль формировании и поддержании структуры всего гетеротетрамерного комплекса. Ген POL12, кодирующий эту субъединицу у дрожжей, абсолютно необходим для жизнеспособности клеток. Более того, субъединица В требуется для каталитической активности Pol. Известно также, что субъединица В может стимулировать экспрессию субъединицы А. Кроме того, субъединица В фосфорилируется циклин-зависимыми протеинкиназами на стадии митоза во время клеточного цикла. Эта модификация может играть регуляторную роль, например, ингибировать активность Pol при инициации репликации.
У млекопитающих субъединица р68 непосредственно контактирует с праймазным гетеродимером р55/p48, в котором субъединица р55 ассоциируется также с субъединицей р180. Праймазный субкомплекс р55/p48 может самостоятельно транслоцироваться в ядро, благодаря наличию сигнала ядерной локализации NLS у субъединицы р55. Субъединица А также имеет последовательность NLS (на N-конце у дрожжей и на С-конце млекопитающих). Тем не менее, при экспрессии порознь белки р180 и р68 остаются в цитоплазме. Для их ядерной транслокации требуется взаимодействие друг с другом. Вероятно, гетеродимер р180/р68 собирается в цитоплазме, транслоцируется в ядро и там соединяется с праймазным гетеродимером р55/p48 с образованием тетрамерного комплекса Pol-праймаза.
2.2 ДНК-полимераза
ДНК-полимераза (Pol) млекопитающих является самой маленькой из известных эукариотических ДНК-полимераз и относится к семейству Х, к которому принадлежит, например, и терминальная нуклеотидилтрансфераза. Pol имеет длину 335 остатков (мол. масса 39 кД) и состоит из двух доменов, соединенных чувствительным к протеазам линкером. Короткий N-концевой домен (8 кД) может связываться с онДНК и с 5'-концом нити ДНК в ОР или однонитевой бреши. Этот домен обладает 5'-дезоксирибозофосфатазной активностью, т.е. способен удалять с 5'-конца нити ДНК остатки 5'-дезоксирибозофосфата (без присоединенного к сахару основания) или 5'-дезоксирибонуклеотидфосфата. Эта реакция идет по механизму -элиминации, а не гидролиза. На промежуточной стадии отщепляемый 5'-дезоксирибозофосфат ковалентно связывается с остатком лизина в домене 8 кД.
С-концевой домен (31 кД) обладает полимеразной активностью, которая способна заполнять в днДНК короткие однонитевые пробелы по дистрибутивному механизму. ДНК-полимераза обычно ресинтезирует в ДНК участки длиной 1-2 остатка, отрываясь от конца затравки после каждого акта включения нуклеотида. Подобно другим ДНК-полимеразам, 3-мерная структура Pol содержит домены ладони, большого пальца и пальцев, но они сильно редуцированы (рис. 1.12). В домене ладони находится триада остатков асп (положения 190, 192 и 256), участвующая в связывании двух каталитических катионов Mg2+. Однако по механизму связывания матрицы Pol отличается от других ДНК-полимераз. Это может обусловливать дистрибутивный характер ее действия.
Рисунок 1.6 - Модель 3-мерной структуры тройного комплекса ДНК-полимеразы крысы с ДНК и ди-дНТФ. 1 - сайт связывания входящего нуклеотида, 2 - сайт связывания ДНК, 3 - матрица, 4 - затравка, А - N-концевой домен, В - аналог домена большого пальца, С - домен ладони, D - аналог домена пальцев.
Рисунок 1.7 - Участие ДНК-полимеразы в эксцизионной репарации оснований с короткими заплатками. I - удаление модифицированного основания ДНК-гликозилазой, II - образование ОР с 5'-стороны от АР-сайта АР-эндонуклеазой, III- удаление АР-сайта с освобождением 5'-дезоксирибозофосфата, IV - заполнение однонитевого пробела ДНК-полимеразой и лигирование ДНК-лигазой. 1 - модифицированное основание, 2 - АР-сайт, 3 - 5'-дезоксирибозофосфат
Уже давно было установлено, что ДНК-полимераза участвует не в репликации, а в репарации ДНК. Две каталитические активности Pol делают ее идеально приспособленной к участию в эксцизионной репарации оснований (рис. 1.13). В клетках человека Pol отвечает за репарацию 75% повреждений ДНК, исправляемых по этому механизму. К числу таких повреждений относятся остатки урацила, ошибочно встроенные репликативными ДНК-полимеразами вместо тимина, а также некоторые типы модифицированных оснований, возникающие при действии на ДНК алкилирующих агентов, окислительных агентов и ионизирующей радиации. Первый этап этого пути (удаление модифицированного основания) катализируют ДНК-гликозилазы (например, урацил-ЛНК-гликозилаза), которые разрушают N-гликозидную связь между основанием и дезоксирибозой в остове ДНК. В результате их действия в ДНК образуется апуриновый/апиримидиновый АР-сайт. Этот сайт узнается АР-эндонуклеазами. Некоторые из них вызывают появление ОР с 3'-гидроксильным и 5'-фосфатным концами, расположенного с 5'-стороны от АР-сайта. Этот ОР служит местом посадки ДНК-полимеразы , которая вначале за счет 5'-дезоксирибозофосфатазной активности удаляет из поврежденной нити 5'-дезоксирибозофосфат (т.е. убирает АР-сайт), а затем заполняет образовавшийся однонуклеотидный пробел полимеразной активностью. Завершает репарацию воссоединение ОР под действием ДНК-лигазы.
Трансгенные мыши с гомозиготной делецией гена Pol нежизнеспособны: их эмбрионы выживают только в течение 10 дней после оплодотворения. Линии клеток млекопитающих, гомозиготные по делеции этого гена, сохраняют жизнеспособность, но проявляют дефект по эксцизионной репарации оснований и имеют повышенную чувствительность к алкилирующим агентам (но не к УФ-свету и ионизирующей радиации).
У дрожжей S. cerevisiae имеется ген POL4, который кодирует белок длиной 582 остатка. С-концевая область этого белка гомологична ДНК-полимеразам млекопитающих и содержит 5'-дезоксирибозофосфатазный и полимеразный домены. Функции N-концевого удлинения (~200 остатков) неизвестны. Нулевые мутанты дрожжей по гену POL4 не дефектны по эксцизионной репарации оснований и не проявляют повышенную чувствительность к алкилирующим агентам. Биологическая роль продукта гена POL4 пока окончательно не установлена. Дрожжевой белок Pol4 является ортологом ДНК-полимеразы млекопитающих.
2.3 ДНК-полимераза
ДНК-полимераза (Pol), кодируемая ядерными генами, является единственной эукариотической ДНК-полимеразой, участвующей в репликации митохондриальной ДНК (мтДНК), которая идет по непрерывному механизму (см. гл. 00). Большая субъединица Pol имеет мол. массу ~ 140 кД (р140) и высококонсервативна у всех эукариотов (степень идентичности между белками р140 дрожжей и человека составляет 42%). Очищенная большая субъединица Pol обладает не только ДНК-полимеразной, но и корректорской (3'5')-экзонуклеазной активностью. Подобно ДНК-полимеразе , Pol имеет 5'-дезоксирибозофосфатазный домен и может удалять из ДНК 5'-дезоксирибозофосфат по каталитическому механизму -элиминации.
У многоклеточных эукариотов, но не у дрожжей, Pol является гетеродимером и, кроме субъединицы р140, содержит малую вспомогательную субъединицу с мол. массой 55 кД (р55). Субъединица р55, связываясь с р140, повышает скорость полимеризации ДНК в 5 раз и увеличивает процессивность Pol в 100 раз, т.е. играет роль фактора процессивности ДНК-полимеразы . Это обусловлено повышением в присутствии р55 сродства субъединицы р155 к матричному концу ДНК в 100 раз. Сравнение аминокислотных последовательностей субъединиц р55 человека, мыши, крысы и дрозофилы показало, что у них наиболее консервативен С-концевой домен длиной ~ 120 остатков, по укладке похожий на аминоацил-тРНК-синтетазы класса IIa. Он состоит из 5-нитевого -слоя, окруженного четырьмя -спиралями, и необходим для взаимодействия р55 с субъединицей р140. Вспомогательная субъединица р55 по структуре похожа также на N-концевой домен субъединицы ' в -комплексе ДНК-полимеразы III E. coli. мтДНК постоянно находится в окислительном окружении внутри митохондрий и подвергается сильному окислительному повреждению. Поэтому скорость нуклеотидных замен в мтДНК в 10 раз выше, чем в ядерной ДНК. Поддержание целостности мтДНК зависит от эффективных систем репарации, обязательным участником которых является ДНК-полимераза . В частности, Pol способна, подобно ДНК-полимеразе , принимать участие в эксцизионной репарации оснований и удалять из ДНК АР-сайты после их инцизии АР-эндонуклеазами. ДНК-полимераза необходима также для эффективной нуклеотидной эксцизионной репарации мтДНК и способна к ограниченному синтезу напротив повреждений в матричной нити ДНК. Так, Pol преимущественно включает остаток dA напротив АР-сайтов или остатков 8-оксо-dG (продукта окислительного повреждения ДНК).
2.4 ДНК-полимеразы и
Гетеромультимерные ДНК-полимеразы и (Pol и Pol) участвуют не только в репликации ДНК, но и в нуклеотидной эксцизионной репарации, эксцизионной репарации оснований, коррекции ошибочно спаренных оснований, репарации двунитевых разрывов ДНК и рекомбинации и являются наиболее самыми важными из эукариотических ДНК-полимераз. Они относятся к полимеразному семейству В. Самая большая субъединица (А) Pol наиболее консервативна среди эукариотических ДНК-полимераз этого семейства: у человека и дрожжей она идентична на 49%, а у человека и мыши - на 98%. В то же время идентичность больших А-субъединиц Pol у человека и мыши составляет всего 39%.
Большая субъединица Pol, имеющая длину ~ 1100 остатков у дрожжей S. cerevisiae, cостоит из 4 доменов (рис. 1.14, А). N-концевой домен (остатки 1-200) наименее консервативен и содержит сигнал ядерной локализации NLS. Этот домен может участвовать во взаимодействиях с циклин-зависимыми протеинкиназами и ядерным антигеном пролиферирующих клеток PCNA. Более консервативен С-концевой домен (остатки 850-1110), содержащий три почти идентичных блока и домен цинкового пальца, на 98% совпадающий у Pol дрожжей и человека. Между этими доменами расположены основные каталитические области: (3'5')-экзонуклеазный домен (остатки 200-430) и ДНК-полимеразный домен (остатки 450-850) с такими же консервативными мотивами А и С активного центра, как у ДНК-полимеразы .
Большая субъединица ДНК-полимеразы у S. cerevisiae имеет длину 2222 остатка, т.е. вдвое длиннее большой субъединицы Pol. В N-концевой половине, в которой расположены (3'5')-экзонуклеазный и полимеразный домены, эти различия не столь заметны. Правда, в полимеразном домене Pol последовательности консервативных мотивов А (ELDTDG) и С (DxxAMYPN) изменены по сравнению с ДНК-полимеразами и , но триада кислых остатков асп каталитического центра сохранилась. Главная особенность ДНК-полимераз состоит в существовании огромного С-концевого домена длиной около 1000 остатков, имеющегося только у Pol. На С-конце большой субъединицы Pol расположены очень кислая область и консервативный домен цинкового пальца (остатки 2100-2200), состоящий из двух связывающих Zn2+ модулей типа С4 (ZF1 и ZF2), разделенных спейсером. C-концевой домен Pol используется для белок-белковых взаимодействий, существенных для физиологических функции ДНК-полимеразы .
ДНК-полимераза считается главным ферментом, ответственным за элонгацию по время репликации эукариотической ДНК. Этот вывод основан на генетическом и биохимическом анализе частично дефектных по Pol мутантов почкующихся и делящихся дрожжей и особенно на реконструкции in vitro репликации минихромосом вируса SV40. В этой вирусной системе для репликации требуются две клеточных ДНК-полимеразы. ДНК-полимераза и ассоциированная с ней праймаза синтезируют затравки РНК-ДНК для инициации синтеза ведущей нити и каждого из фрагментов Оказаки в отстающей нити. Последующую элонгацию ведущей нити и завершение фрагментов Оказаки в отстающей нити (см. гл. 4) катализирует Pol, которая не требует помощи Pol. Более того, в опытах in vivo установлено, что с реплицирующейся ДНК вируса SV40 сшиваются ДНК-полимеразы и , но не Pol. Таким образом, в частном случае репликации вирусной ДНК роль ДНК-полимеразы не обнаруживается.
Тем не менее, Pol явно имеет отношение к репликации хромосомной ДНК эукариотических клеток. Антитела к Pol человека ингибируют репликацию хромосомной ДНК в человеческих фибробластах, а в клетках почек обезьяны Pol сшивается с вновь синтезированной хромосомной ДНК. Нокаут гена POL2, кодирующего большую субъединицу Pol2 ДНК-полимеразы у S. cerevisiae, летален и вызывает дефект по репликации ДНК. Однако комплементацию этого дефекта вызывает не полимеразный домен, а изолированный С-конце вой домен белка Pol2 с мол. массой 120 кД. Вместе с тем, даже точечные мутации или маленькие делеции, затрагивающие домены цинковых пальцев на самом С-конце этого белка, вызывают дефект по репликации хромосом и по контрольной точке S/M клеточного цикла, предотвращающей сегрегацию нереплицированных или поврежденных хромосом. Поэтому высказывается предположение, что незаменимой областью большой субъединицы Pol является не полимеразный, а уникальный и консервативный у всех эукариотов С-концевой домен, участвующий в регуляторных событиях клеточного цикла. Тем не менее, в отличие от полной делеции полимеразного домена Pol, точечные мутации в этом домене летальны для дрожжей. Эти данные позволяют предположить, что функцию Pol в синтезе ДНК могут заменить другие ДНК-полимеразы, например Pol, но они не заменяют регуляторную функцию уникальной С-концевой половины. Точечные мутации в полимеразном домене могут препятствовать такой замене синтетической функции Pol или же оттитровывают какие-то клеточные факторы, существенные для репликации. Истинная роль Pol в репликации пока остается невыясненной. Возможно, ДНК-полимераза участвует в поздних стадиях синтеза отстающей нити или же реплицирует клеточные хромосомы только в самом конце фазы S клеточного цикла.
ДНК-полимеразы и являются гетеромультимерными комплексами, в состав которых входят не только большие субъединицы А, но и несколько вспомогательных субъединиц меньшего размера. Их число равно 2 у S. cerevisiae, 3 у человека и 4 у делящихся дрожжей Schizosaccharomyces pombe в случае Pol и 3 в случае Pol у всех этих видов (табл. 1.3). Гомология малых субъединиц между разными видами гораздо меньше (20-25%), чем гомология больших субъединиц, а функции вспомогательных белков изучены еще недостаточно. Эти дополнительные субъединицы могут участвовать, например, в сборке и/или поддержании стабильности целых репликазных ансамблей.
У ДНК-полимеразы S. cerevisiae вспомогательные субъединицы р58 и р55, похожие на субъединицы р50 и р66 человека, кодируются соответственно существенным геном POL31 и несущественным геном POL32. Мутант с нокаутированным геном POL32 жизнеспособен, но холодочувствителен по репликации и про вляет повышенную чувствительность к агентам, повреждающим ДНК. Продукт этого гена связывает ядерный антиген пролиферирующих клеток PCNA. Белки р55 и р58, экспрессированные порознь, находятся в димерной форме, а при одновременной экспрессии образуют гетеротетрамер (р55-р58)2. При коэкспрессии р55 с большой субъединицей р125 образуется их гетеродимер. В клетках дрожжей дикого типа обнаружена наиболее высокомолекулярная форма ДНК-полимеразы - (р125-р58-р55)2 с мол. массой ~500 кД, являющаяся димером гетеротримера всех 3 субъединиц. При реконструкции Pol человека из субъединиц р125, р50, р66 и р12, экспрессированных рекомбинантными бакуловирусами в клетках насекомых, обнаружены 3-субъединичный (р125-р66-р50) и 4-субъединичный (р125-р66-р50-р12) субкомплексы, причем ДНК-полимеразная активность у последнего в 15 раз выше, чем у первого. Это показало, что для оптимальной полимеразной активности Pol требуется даже самая маленькая субъединица р12, отсутствующая у почкующихся дрожжей. Вероятно, активной формой ДНК-полимеразы человека является димер 4-субъединичного субкомплекса.
ДНК-полимераза дрожжей состоит из субъединиц р256, р80, р23 и р22. При коэкспрессии этих рекомбинантных субъединиц в различных сочетания обнаружены гетеродимерные субкомплексы р256-р80 и р23-р22, которые ассоциируются друг с другом с образованием гетеротетрамера. Субъединица р80 сама способна образовывать гомодимер, а гетеродимер р256-р80 димеризуется с образованием гетеротетрамера (р256-р80)2. За димеризацию гетеродимера отвечает субъединица р80, для взаимодействия с которой необходима и достаточна С-концевая половина р256, включая домен цинковых пальцев. У Pol человека две самые маленькие субъединицы (р17 и р12) также взаимодействуют с двумя самыми большими субъединицами (р261 и р59) и образуют гетеротетрамерный комплекс.
По-видимому, общим свойством эукариотических ДНК-полимераз и является образование комплексов, в которые входят две молекулы самой большой субъединицы, ответственной за полимеразную активность, как и в случае бактериальной ДНК-полимеразы III. Продолжая эту аналогию с бактериальными репликазами, можно ввести понятие холоферментов Pol и Pol, в состав которых, помимо главной полимеразной субъединицы и вспомогательных белков, входят скользящий зажим (белок PCNA) и его погрузчик (пентамерный белок RF-C). В присутствии белка PCNA процессивность ДНК-полимеразы увеличивается с 1200 до 3500, а при анализе стационарной кинетики синтеза ДНК - с 100 до нескольких тысяч. PCNA облегчает образование комплекса Pol-ДНК и уменьшает константу скорости диссоциации этого комплекса. ДНК-полимераза проявляет достаточно высокую процессивность при низкой ионной силе и в отсутствие PCNA, но в физиологических условиях (в присутствии 0,15 М NaCl) становится непроцессивной, и тогда PCNA способствует восстановлению высокой процессивности.
2.5 ДНК-полимеразы археев
По ультраструктуре клеток представители третьего домена живых организмов археи (Archaea) похожи на бактерии и относятся к прокариотам. Их метаболические процессы в целом также похожи на бактериальные. Однако весь аппарат обработки генетической информации (транскрипции, трансляции и репликации ДНК) у археев гораздо ближе к аппарату эукариотов. У археев как РНК-полимеразы, так и ДНК-полимеразы напоминают эукариотические ферменты. Домен археев подразделяется на кренархеи (Crenarchaeota) и эуриархеи (Euryarchaeota). К первому классу относятся такие археи, как Sulfolobus, а ко второму - как Pyrococcus. Наборы ДНК-полимераз у кренархеев и эуриархеев не одинаковы.
Оба субдомена археев имеют мономерные ДНК-полимеразы семейства В с мол. массой ~ 100 кД, похожие на эукариотические ДНК-полимеразы , и .Они содержат в полимеразном активном центре типичные мотивы семейства В (YGDTDS и DxxSLIPS) и обладают (3'5')-экзонуклеазной активностью. У кренархеев имеются по меньшей мере две разные ДНК-полимеразы этого класса (PolBI и PolBII), а у эуриархеев - только одна ДНК-полимераза PolB, которая долгое время считалась их единственной ДНК-полимеразой. В дальнейшем оказалось, что наряду с PolB эуриархеи содержат вторую, гетеродимерную ДНК-полимеразу PolD, которая высокогомологична у различных эуриархеев, но не имеет гомологов у других организмов и выделена в новое семейство D.
ДНК-полимераза PolD состоит из большой каталитической субъединицы DP2 с мол. массой ~ 130-140 кД, обладающей (3'5')-экзонуклеазной активностью, и вспомогательной малой субъединицы DP1 с мол. массой ~ 70 кД, которая обладает слабой, но достоверной гомологией с субъединицей р66 ДНК-полимеразы . Малая субъединица DP1 имеет древние «пирофосфатазные» мотивы, как у эубактериальных ДНК-полимераз III, и содержит типичный мотив связывания эукариотических факторов. Все ДНК-полимеразы археев нуждаются для высокой процессивности в скользящем зажиме, который похож на эукариотический белок PCNA. Погрузку этого белка с мол. м. ~ 29 кД у археев вызывает комплекс RF-C, аналогичный эукариотическому, но состоящий из двух разных субъединиц.
3. Скользящие зажимы ДНК-полимераз и их погрузчики
3.1 Скользящие зажимы - факторы процессивности ДНК-полимераз
Особый класс субъединиц холоферментов ДНК-полимераз образуют белки-зажимы (clamps), которые связываются с другими компонентами комплекса (часто с каталитической субъединицей) и одновременно топологически ассоциируются с ДНК. Топологическая мода ассоциации означает, что в отличие от сайт-специфически связывающихся с ДНК белков (например, факторов транскрипции), во взаимодействии которых с определенными участками последовательности ДНК участвуют физические контакты (например, водородные связи), зажимы не образуют таких стабилизирующих связей и прикрепляются к ДНК только за счет их специфической топологии. Все белки-зажимы имеют форму кольца, надетого на дуплекс ДНК и способного достаточно свободно скользить вдоль ДНК в обоих направлениях. После погрузки на кольцевую ДНК такие скользящие зажимы остаются ассоциированными с нею длительное время, но после разрезания ДНК рестрикционными эндонуклеазами соскальзывают в месте двунитевого разрыва. В репликативных комплексах белки-зажимы располагаются позади ДНК-полимеразы, перемещающейся вдоль матричной нити. Главная функция скользящих зажимов состоит в повышении процессивности ДНК-полимераз.
Рассмотрим структурные особенности скользящих зажимов ДНК-полимераз на примерах бактериального белка DnaN (-субъединицы ДНК-полимеразы III E. coli) и эукариотического белка PCNA. Белок DnaN имеет длину 366 остатков и состоит из 3 доменов длиной ~ 110 остатков, имеющих очень низкий уровень гомологии первичной последовательности. Тем не менее, все 3 домена имеют одинаковую общую структуру и состоят из двух -спиралей и восьми -нитей в линейной последовательности (рис. 1.15, А). Эти участки в каждом домене белка DnaN уложены в одинаковые симметричные топологические структуры: в середине расположены две -спирали, а по краям - два мотива греческого ключа, каждый из которых образован 4 -нитями (рис. 1.16). Такая укладка наблюдается не только в центральном домене 2, но и продолжается в смежных доменах 1 и 3. Рентгеноструктурный анализ с разрешением 2,5 A показал, что димерный белок DnaN состоит из 2 тождественных субъединиц, соединенных друг с другом в ориентации «голова к хвосту» (N-конец одной субъединицы взаимодействует с С-концом второй). Димер белка DnaN имеет форму тороидального кольца с внешним диаметром ~ 80.
Стрелки указывают на переход в соседние домены с такой же организацией укладки.
Рисунок 1.8 - Структура кольцевых форм скользящих зажимов ДНК-полимераз. А. Димер бактериального белка DnaN; в центре - дуплекс ДНК. В. Тример эукариотического белка PCNA (B)
A, внутренним диаметром 38 A и толщиной ~ 30 A (рис. 1.17, А). Внутренний диаметр кольца -субъединицы ДНК-полимеразы III позволяет пройти через центр кольца дуплексу ДНК в А-форме или В-форме (диаметр 21 и 18 A соответственно). Толщина кольца DnaN соответствует длине одного витка двойной спирали ДНК.
Это кольцо имеет псевдо-6-кратную симметрию и состоит из 6 глобулярных доменов. В 3-мерной структуре DnaN слой из переплетенных -нитей расположен на внесшей поверхности кольца, а внутреннюю поверхность канала, через который может проходить ДНК, выстилают 12 -спиралей. Белок DnaN имеет большой валовой отрицательный заряд (-22), но большинство отрицательно заряженных остатков распределено по внешней поверхности, что исключает электростатическое взаимодействие свободного димера с отрицательно заряженной ДНК. С другой стороны, поверхность внутреннего канала заряжена положительно, так что фосфатные группы остова ДНК могут проходить через этот канал без электростатического отталкивания. Каждая из 12 центральных -спиралей перпендикулярна двойной спирали ДНК в центре кольца. Это предотвращает тесный контакт белка DnaN с обеими канавками ДНК и ограничивает ДНК-белковые взаимодействия неспецифическими контактами -спиралей с фосфатным остовом. Такая организация кольца DnaN обеспечивает тесное топологическое связывание с ДНК и в то же время не препятствует свободному скольжению вдоль ДНК. Контактная поверхность между субъединицами в димере DnaN похожа на продолжение -слоя на междоменных границах в мономере. В стабилизацию этой контактной границы вносят вклад сильные водородные связи и электростатические взаимодействия между положительно заряженными остатками на N-конце одного мономера и отрицательно заряженными остатками на С-конце второго.
Эукариотический белок PCNA длиной 258 остатков короче, чем белок DnaN, и состоит из 2 доменов с такой же организацией, как и у доменов белка DnaN (рис. 1.15, В). Рентгеноструктурный анализ обнаружил, что PCNA образует кольцевые тримеры с организацией «голова к хвосту». Общая топология этих тримеров очень похожа на топологию димеров DnaN (рис. 1.17, В), хотя первичные последовательности этих белков не гомологичны. Кольцо белка PCNA также образовано 6 симметрично расположенными доменами и по размеру не отличается от кольца DnaN, только имеет чуть меньший диаметр внутреннего канала (34 A). В кольце PCNA внутренний канал также состоит из 12 положительно заряженных -спиралей, а большой отрицательный валовой заряд (-60) распределен по внешнему -слою. Таким образом, белок PCNA также может связываться с ДНК топологически, сохраняя свободу миграции вдоль ДНК. Такой консерватизм 3-мерных структур про- и эукариотических зажимов хорошо соответствует их функциям как факторов процессивности ДНК-полимераз.
Подобные документы
Разработка универсального метода клонирования фрагментов ДНК с использованием II-S типа эндонуклеаз рестрикции. Определение активности ДНК-полимеразы фага Т4. Выделение РНК-лигазы, полинуклеотидкиназы фага Т4. Анализ методов и результатов исследования.
дипломная работа [66,5 K], добавлен 23.08.2011Транскрипция и основные ферменты, которые осуществляют транскрипцию, ДНК-зависимые РНК-полимеразы. Структурные и функциональные домены больших субъединиц эукариотической РНК-полимеразы. Регуляция экспрессии генов на уровне транскрипции у прокариот.
реферат [373,5 K], добавлен 29.09.2009Система зашифровки наследственной информации в молекулах нуклеиновых кислот в виде генетического кода. Сущность процессов деления клеток: митоза и мейоза, их фазы. Передача генетической информации. Строение хромосом ДНК, РНК. Хромосомные заболевания.
контрольная работа [28,4 K], добавлен 23.04.2013Нуклеотиды как мономеры нуклеиновых кислот, их функции в клетке и методы исследования. Азотистые основания, не входящие в состав нуклеиновых кислот. Строение и формы дезоксирибонуклеиновых кислот (ДНК). Виды и функции рибонуклеиновых кислот (РНК).
презентация [2,4 M], добавлен 14.04.2014История изучения нуклеиновых кислот как биополимеров, мономерами которых являются нуклеотиды, функции и значение в жизнедеятельности организма. Правила Чаргаффа. Первичная и вторичная структура ДНК. Особенности репликации у эукариот, ее разновидности.
презентация [533,6 K], добавлен 05.11.2014Процесс самовоспроизведения ДНК, удвоение молекул нуклеиновых кислот. Механизм и принципы репликации (редупликации). Строение репликативной вилки и ферменты; ДНК-полимераза. Образование репликационного глазка с одной или двумя репликационными вилками.
презентация [2,9 M], добавлен 24.11.2014Особенности применения метода ядерного магнитного резонанса (ЯМР) для исследования нуклеиновых кислот, полисахаридов и липидов. Исследование методом ЯМР комплексов нуклеиновых кислот с протеинами и биологических мембран. Состав и структура полисахаридов.
курсовая работа [3,5 M], добавлен 26.08.2009Сведения о нуклеиновых кислотах, история их открытия и распространение в природе. Строение нуклеиновых кислот, номенклатура нуклеотидов. Функции нуклеиновых кислот (дезоксирибонуклеиновая - ДНК, рибонуклеиновая - РНК). Первичная и вторичная структура ДНК.
реферат [1,8 M], добавлен 26.11.2014Основные виды нуклеиновых кислот. Строение и особенности их строения. Значение нуклеиновых кислот для всех живых организмов. Синтез белков в клетке. Хранение, перенос и передача по наследству информации о структуре белковых молекул. Строение ДНК.
презентация [628,3 K], добавлен 19.12.2014Распад нуклеиновых кислот, гидролиз. Классификация нуклеаз по месту и специфичности действия. Экзодезоксирибонуклеазы, рестриктазы. гуанилрибонуклеазы. Распад пуриновых и пиримидиновых оснований. Образование 5-фосфорибозиламина, присоединение глицина.
презентация [8,7 M], добавлен 13.10.2013