Теоретические основы биотехнологии
Биотехнология как научная дисциплина, ее значение. Понятие о ферментах, их структурно-функциональная организация, общая теория действия и специфичность. Особенности кинетики реакций, методы определения, иммобилизации и механизмы регуляции активности.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 23.05.2009 |
Размер файла | 973,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1. Биотехнология как научная дисциплина
Современная биотехнология -- это новое научно-техническое направление, возникшее в 60--70-х годах нашего столетия. Особенно бурно она стала развиваться с середины 70-х годов после первых успехов генно-инженерных экспериментов. Несмотря на столь короткий срок своего существования, биотехнология привлекла пристальное внимание как ученых, так и широкой общественности. Биотехнология, в сущности, не что иное, как использование культур клеток бактерий, дрожжей, животных или растений, метаболизм и биосинтетические возможности которых обеспечивают выработку специфических веществ. Биотехнология на основе применения знаний и методов биохимии, генетики и химической техники дала возможность получения с помощью легко доступных, возобновляемых ресурсов тех веществ и которые важны для жизни и благосостояния.
В промышленном масштабе подобная биотехнология представляет собой уже биоиндустрию.
Огромный индустриально-промышленный комплекс не только не помогает решить эти проблемы, но и еще более усугубляет их. Возникла настоятельная практическая потребность в принципиально новых технологиях и новых способах организации производства. В это же время физико-химическая биология в союзе с генетикой, молекулярной биологией и микробиологией предложили новую технологию, как будто способную помочь в решении этих проблем. Тем более что первые опыты биотехнологического производства дали неплохие результаты и потому позволили строить оптимистические планы на будущее.
Новая биотехнология -- это больше научно-техническое новаторское направление, чем производственное, хотя и с довольно большими производственными перспективами. Однако это такое научно-техническое направление, которое само выступает производства, причем такого производства, которое уже не может сделать буквально ни одного шага без глубоких фундаментальных и систематических прикладных научных разработок.
Есть все основания предполагать, что в недалеком будущем биотехнология превратится в одно из важнейших приоритетных направлений научно-технического прогресса и тем самым может привести к переосмыслению и самих критериев этого прогресса. Это предположение зиждется на том, что глобальные проблемы современности, и в особенности экологическую, продовольственную и энергетическую, очень трудно (если не невозможно) будет решать без самого непосредственного и широкого применения биотехнологии.
Примечательно, что в сфере биотехнологии целый ряд биологических наук, и прежде всего микробиология, генетика и физико-химическая биология, уже превращаются в непосредственную производительную силу.
Слияние науки и производства, превращение науки в непосредственную производительную силу, а производства в предметно - воплощающую науку как нельзя лучше характеризует это новаторское направление. Видимо, поэтому оно оказывается тем фокусом, который стягивает в себе как проблематику, традиционно относимую к сфере философии и методологии научного познания, так и проблемы социально-философского и методологического осмысления практики, производства, промышленности. К. Маркс подчеркивал, что превращение производства в материальную творческую науку становится возможным лишь «по отношению к человеку сложившемуся, в голове которого закреплены накопленные обществом знания».
Биотехнология привлекает к себе прежде всего возможностью приспособления естественных, органических технологий живой клетки, ткани, организма, биоценоза и биосферы в целом для нужд человека как таких технологий, которые естественным образом смогут быть встроены в биологический круговорот планеты. Однако это только идея, пока существующая еще в качестве труднодостижимой мечты, поскольку теперь действующая биотехнология -- это в большей мере химическая технология, в которой используются фрагменты живого. Тем не менее и в качестве даже идеи-мечты она оказывает заметное благотворное воздействие: именно в русле этой мечты родились и задачи экологизации, и -- в более широком плане -- биологизации всей производственно-хозяйственной деятельности человека на планете.
С помощью биотехнологии получено множество продуктов для здравоохранения, сельского хозяйства, продовольственной и химической промышленности. Причем важно то, что многие из них не могли быть получены без применения биотехнологических способов. Особенно большие надежды связываются с попытками использования микроорганизмов и культур клеток для уменьшения загрязнения среды и производства энергии.
2. Понятие о ферментах. Структурно-функциональная организация ферментов
Фермемнты или энзиммы (от лат. fermentum,-- дрожжи, закваска) -- белковые молекулы или их комплексы, ускоряющие химические реакции в живых системах.
Ферменты -- белки, являющиеся биологическими катализаторами. Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах -- ими катализируется около 4000 биореакций [2]. Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.
Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность -- константа связывания некоторых субстратов с белком может достигать 10?10 моль/л и менее.
Ферменты широко используются в народном хозяйстве -- пищевой, текстильной промышленности, в фармакологии.
По типу катализируемых реакций ферменты подразделяются на 6 классов согласно иерархической классификации ферментов (КФ, EC -- Enzyme Comission code). Классификация была предложена Международным союзом биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology). Каждый класс содержит подклассы, так что фермент описывается совокупностью четырёх чисел, разделённых точками. Например, пепсин имеет название EС 3.4.23.1. Первое число грубо описывает механизм реакции, катализируемой ферментом:
КФ 1: Оксидоредуктазы, катализирующие окисление или восстановление. Пример: каталаза, алкогольдегидрогеназа
КФ 2: Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую. Среди трансфераз особо выделяют киназы, переносящие фосфатную группу, как правило, с молекулы АТФ.
КФ 3: Гидролазы, катализирующие гидролиз химических связей. Пример: эстеразы, пепсин, трипсин, амилаза, липопротеинлипаза
КФ 4: Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов.
КФ 5: Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата.
КФ 6: Лигазы, катализирующие образование химических связей между субстратами за счет гидролиза АТФ. Пример: ДНК-полимераза
Будучи катализаторами, ферменты ускоряют как прямую, так и обратную реакции, поэтому, например, лиазы способны катализировать и обратную реакцию -- присоединение по двойным связям.
Активность ферментов определяется их трёхмерной структурой[3].
3. Общая теория действия ферментов
Повышение скорости химических реакций под действием ферментов объясняли следующим:
а) активированием субстрата в результате образования адсорбционных или молекулярных, обратимо диссоциирующих фермент-субстратных комплексов;
б) цепным механизмом реакций с участием радикалов или возбужденных молекул.
Оказалось, что цепные механизмы реакции не играют существенной роли в биологическом катализе.
После установления химической природы ферментов подтвердилось представление, выдвинутое более 80 лет назад В. Анри, Л. Михаэлисом и М. Ментен, о том, что при энзиматическом катализе фермент Е соединяется (в принципе обратимо) со своим субстратом S, образуя нестойкий промежуточный фермент-субстратный комплекс ES, который в конце реакции распадается с освобождением фермента и продуктов реакции Р. Благодаря высокому сродству связывания и образованию ES-комплекса резко возрастает число молекул субстрата, вступающих в реакции. Эти представления легли в основу теории «ключа-замка» Э. Фишера, которую иногда называют теорией «жесткой матрицы».
Таким образом, жесткая структура активного центра оказывается комплементарной молекулярной структуре субстрата, обеспечивая тем самым высокую специфичность фермента.
Л. Михаэлис не только постулировал образование промежуточного фермент-субстратного ES-комплекса, но и рассчитал влияние концентрации субстрата на скорость реакции.
В процессе реакции различают несколько стадий: присоединение молекулы субстрата к ферменту, преобразование первичного промежуточного соединения в один или несколько последовательных (переходных) комплексов и протекающее в одну или несколько стадий отделение конечных продуктов реакции от фермента.
Это можно схематически проиллюстрировать следующими примерами:
E+S ES … E+P
В реакциях анаболизма, например А + В --> АВ, фермент может соединяться как с одним, так и с другим субстратом или обоими субстратами:
В реакциях катаболизма, например АВ --> А + В:
На рис. 4.7 представлена схема образования промежуточного фермент-субстратного комплекса.
Если фермент в активном центре содержит кофермент, то предполагается образование тройного комплекса (рис. 4.8).
Фермент вступает во взаимодействие с субстратом на очень короткий период, поэтому долгое время не удавалось показать образование такого комплекса. Прямые доказательства существования фермент-субстратного комплекса были получены в лабораториях Д. Кейлина и Б. Чанса.
В настоящее время экспериментальные и математические методы кинетики, термодинамики и статической механики химических реакций позволяют
Рис. 4.7. Образование нестойкого фермент-субстратного комплекса согласно теории Э. Фишера «ключ-замок».
Рис. 4.8. Функция кофер-мента (по А. Кантарову и Б. Шепартцу).
Рис. 4.9. Образование не-ковалентных связей между ферментом и субстратом (схема).
Определить для ряда ферментативных реакций кинетические и термодинамические показатели, в частности константы диссоциации промежуточных фермент-субстратных комплексов, константы скорости и равновесия их образования.
В образовании фермент-субстратных комплексов участвуют водородные связи, электростатические и гидрофобные взаимодействия, а в ряде случаев также ковалентные, координационные связи (рис. 4.9). Информация о природе связей между субстратом и связывающим участком активного центра фермента может быть получена методами ЭПР и ЯМР, а также методами УФ- и ИК-спектроскопии.
Для каталитической активности фермента существенное значение имеет пространственная структура, в которой жесткие участки б-спиралей чередуются с гибкими, эластичными линейными отрезками, обеспечивающими динамические изменения белковой молекулы фермента. Этим изменениям придается большое значение в некоторых теориях ферментативного катализа. Так, в противоположность модели Э. Фишера «ключ-замок» Д. Кошлендом была разработана теория «индуцированного соответствия», допускающая высокую конформационную лабильность молекулы белка-фермента и гибкость и подвижность активного центра. Эта теория была основана на весьма убедительных экспериментах, свидетельствующих о том, что субстрат индуцирует конформационные изменения молекулы фермента таким образом, что активный центр принимает необходимую для связывания субстрата пространственную ориентацию. Иными словами, фермент только в присутствии (точнее, в момент присоединения) субстрата будет находиться в активной (напряженной) Т-форме в отличие от неактивной R-формы (рис. 4.10). На рис. 4.10 видно, что присоединение субстрата S к ферменту Е, вызывая соответствующие изменения конформации активного центра, в одних случаях приводит к образованию активного комплекса, в других - неактивного комплекса вследствие нарушения пространственного расположения функциональных групп активного центра в промежуточном комплексе. Получены экспериментальные доказательства нового положения о том, что постулированное Д. Кошлендом «индуцированное соответствие» субстрата и фермента создается не обязательно изменениями
Рис. 4.10. Изменения структуры активного центра фермента, вызванные субстратом, согласно модели «индуцированного соответствия» Д. Кошленда.
А, В, С - функциональные группы активного центра; 1 - активный комплекс; 2 - неактивный комплекс.
Рис. 4.11. Энергетический механизм ферментативной и неферментативной химических реакций.
S - исходный субстрат; Р - продукт; ДЕНФ -энергия активации неферментативной реакции; ДЕФ - энергия активации ферментативной реакции; ДG - стандартное изменение свободной энергии.
конформации белковой молекулы, но также геометрической и электронно-топографической перестройкой молекулы субстрата.
В каталитическом процессе существенное значение имеют точное соответствие между ферментом и субстратом, а также термодинамические и каталитические преимущества подобного соответствия. Гипотеза «индуцированного соответствия» предполагает существование между ферментом и субстратом не только пространственной или геометрической компле-ментарности, но и электростатического соответствия, обусловленного спариванием противоположно заряженных групп субстрата и активного центра фермента. Точное соответствие обеспечивает образование эффективного комплекса между субстратом и ферментом.
4. Специфичность действия ферментов
Специфичность -- одно из наиболее выдающихся качеств ферментов. Эго свойство их было открыто еще в прошлом столетии, когда было сделано наблюдение, что очень близкие по структуре вещества -- пространственные изомеры (a -- и b-метилглюкозиды) расщепляются по эфирной связи двумя совершенно разными ферментами.
Таким образом, ферменты могут различать химические соединения, отличающиеся друг от друга очень незначительными деталями строения, такими, например, как пространственное расположение метоксильного радикала и атома водорода при 1-м углеродном атоме молекулы метилглюкозида.
По образному выражению, нередко употребляемому в биохимической литературе, фермент подходит к субстрату, как ключ к замку. Это знаменитое правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента.
В 50-е годы нашего столетия это статическое представление было заменено гипотезой Д. Кошланда об индуцированном соответствии субстрата и фермента. Сущность ее сводится к тому, что пространственное соответствие структуры субстрата и активного центра фермента создается в момент их взаимодействия друг с другом, что может быть выряжено формулой “перчатка -- рука”. При этом в субстрате уже деформируются некоторые валентные связи и он, таким образом, подготавливается к дальнейшему каталитическому видоизменению, а в молекуле фермента происходят конформационные перестройки. Гипотеза Кошланда, основанная на допущении гибкости активного центра фермента, удовлетворительно объясняла активирование и ингибирование действия ферментов и регуляцию их активности при воздействии различных факторов. В частности, конформационные перестройки в ферменте в процессе изменения его активности Кошланд сравнивал с колебаниями паутины, когда в нее попала добыча (субстрат), подчеркивая этим крайнюю лабильность структуры фермента в процессе каталитического акта.
В настоящее время гипотеза Кошланда постепенно вытесняется гипотезой топохимического соответствия. Сохраняя основные положения гипотезы взаимоиндуцированной настройки субстрата и фермента, она фиксирует внимание на том, что специфичность действия ферментов объясняется в первую очередь узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают многочисленные точечные гидрофобные взаимодействия и водородные связи.
5. Кинетика ферментативных реакций
Главной целью изучения кинетики ферментативных реакций является получение информации, которая может способствовать выяснению молекулярного механизма действия фермента.
Общие принципы кинетики химических реакций применимы и к ферментативным реакциям. Известно, что любая химическая реакция характеризуется константой термодинамического равновесия. Она выражает состояние химического равновесия, достигаемого системой, и обозначается Кр. Так, для реакции:
константа равновесия равна произведению концентраций образующихся веществ, деленному на произведение концентрации исходных веществ. Значение константы равновесия обычно находят из соотношения констант скоростей прямой (k+1) и обратной (k- 1 ) реакций, т.е. Кp = k+1/k-1. В состоянии равновесия скорость прямой реакции: v+1 = k + 1[ А ] * [ B ] равна скорости обратной реакции: v-1 = k - 1 [ С ] * [ D ] , т. е. v+1 = v-1 соответственно k+1[А]*[B] = k-1[С]*[D], или
Рис. 4.12. Теоретический график зависимости скорости ферментативной реакции от концентрации субстрата при постоянной концентрации фермента.
а - реакция первого порядка (при [ S ] < Кm скорость реакции пропорциональна концентрации субстрата); б - реакция смешанного порядка; в - реакция нулевого порядка, когда v = Vmaxи скорость реакции не зависит от концентрации субстрата.
Таким образом, константа равновесия равна отношению констант скоростей прямой и обратной реакций. Величину, обратную константе равновесия, принято называть субстратной константой, или, в случае ферментативной реакции, константой диссоциации фермент-субстратного комплекса, и обозначать символом KS. Так, в реакции
т.е. KSравна отношению произведения концентрации фермента и субстрата к концентрации фермент-субстратного комплекса или отношению констант скоростей обратной и прямой реакций. Следует отметить, что константа KSзависит от химической природы субстрата и фермента и определяет степень их сродства. Чем ниже значение KS, тем выше сродство фермента к субстрату.
При изучении кинетики ферментативных реакций следует учитывать одну важную особенность этих реакций (не свойственную обычным химическим реакциям), связанную с явлением насыщения фермента субстратом. При низкой концентрации субстрата зависимость скорости реакции от концентрации субстрата (рис. 4.12) является почти линейной и подчиняется кинетике первого порядка. Это означает, что скорость реакции S --> Р прямо пропорциональна концентрации субстрата S и в любой момент времени t определяется следующим кинетическим уравнением:
где [S] - молярная концентрация субстрата S; -d[S]/dt - скорость убыли субстрата;
k' - константа скорости реакции, которая в данном случае имеет размерность, обратную единице времени (мин-1 или с-1).
При высокой концентрации субстрата скорость реакции максимальна, становится постоянной и не зависящей от концентрации субстрата [ S ] . В этом случае реакция подчиняется кинетике нулевого порядка v = k" (при полном насыщении фермента субстратом) и целиком определяется концентрацией фермента. Различают, кроме того, реакции второго порядка, скорость которых пропорциональна произведению концентраций двух реагирующих веществ. В определенных условиях при нарушении пропорциональности говорят иногда о реакциях смешанного порядка (см. рис. 4.12). Изучая явление насыщения, Л. Михаэлис и М. Ментен разработали общую теорию ферментативной кинетики. Они исходили из предположения, что ферментативный процесс протекает в виде следующей химической реакции:
т.е. фермент Е вступает во взаимодействие с субстратом S с образованием промежуточного комплекса ES, который далее распадается на свободный фермент и продукт реакции Р. Математическая обработка на основе закона действующих масс дала возможность вывести уравнение, названное в честь авторов уравнением Михаэлиса-Ментен, выражающее количественное соотношение между концентрацией субстрата и скоростью ферментативной реакции:
где v - наблюдаемая скорость реакции при данной концентрации субстрата [S];
KS- константа диссоциации фермент-субстратного комплекса, моль/л; Vmax- максимальная скорость реакции при полном насыщении фермента субстратом.
Из уравнения Михаэлиса-Ментен следует, что при высокой концентрации субстрата и низком значении KSскорость реакции является максимальной, т.е. v = Vmax(реакция нулевого порядка, см. рис. 4.12). При низкой концентрации субстрата, напротив, скорость реакции оказывается пропорциональной концентрации субстрата в каждый данный момент (реакция первого порядка).
Следует указать, что уравнение Михаэлиса-Ментен в его классическом виде не учитывает влияние на скорость ферментативного процесса продуктов реакции, например в реакции
и носит несколько ограниченный характер. Поэтому были предприняты попытки усовершенствовать его. Так, было предложено уравнение Бриггса-Холдейна:
где Кm представляет собой константу Михаэлиса, являющуюся экспериментально определяемой величиной. Она может быть представлена следующим уравнением:
Рис. 4.13. Кривая уравнения Михаэли-са-Ментен: гиперболическая зависимость начальных скоростей катализируемой ферментом реакции от концентрации субстрата.
В числителе представлены константы скоростей распада комплекса ES в двух направлениях (в сторону исходных Е и S и в сторону конечных продуктов реакции Е и Р). Отношение k-1/ k+1представляет собой константу диссоциации ферментсубстратного комплекса KS, тогда:
Отсюда вытекает важное следствие: константа Михаэлиса всегда больше константы диссоциации фермент-субстратного комплекса KSна величину k+2/k+1.
Для определения численного значения Кm обычно находят ту концентрацию субстрата, при которой скорость ферментативной реакции v составляет половину от максимальной Vmax, т.е. если v = 1/2 Vmaх. Подставляя значение v в уравнение Бриггса-Холдейна, получаем:
разделив обе части уравнения на Vmах, получим
Таким образом, константа Михаэлиса численно равна концентрации субстрата (моль/л), при которой скорость данной ферментативной реакции составляет половину от максимальной.
Определение величины Кm имеет важное значение при выяснении механизма действия эффекторов на активность ферментов и т.д. Константу Михаэлиса можно вычислить по графику (рис. 4.13). Отрезок на абсциссе, соответствующий скорости, равной половине максимальной, будет представлять собой Кm.
Пользоваться графиком, построенным в прямых координатах зависимости начальной скорости реакции v0 от начальной концентрации субстрата [S0], неудобно, поскольку максимальная скорость Vmaxявляется в данном случае асимптотической величиной и определяется недостаточно точно.
Рис. 4.14. График Лайнуивера-Бэрка.
Для более удобного графического представления экспериментальных данных Г. Лайнуивер и Д. Бэрк преобразовали уравнение Бриггса-Хол-дейна по методу двойных обратных величин исходя из того принципа, что если существует равенство между двумя какими-либо величинами, то и обратные величины также будут равны. В частности, если
Или
то после преобразования получаем уравнение:
которое получило название уравнения Лайнуивера-Бэрка. Это уравнение прямой линии: у = ах + b. Если теперь в соответствии с этим уравнением построить график в координатах 1/v (y) от l/[S] (x), то получим прямую линию (рис. 4.14), тангенс угла наклона который будет равен величине Km/Vmax; отрезок, отсекаемый прямой от оси ординат, представляет собой l/Vmax(обратная величина максимальной скорости). Если продолжить прямую линию за ось ординат, тогда на абсциссе отсекается отрезок, соответствующий обратной величине константы Михаэлиса - 1/Кm (см. рис. 4.14). Таким образом, величину Кm можно вычислить из данных наклона прямой и длины отрезка, отсекаемого от оси ординат, или из длины отрезка, отсекаемого от оси абсцисс в области отрицательных значений.
Следует подчеркнуть, что значения Vmax, как и величину Кm, более точно, чем по графику, построенному в прямых координатах, можно определить по графику, построенному по методу двойных обратных величин. Поэтому данный метод нашел широкое применение в современной энзимологии. Предложены также аналогичные графические способы определения Кm и Vmaxв координатах зависимости v от v/[S] и [S]/v от [S].
Следует отметить некоторые ограничения применения уравнения Ми-хаэлиса-Ментен, обусловленные множественными формами ферментов и аллостерической природой фермента. В этом случае график зависимости начальной скорости реакции от концентрации субстрата (кинетическая кривая) имеет не гиперболическую форму, а сигмоидный характер (рис. 4.15) наподобие кривой насыщения гемоглобина кислородом.
Рис. 4.15. Сигмоидная кинетическая кривая насыщения субстратом.
Это означает, что связывание одной молекулы субстрата в одном каталитическом центре повышает связывание субстрата с другим центром, т.е. имеет место кооперативное взаимодействие, как и в случае присоединения кислорода к 4 субъединицам гемоглобина. Для оценки концентрации субстрата, при которой скорость реакции составляет половину максимальной, в условиях сигмоидного характера кинетической кривой обычно применяют преобразованное уравнение Хилла:
где К' - константа ассоциации; n - число субстратсвязывающих центров.
6. Методы определения активности ферментов
Прежде чем преступить к выделению фермента, необходимо избрать и тщательно отработать метод определения активности, под контролем которого производится выбор наиболее эффективных приемов очистки ферментов, а затем и выполнение последовательных стадий его препаративного получения. Активность фермента меняется при различных условиях реакции и зависит от температуры, рН среды, от концентраций субстратов и кофакторов. Учитывая это, при определении активности фермента на разных стадиях очистки необходимо строго соблюдать одни и те же условия. Желательно не ограничиваться определением активности по одному какому-либо методу. Количество субстрата, превращаемого в условиях теста по определению активности фермента, должно быть пропорционально количеству последнего и времени инкубирования. Если же нет такой пропорциональности, то активность рассчитывают по предварительно построенному калибровочному графику, отражающему зависимость скорости реакции от количества единиц фермента. Когда ход реакции нелинеен во времени, следует определять начальную скорость реакции (по тангенсу угла наклона касательной к начальному отрезку кривой превращения). Для этого легче всего применять такие методы изменения активности, которые позволяют непрерывно следить за ходом превращения во времени: спектрофотометрические методы, потенциометрические, полярографические и т.п. Для измерения скорости ферментативной реакции необходимо выбрать буфер, который не тормозит исследуемую активность и обеспечивает поддержание рН раствора, близкой к оптимальной для данного фермента. Реакцию проводят при температуре, лежащей в большинстве случаев в пределах 25-400С. При исследовании ферментов, требующих присутствия кофакторов (ионов металлов, коферментов и др.), концентрация которых может снижаться по мере очистки фермента, в реакционную смесь следует добавлять недостающие кофакторы, например соли металлов, АТФ, НАДФ и т.п. Также для определения активности ферментов вводят стабилизаторы в состав опытных смесей. Во многих случаях добавление желатина, альбумина и других добавок предотвращает денатурацию ферментного белка.
Спектрофотометрические методы. Спектрофотометрические методы основаны на поглощении света в определенных участках спектра многими соединениями, являющимися активными группами ферментов, субстратами или продуктами реакции. Положение максимума поглощения при определенной длине волны определяется наличием в исследуемом материале определенных групп - аналитических форм. Для измерения спектров используют специальные приборы - спектрофотометры, фотометрические абсорбциометры и др. Этот метод отличается высокой чувствительностью, быстротой определения, малым расходованием фермента и реактивов и позволяет следить за течением реакции во времени. Для этого реакционную смесь помещают в кювету, вставленную в термостатируемый кюветодержатель. Через малый промежуток времени после добавления фермента (или субстрата) и быстрого перемешивания измеряют поглощение при длине волны, характерной для используемого субстрата или конечного продукта, образующегося в данной реакции. С помощью спектрофотометрического метода можно измерять непосредственно концентрацию некоторых ферментов (после достаточной очистки) по величине характерных максимумов поглощения прочно связанных коферментов (простетических групп). Необходимо иметь произвольно выбранную единицу фермента, с помощью которой можно было бы количественно выразить чистоту и активность различных фракций. В большинстве случаев выбор единицы зависит от избираемого метода определения. В случае спектрофотометрического метода такой единицей может служить количество фермента, которое вызывает определенное изменение в оптической плотности за определенное время при данных условиях опыта; если определяется продукт реакции, то единицей будет количество фермента, которое вызывает образование определенного количества вещества в минуту, и т.д. Тогда удельную активность фермента, которая является мерилом чистоты ферментного препарата, выражают числом единиц в 1 мг вещества (белка).
Для целей определения ферментов могут быть использованы не только измерение поглощения света, но также измерения флюоресценции - спектрофлюорометрические методы. Такое определение активности фермента в ряде случаев по чувствительности превосходит спектрофотометрические методы на целый порядок величины. Некоторые коферменты и субстраты обладают сильной флюоресценцией. НАД и НАДФ в восстановленном состоянии имеют сильную флюоресценцию и не флюоресцируют в окисленном состоянии. Поэтому спектрофлюорометрию используют для изучения кинетики и механизма действия никотинамидных и флавиновых ферментов.
Колориметрические (фотометрические) методы. В основе этих методов лежит измерение при помощи визуального или фотоэлектрического колориметра окрашенного продукта, образующегося при взаимодействии субстрата или продукта действия фермента со специфическими реактивами, которые обычно добавляются в фиксированную опытную пробу, взятую после остановки ферментативной реакции. Эти методы весьма разнообразны. Разработаны количественные методы, основанные на биуретовой реакции, при которой состав белка, очевидно не должен сказываться на результатах определения, т.к. эта реакция на пептидные связи, а не на боковые группы в белке. Метод Горнелла и соавторов, основанный на измерении полосы поглощения в области 550-650 нм, используется для определения значительных количеств (1-10 мг) белка в пробе. Предлагаются биуретовые микрометоды, основанные на поглощении ультрафиолетовых лучей медно-белковыми комплексами: они позволяют определять 0.1 - 2.0 мг белка в пробе. Число небелковых веществ, которые могут влиять на определения с помощью биуретовой реакции, невелико, но следует вносить поправки на те вещества, которые присутствуют в высоким концентрациях (соли аммония, сахароза). Наиболее ценными являются те фотометрические методы, которые позволяют следить во времени за ходом ферментативной реакции без ее прекращения по изменению окраски хромогенного субстрата или добавленного индикатора. Метод Фолина и Чиокальто, предложенный для определения количества белка, основан на хромогенной природе некоторых боковых групп аминокислот, а также на присутствии в белках пептидных связей. Этот метод обладает высокой чувствительностью (на пробу достаточно 0.01 - 0.1 мг белка), но многие небелковые вещества мешают определению.
В настоящее время для определения количества белка широко пользуются измерениями интенсивности поглощения света при 280 нм, которое обусловлено присутствием в белке ароматических аминокислот. Количество этих аминокислот в разных белках различно и ,следовательно, интенсивность неодинакова. В кювете толщиной 1 см у раствора, содержащего 1 мг “усредненного” белка в 1 мл, оптическая плотность равна 1 при длине волны 280 нм. Нуклеиновые кислоты поглощают при 280 нм, но можно сделать поправку на их присутствие, проводя измерения и при 260 нм и при 280 нм. Очень важна быстрота измерения активности ферментов. То же относится и к измерению количества сухого остатка или количества белка. Тем самым предпочитают быстрый метод определения белка путем измерения величины поглощения при 280 нм. Выигранное время важнее, за счет того, что удельное поглощение выделяемого белка иногда значительно отличается от средней величины поглощения смеси белков, присутствовавших в исходном материале.
Манометрические методы. Эти методы используются при определении активности фермента в тех случаях, когда в исследуемых реакциях один из компонентов находится в газообразном состоянии. К таким реакциям относится главным образом те, которые связаны с процессами окисления и декарбоксилирования, сопровождающимися поглощением или выделением кислорода и углекислоты, а также реакции, в которых выделение или связывание газа происходит в результате взаимодействия продуктов ферментативного превращения с добавленным в систему реактивом. Наблюдение за ходом реакции во времени проводится в специальных приборах - манометрических аппаратах Варбурга.
Другие методы. Сюда относится обширный ряд методов, включающих поляриметрию, вискозиметрию, потенцио- и кондуктометрические измерения и т.п. Также определение активности можно выполнять, используя методы хроматографии и электрофореза на бумаге. Эти методы высокочувствительны и специфичны, что делает их во многих случаях незаменимыми; они позволяют значительно сократить расход фермента на измерение активности, но не всегда применимы ввиду продолжительности разделения веществ в процессе хроматографии (и электрофореза).
7. Регуляция активности ферментов. Салостерическая регуляция активности
Механизмы регуляции ферментативной активности на уровне синтеза ферментов являются достаточно медленными; для их реализации нужны по меньшей мере часы. Существуют относительно быстрые регуляторные механизмы, которые направлены непосредственно на ферменты.
Эти регуляторные механизмы можно классифицировать так:
Аллостерический
Диссоциативный
Адсорбционный
Регуляция ковалентным связыванием
Регуляция ограниченным протеолизом.
Аллостерическим механизмом регуляции активности ферментов называют регуляторный механизм, в котором контроль активности фермента реализуется путем изменения конформации белковой молекулы, индуцируемого связыванием метаболита-регулятора в особом (аллостерическом) центре, пространственно удаленном от активного центра. Изменение конформации молекулы фермента влечет за собой изменение каталитических характеристик активного центра. Метаболит-регулятор, модифицирующий активность фермента подобным образом, называют аллостерическим эффектором. Олигомерная молекула фермента, состоящая из нескольких субъединиц, может содержать несколько активных центров и несколько аллостерических центров для определенного эффектора. В таком олигомере возможны взаимодействия не только между активным и аллостерическим центрами, но и между центрами одного сорта (между активными или между аллостерическими центрами). В результате взаимодействия между субъединицами связывание субстрата становится кооперативным, и кривая зависимости скорости реакции v от концентрации субстрата [S] приобретает сигмоидную форму. Обычно эти ферменты ответственны за регуляцию и контроль метаболических процессов, и их активность регулируется по принципу обратной связи.
Согласованный механизм аллостерических взаимодействий.
В 1965 г. Жак Моно, Джефри Уайман и Жан-Пьер Шанже предложили изящное объяснение кооперативности аллостерических ферментов. Используя их подход, рассмотрим аллостерический фермент, состоящий из двух идентичных субъединиц, каждая с одним активным центром. Субъединицы могут находиться в двух конформациях - R- (relaxed - "расслабленном")-состоянии и T (tense, "напряженном")-состоянии. Конформация R обладает высоким сродством к субстрату, Т- низким (рис. 9.1). Формы R и T могут переходить одна в другую. В данной модели делается важное допущение, что для сохранения симметрии димера обе субъединицы должны находиться в одном и том же конформационном состоянии. Т. е., разрешены состояния RR и TT, состояние RT запрещено. Концентрации разрешенных состояний в отсутствие субстрата обозначим R0 и Т0, константу равновесия - L.
R0 <=>T0
L = T0/ R0 (9.1)
Сделаем еще одно допущение: пусть субстрат может присоединяться только к R-форме фермента. R-форму, связанную с 1 молекулой субстрата обозначим R1, связанную с 2 молекулами R 2. Присоединение каждой молекулы субстрата характеризуется одной и той же микроскопической константой диссоциации КR. Тогда можно записать следующие соотношения:
R0 + S <=> R1
R1 + S <=> R2
(9.2)
Коэффициент 2 в последнем уравнении указывает на то, что субстрат может связываться с любым из двух активных центров на R0 и отщепляться от любого из двух активных центров на R2.
Рис. 9.1. Модель согласованного механизма аллостерических взаимодействий.
Присоединение первой молекулы субстрата сопровождается переходом ТТ-формы с низким сродством к субстрату в RR-форму с высоким сродством.
Выразим степень насыщения У как функцию концентрации субстрата:
(9.3)
С учетом выражений (9.1) и (9.2) получим:
(9.4)
Проанализируем зависимость степени насыщения активных центров фермента от концентрации субстрата с помощью графика.
Рис. 9.2. Зависимость степени насыщения У активных центров фермента от концентрации субстрата [S] в соответствии с моделью согласованного механизма (9.4). КR = 10-5 M.
Зависимость У от [S] выражается сигмоидной, а не гиперболической кривой, значит уравнение (9.4) соответствует кооперативному связыванию субстрата. Если число оборотов в расчете на один активный центр одинаково для фермент-субстратных комплексов с R1 и R2, то график зависимости скорости реакции от конценрации субстрата также будет сигмоидным, поскольку
v = YVmax(9.5)
Рассмотрим процесс связывания. В отсутствие субстрата почти все молекулы фермента находятся в Т-форме. В примере, показанном на рис. 9.2, на 104 молекул в Т-форме приходится только одна молекула в R-форме. Добавление субстрата сдвигает конформационное равновесие в сторону образования R-формы, поскольку именно R-форма связывает субстрат. Когда субстрат присоединяется к одному активному центру, второй активный центр должен быть также в R-форме, согласно основному постулату данной модели. Другими словами, переход от Т к R и обратно все субъединицы фермента осуществляют согласованно. Следовательно, по мере добавления субстрата доля молекул фермента в R-форме прогрессивно возрастает, и связывание субстрата происходит кооперативно.
На основе модели согласованного механизма нетрудно объяснить влияние аллостерических ингибиторов и активаторов. Аллостерический ингибитор связывается преимущественно с Т-формой, тогда как аллостерический активатор связывается преимущественно с R-формой. Следовательно, аллостерический ингибитор сдвигает конформационное равновесие R ? T в сторону Т, а аллостерический активатор - в сторону R. Эти эффекты можно выразить количественно через изменение константы аллостерического равновесия L. Аллостерический ингибитор повышает величину L, тогда как аллостерический активатор понижает ее. Эти влияния показаны на рис. 9.2. Степень насыщения У при всех значениях [S] снижается в присутствии ингибитора и повышается в присутствии активатора.
Среди аллостерических взаимодействий выделяют гомотропные (взаимодействия между идентичными лигандами) и гетеротропные (взаимодействия между различными лигандами). В рассмотренной модели кооперативное связывание субстрата ферментом представляет собой гомотропный эффект, а влияние активатора или ингибитора - гетеротропный. При согласованном механизме аллостерических взаимодействий гомотропные эффекты всегда положительны (кооперативны), а гетерогенные могут быть и положительными и отрицательными.
Последовательный механизм аллостерического взаимодействия.
Даниэль Кошланд разработал другую модель аллостерических взаимодействий. В ее основу положены три постулата.
Каждая субъединица может существовать в одном из двух возможных конформационных состояний (R или Т).
Связывание субстрата изменяет форму той субъединицы, к которой он присоединяется. Конформация другой субъединицы при этом существенно не меняется.
Конформационные изменения, вызванные связыванием субстрата на одной субъединице, могут увеличивать или уменьшать сродство к субстрату другой субъединицы той же молекулы фермента.
Рис. 9.3. Модель последовательного механизма кооперативного связывания субстрата аллостерическим ферментом.
Связывание является кооперативным, если у RT-формы сродство к субстрату выше, чем у ТТ-формы.
Модель простого последовательного механизма взаимодействия отличается от модели согласованного механизма в нескольких отношениях. Во-первых, в отсутствие субстрата весь фермент находится в Т-форме. Переход от Т-формы к R-форме индуцируется присоединением субстрата.
Во-вторых, конформационный переход от Т к R в разных субъединицах фермента происходит не согласованно, а последовательно. В модели согласованного механизма наличие гибридной формы RT исключается. Эта модель исходит из важной роли симметрии во взаимодействии субъединиц в олигомерных белках и потому предполагает ее сохранение при аллостерических переходах.
В-третьих, в случае согласованного механизма гомотропные взаимодействия всегда должны быть положительными, тогда как в случае последовательного механизма они могут быть либо положительными, либо отрицательными. Это зависит от структурных переходов, вызванных присоединением первой молекулы субстрата.
Какая из моделей правильна? Для одних аллостерических белков хорошо подходит модель согласованного механизма, тогда как для других, по-видимому, применима модель последовательного механизма. Однако, существуют аллостерические белки, для описания которых требуются более сложные модели.
8. Иммобилизация ферментов
Методы иммобилизации ферментов
Существует два основных метода иммобилизации ферментов: физический и химический.
Физическая иммобилизация ферментов представляет собой включение фермента в такую среду, в которой для него доступной является лишь ограниченная часть общего объема. При физической иммобилизации фермент не связан с носителем ковалентными связями. Существует четыре типа связывания ферментов:
- адсорбция на нерастворимых носителях;
- включение в поры геля;
- пространственное отделение фермента от остального объема реакционной системы с помощью полупроницаемой перегородки (мембраны);
- включение в двухфазную среду, где фермент растворим и может находиться только в одной из фаз.
Перечисленные подходы проиллюстрированы рисунке 5.
Рис. 5. Способы иммобилизации ферментов: а - адсорбция на нерастворимых носителях, б - включение в поры геля, в - отделение фермента с помощью полупроницаемой мембраны, г - использование двухфазной реакционной среды
Адсорбционная иммобилизация является наиболее старым из существующих способов иммобилизации ферментов, начало ей было положено еще в 1916 г. Этот способ достаточно прост и достигается при контакте водного раствора фермента с носителем. После отмывки неадсорбировавшегося белка иммобилизованный фермент готов к использованию. Удерживание адсорбированной молекулы фермента на поверхности носителя может обеспечиваться за счет неспецифических ван-дер-ваальсовых взаимодействий, водородных связей, электростатических и гидрофобных взаимодействий между носителем и поверхностными группами белка. Вклад каждого из типов связывания зависит от химической природы носителя и функциональных групп на поверхности молекулы фермента. Взаимодействия с носителем могут оказаться настолько сильными, что сорбция биокатализатора может сопровождаться разрушением его структуры. Например, при адсорбции некоторых растительных клеток на гранулах цитодекса клеточная стенка деформируется, повторяя рельеф поверхности частиц носителя. Преимуществом метода адсорбционной иммобилизации является доступность и дешевизна сорбентов, выступающих в роли носителей. Им также можно придать любую конфигурацию и обеспечить требуемую пористость. Важным фактор - простота применяемых методик. При адсорбционном связывании можно решить и проблему очистки фермента, так как связывание белка с носителем во многих случаях достаточно специфическое. К сожалению, прочность связывания фермента с носителем не всегда достаточно высока, что ограничивает применение метода. К недостаткам адсорбционной иммобилизации следует отнести отсутствие общих рекомендаций, позволяющих сделать правильный выбор носителя и оптимальных условий иммобилизации конкретного фермента.
Некоторых из перечисленных затруднений можно избежать при иммобилизации ферментов путем включения в гели. Суть этого метода иммобилизации состоит в том, что молекулы фермента включаются в трехмерную сетку из тесно переплетенных полимерных цепей, образующих гель. Среднее расстояние между соседними цепями в геле меньше размера молекулы включенного фермента, поэтому он не может покинуть полимерную матрицу и выйти в окружающий раствор, т.е. находится в иммобилизованном состоянии. Дополнительный вклад в удерживание фермента в сетке геля могут вносить также ионные и водородные связи между молекулой фермента и окружающими ее полимерными цепями. Пространство между полимерными цепями в геле заполнено водой, на долю которой обычно приходится значительная часть всего объема геля. Например, широко применяемые гели полимеров акриловой кислоты в зависимости от концентрации полимера и его природы содержат от 50 до 90% воды.
Для иммобилизации ферментов в геле существует два основных способа. При одном из них фермент помещают в водный раствор мономера, а затем проводят полимеризацию, в результате чего образуется полимерный гель с включенными в него молекулами фермента. В реакционную смесь часто добавляют также бифункциональные (содержащие в молекуле две двойные связи) сшивающие агенты, которые придают образующемуся полимеру структуру трехмерной сетки. В другом случае фермент вносят в раствор готового полимера, который затем каким-либо образом переводят в гелеобразное состояние. Способ иммобилизации ферментов путем включения в полимерный гель позволяет создавать препараты любой геометрической конфигурации, обеспечивая при этом равномерное распределение биокатализатора в объеме носителя. Метод универсален, применим для иммобилизации практически любых ферментов, полиферментных систем, клеточных фрагментов и клеток. Фермент, включенный в гель, стабилен, надежно защищен от инактивации вследствие бактериального заражения, так как крупные клетки бактерий не могут проникнуть в мелкопористую полимерную матрицу. В то же время, эта матрица может создавать значительные препятствия для диффузии субстрата к ферменту, снижая каталитическую эффективность иммобилизованного препарата, поэтому для высокомолекулярных субстратов данный метод иммобилизации не применим вообще.
Общий принцип иммобилизации ферментов с использованием мембран заключается в том, что водный раствор фермента отделяется от водного раствора субстрата полупроницаемой перегородкой. Полупроницаемая мембрана легко пропускает небольшие молекулы субстрата, но непреодолима для крупных молекул фермента. Существующие модификации этого метода различаются лишь способами получения полупроницаемой мембраны и ее природой. Водный раствор фермента можно включать внутрь микрокапсул, представляющих собой замкнутые сферические пузырьки с тонкой полимерной стенкой (микрокапсулирование). При двойном эмульгировании получается водная эмульсия из капель органического раствора полимера, содержащих, в свою очередь, еще более мелкие капли водного раствора фермента. Через некоторое время растворитель затвердевает, образуя сферические полимерные частицы с иммобилизованным в них ферментом. Если вместо водонерастворимого отвердевающего полимера используются жидкие углеводороды с высокой молекулярной массой, метод называется иммобилизацией путем включения в жидкие мембраны. К модификациям метода иммобилизации ферментов с использованием полупроницаемых оболочек относятся также включение в волокна ( при этом вместо капель, содержащих ферменты, получаются нити) и включение в липосомы. Применение систем мембранного типа позволяет получать иммобилизованные препараты с высоким содержанием фермента. Метод, как и предыдущий, достаточно универсален, т.е. применим как ферментам, так и к клеткам, а также их фрагментам. Благодаря высокому отношению поверхности к объему и малой толщине мембраны удается избежать значительных диффузионных ограничений скорости ферментативных реакций. Основной недостаток мембранных систем - невозможность ферментативного превращения высокомолекулярных субстратов.
При иммобилизации ферментов с использование систем двухфазного типа ограничение свободы перемещения фермента в объеме системы достигается благодаря его способности растворяться только в одной из фаз. Субстрат и продукт ферментативного превращения распределяются между обеими фазами в соответствии с их растворимостями в этих фазах. Природа фаз подбирается таким образом, что продукт накапливается в той из них, где фермент отсутствует. После завершения реакции эту фазу отделяют и извлекают из нее продукт, а фазу, содержащую фермент, вновь используют для проведения очередного процесса. Одним из важнейших преимуществ систем двухфазного типа является то, что они позволяют осуществлять ферментативные превращения макромолекулярных субстратов, которые невозможны при применении жестких носителей с ограниченным размером пор.
Главным отличительным признаком химических методов иммобилизации является то, что путем химического взаимодействия на структуру фермента в его молекуле создаются новые ковалентные связи, в частности между белком и носителем. Препараты иммобилизованных ферментов, полученные с применением химических методов, обладают по крайней мере двумя важными достоинствами. Во-первых, ковалентная связь фермента с носителем обеспечивает высокую прочность образующегося конъюгата. При широком варьировании таких условий, как рН и температура, фермент не десорбируется с носителя и не загрязняет целевых продуктов катализируемой им реакции. Это особенно важно при реализации процессов медицинского и пищевого назначения, а также для обеспечения устойчивых, воспроизводимых результатов в аналитических системах. Во-вторых, химическая модификация ферментов способна приводить к существенным изменениям их свойств, таких как субстратная специфичность, каталитическая активность и стабильность. Химическая иммобилизация ферментов является искусством, уровень которого определяется, в первую очередь, умением экспериментатора. Основная задача экспериментатора заключается в формировании новых ковалентных связей в молекуле фермента при использовании его функциональных групп, несущественных для проявления его каталитической активности. При химической модификации фермента его активный центр желательно защищать. При сопоставлении различных приемов иммобилизации химические методы для крупномасштабных биотехнологических процессов кажутся малопривлекательными из-за сложности и дороговизны. В промышленных процессах обычно используются те или иные методы физической иммобилизации.
Подобные документы
Понятие и сущность биотехнологии, история ее возникновения. Основные направления и методы биотехнологии. Генная и клеточная инженерия. "Три волны" в создании генно-модифицированных растений. Трансгенные животные. Методы иммобилизации ферментов и клеток.
реферат [25,0 K], добавлен 11.01.2013Биотехнология, её направления: генная инженерия, клонирование. Роль клеточной теории в становлении биотехнологии. Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты.
презентация [2,7 M], добавлен 02.10.2011Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.
реферат [32,4 K], добавлен 23.07.2008Изучение биотехнологии - науки об использовании живых организмов, биологических процессов и систем в производстве, включая превращение различных видов сырья в продукты. Клонирование и биотехнология в животноводстве, перспективы генетической инженерии.
реферат [39,2 K], добавлен 04.03.2010Генетика и история ее развития, наследственность и изменчивость. Структурно-функциональная организация клеток эукариотического и прокариотического типов, нуклеиновые кислоты и молекулярные носители наследственности, биотехнология и генная инженерия.
дипломная работа [101,6 K], добавлен 15.05.2012Биотехнология как наука о методах и технологиях производства. Понятие генной и клеточной инженерии. Биотехнология сельскохозяйственных растений. Повышение урожайности и естественная защита растений. Устойчивость к гербицидам и неблагоприятным факторам.
реферат [34,6 K], добавлен 14.11.2010История развития Биотехнологии. Генетическая инженерия как важная составная часть биотехнологии. Осуществление манипуляций с генами и введение их в другие организмы. Основные задачи генной инженерии. Генная инженерия человека. Искусственная экспрессия.
презентация [604,9 K], добавлен 19.04.2011Основные задачи, разделы и направления современной биотехнологии. Производство необходимых человеку продуктов и биологически активных соединений с помощью живых организмов. Изучение генетической, клеточной и биологической инженерии. Объекты биотехнологии.
презентация [2,1 M], добавлен 06.03.2014Общие понятия, основные вехи и задачи биотехнологии. Рассмотрение применения методов генной инженерии в животноводстве, их практическое значение и перспективы. Клонирование животных с помощью переноса ядер из дифференцированных тотипотентных клеток.
реферат [35,7 K], добавлен 13.07.2014Основные методы биотехнологии. Размножение организмов с интересующими человека свойствами с помощью метода культуры клеток. Особенности применения методов генной инженерии. Перспективы метода клонирования. Технические трудности применения методов.
презентация [616,1 K], добавлен 04.12.2013