Значение и изучение генов

Понятие и природа генов. Характеристика факторов и источников изменчивости, роль мутаций. Оценка положений теорий Ламарка, Дарвина, Менделя. Анализ доказательств единства происхождения органического мира. Особенности клонирования: задачи и проблемы.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 31.03.2009
Размер файла 38,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Содержание

Введение

1. Природа генов

2. Изменчивость

2.1 Влияние среды

2.2 Источники изменчивости

2.3 Мутация

2.4 Истощение генофонда

3. Оценка теории Ламарка

4. Основные положения теории Дарвина

5. Естественный отбор

6. Доказательства единства происхождения органического мира

6.1 Эмбриологические доказательства эволюции

6.2 Морфологические доказательства эволюции

6.3 Палеонтологические доказательства эволюции

6.4 Биогеографические доказательства эволюции

7. Исследования Менделя

7.1 Эксперимент Менделя

7.2 Гипотезы Менделя

8. Клонирование

8.1 Задачи, стоящие перед клонированием

8.2 Этическая проблема клонирования

Заключение

Список использованной литературы

Введение

Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Однако лишь в начале XX в. ученые стали осознавать в полной мере важность законов наследственности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе «задатки» того огромного множества признаков, из которых слагается каждый отдельный организм.

Первый действительно научный шаг вперед в изучении наследственности был сделан австрийским монахом Грегором Менделем, который в 1866 г. опубликовал статью, заложившую основы современной генетики. Мендель показал, что наследственные задатки не смешиваются, а передаются от родителей потомкам в виде дискретных (обособленных) единиц. Эти единицы, представленные у особей парами, остаются дискретными и передаются последующим поколениям в мужских и женских гаметах, каждая из которых содержит по одной единице из каждой пары. В 1909 г. датский ботаник Иогансен назвал эти единицы гедам», а в 1912 г. американский генетик Морган показал, что они находятся в хромосомах. С тех пор генетика достигла больших успехов в объяснении природы наследственности и на уровне организма, и на уровне гена.

1. Природа генов

Изучение наследственности уже давно было связано с преставлением о ее корпускулярной природе. В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал “элементами”. Позднее их стали называть “факторами” и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому.

Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена:

а) ген как единица рекомбинации.

На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;

б) ген как единица мутирования.

В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию.

в) ген как единица функции.

Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.

2. Изменчивость

Изменчивостью называют всю совокупность различий по тому или иному признаку между организмами, принадлежащими к одной и той же природной популяции или виду. Поразительное морфологическое разнообразие особей в пределах любого вида привлекло внимание Дарвина и Уоллеса во время их путешествий. Закономерный, предсказуемый характер передачи таких различий по наследству послужил основой для исследований Менделя. Дарвин установил, что определенные признаки могут развиваться в результате отбора, тогда как Мендель объяснил механизм, обеспечивающий передачу из поколения в поколение признаков, по которым ведется отбор.

Мендель описал, каким образом наследственные факторы определяют генотип организма, который в процессе развития проявляется в структурных, физиологических и биохимических особенностях фенотипа. Если фенотипическое проявление любого признака обусловлено в конечном счете генами, контролирующими этот признак, то на степень развития определенных признаков может оказывать влияние среда.

Изучение фенотипических различий в любой большой популяции показывает, что существуют две формы изменчивости - дискретная и непрерывная. Для изучения изменчивости какого-либо признака, например роста у человека, необходимо измерить этот признак у большого числа индивидуумов в изучаемой популяции. Результаты измерений представляют в виде гистограммы, отражающей распределение частот различных вариантов этого признака в популяции. На рис. 4 представлены типичные результаты, получаемые при таких исследованиях, и они наглядно демонстрируют различие между дискретной и непрерывной изменчивостью.

2.1 Влияние среды

Главный фактор, детерминирующий любой фенотипический признак, - это генотип. Генотип организма определяется в момент оплодотворения, но степень последующей экспрессии этого генетического потенциала в значительной мере зависит от внешних факторов, воздействующих на организм во время его развития. Так, например, использованный Менделем сорт гороха с длинным стеблем обычно достигал высоты 180 см. Однако для этого ему необходимы были соответствующие условия - освещение, снабжение водой и хорошая почва. При отсутствии оптимальных условий (при наличии лимитирующих факторов) ген высокого стебля не мог в полной мере проявить свое действие. Эффект взаимодействия генотипа и факторов среды продемонстрировал датский генетик Иогансен. В ряде экспериментов на карликовой фасоли он выбирал из каждого поколения самоопылявшихся растений самые тяжелые и самые легкие семена и высаживал их для получения следующего поколения. Повторяя эти эксперименты на протяжении нескольких лет, он обнаружил, что в пределах «тяжелой» или «легкой» селекционной линии семена мало различались по среднему весу, тогда как средний вес семян из разных линий сильно различался. Это позволяет считать, что на фенотипическое проявление признака оказывают влияние как наследственность, так и среда. На основании этих результатов можно определить непрерывную фенотипическую изменчивость как «кумулятивный эффект варьирующих факторов среды, воздействующих на вариабельный генотип». Кроме того, эти результаты показывают, что степень наследуемости данного признака определяется в первую очередь генотипом. Что касается развития таких чисто человеческих качеств, как индивидуальность, темперамент и интеллект, то, судя по имеющимся данным, они зависят как от наследственных, так и от средовых факторов, которые, взаимодействуя в различной степени у разных индивидуумов, влияют на окончательное выражение признака. Именно эти различия в тех и других факторах создают фенотипические различия между индивидуумами. Мы пока еще не располагаем данными, которые твердо указывали бы на то, что влияние каких-то из этих факторов всегда преобладает, однако среда никогда не может вывести фенотип за пределы, детерминированные генотипом.

2.2 Источники изменчивости

Необходимо ясно представлять себе, что взаимодействие между дискретной и непрерывной изменчивостью и средой делает возможным существование двух организмов с идентичным фенотипом. Механизм репликации ДНК при митозе столь близок к совершенству, что возможности генетической изменчивости у организмов с бесполым размножением очень малы. Поэтому любая видимая изменчивость у таких организмов почти наверное обусловлена воздействиями внешней среды. Что же касается организмов, размножающихся половым путем, то у них есть широкие возможности для возникновения генетических различий. Практически неограниченными источниками генетической изменчивости служат два процесса, происходящие во время мейоза:

1. Реципрокный обмен генами между хромата- дамп гомологичных хромосом, который может происходить в профазе 1 мейоза. Он создает новые группы сцепления, т.е. служит важным источником генетической рекомбинации аллелей.

2. Ориентация пар гомологичных хромосом (бивалентов) в экваториальной плоскости веретена в метафазе I мейоза определяет направление, в котором каждый член пары будет перемещаться в анафазе I. Эта ориентация носит случайный характер. Во время метафазы II пары хроматид опять-таки ориентируется случайным образом, и этим определяется, к какому из двух противоположных полюсов направится та или иная хромосома во время анафазы II. Случайная ориентация и последующее независимое расхождение (сегрегация) хромосом делают возможным большое число различных хромосомных комбинаций в гаметах; число это можно подсчитать.

Третий источник изменчивости при половом размножении - это то, что слияние мужских и женских гамет, приводящее к объединению двух гаплоидных наборов хромосом в диплоидном ядре зиготы, происходит совершенно случайным образом (во всяком случае, в теории); любая мужская гамета потенциально способна слиться с любой женской гаметой.

Эти три источника генетической изменчивости и обеспечивают постоянную «перетасовку» генов, лежащую в основе происходящих все время генетических изменений. Среда оказывает воздействие на весь ряд получающихся таким образом фенотипов, и те из них, которые лучше всего приспособлены к данной среде, преуспевают. Это ведет к изменениям частот аллелей и генотипов в популяции. Однако эти источники изменчивости не порождают крупных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.

2.3 Мутация

Для современной теории эволюции вопрос о мутации имеет большое значение. Если бы мутации не происходили, эволюция была бы невозможна. Поэтому мы должны изучить вопрос о мутациях, и посмотреть, действительно ли они имеют место, как утверждают эволюционисты.

Прежде всего несомненно, что мутации происходить могут, и происходят. Во-вторых, столь же несомненно, что любое изменение гена это всегда изменение в худшую сторону. Этого и следовало ожидать. Гены сложны и удивительны, и любое крупное изменение в них приводит к их менее эффективному функционированию.

Это генетики выяснили после семидесяти лет интенсивного экспериментирования. За это время они вызвали тысячи мутаций в различных организмах, но им так и не удалось получить ни одной мутации, которая убедительным образом оказывала бы благоприятное воздействие на организм. Действительно, в настоящее время является общепризнанным тот факт, что мутации в естественных условиях столь редки, и столь часто оказываются вредными, что когда они имеют место, они не имеют никакого значения для генетики какой-то популяции живых существ. Все особи, претерпевающие мутацию, проявляют тенденцию к гибели, и поэтому генетическая структура популяции в целом остается незатронутой этой мутацией.

Мутации далеки от того, чтобы быть способными продуцировать новые, сильные гены, которые сделали бы возможной эволюцию какой-то породы организмов. Они представляют собою крайне редкие и разрушительные события, не изменяющие генетическую структуру породы в целом -- за исключением некоторых случаев ослабления ее. Это в равной степени относится как к так называемым благоприятным мутациям, таким как серповидноклеточная анемия, так и к стойкости к лекарствам бактерий. Но даже и в том случае, если бы мутации происходили так, как утверждают эволюционисты, эволюция все равно была бы невозможна.

2.4 Истощение генофонда

Эволюционисты утверждают, что эволюция происходит именно за счет процесса такого типа. Но что происходит с генетической точки зрения? В первоначальной популяции существовали гены, определяющие черную, темно-серую, светло-серую и белую окраску. На черном острове популяция утратила все гены кроме управляющих черной и темно-серой окраской, поскольку гены светло-серой и белой окраски оказались утраченными за счет гибели светлых птиц. Таким образом, естественный отбор привел к тому, что генофонд стал беднее. Теперь в нем меньше форм генов, а не больше, чего требует эволюция (так как в случае, если популяция не приобретает новых генов, она никогда не может стать более сложной).

Поскольку такая новая популяция темных птиц генетически беднее, она более склонна к вымиранию. Незначительное изменение окружающей среды, например, посветление этого острова, будет способствовать истреблению этой породы хищниками.

Если бы такой процесс происходил в крупны масштабах, можно было бы ожидать вымирания многих видов, и именно это демонстрирует история. Иными словами, естественный отбор определяет тенденцию в направлении к генетической смерти, а не в направлении развития новых видов.

Мы видим, что процесс естественного отбора приводит к новым разновидностям живых существ, гораздо более бедных генами в сравнении с ранней популяцией, из которой они развились. С эволюционистской точки зрения это означает, что амебоподобные существа, из которых все мы эволюционировали, должны были обладать бесконечно более богатым и разнообразным генофондом, чем наш собственный! Это совершенно смехотворно. С истинно научной точки зрения, в прошлом должны были существовать группы животных, обладавшие богатым разнообразием признаков, и из которых образовались те более специализированные типы, какие мы наблюдаем в наши дни. Я считаю, что именно об этом говорится в Библии, где сказано, что Бог сотворил животных «по роду их».

В этом процессе естественного отбора мы видим не средство, за счет которого происходила эволюция, а великую мудрость и милость Бога. Вспомним, что климат, в котором мы живем на Земле в настоящее время, совсем не тот, который преобладал во времена сотворения Земли. Всемирный Потоп времен Ноя вызвал громадные изменения. В своей великой мудрости Бог сотворил людей, и большинство животных, наделенными достаточной генетической приспособляемостью для выживания в условиях этих крупных изменений. Некоторые из них, например, динозавры, не смогли приспособиться, и поэтому вымерли. Мы наблюдаем в наши дни такие существа, как тропические рыбы и полярные животные, места обитания которых ограничены рамками узких климатических регионов. Несомненно, что естественный отбор обеспечил им возможность выживания из первоначальных сотворенных Богом популяций.

Таким образом, процесс естественного отбора оперирует факторами, уже присутствующими в популяции. Например, темная разновидность пяденицы березовой существовала еще до того, как в результате естественного отбора она превратилась в самую обычную муху. Бог сотворил нас с намного большими потенциальными возможностями, чем требовалось вначале. Адам, по-видимому, обладал генетическим потенциалом, достаточным для всех живущих теперь на земле человеческих рас.

3. Оценка теории Ламарка

Выдающаяся заслуга Ламарка заключается в создании первого эволюционного учения. Он отверг идею постоянства видов, противопоставив ей представление об изменяемости видов. Его учение утверждало существование эволюции как исторического развития от простого к сложному. Впервые был поставлен вопрос о факторах эволюции. Ламарк совершенно правильно считал, что условия среды оказывают важное влияние на ход эволюционного процесса. Он был одним из первых, кто отметил чрезвычайную длительность развития жизни на Земле. Однако Ламарк допустил серьезные ошибки прежде всего в понимании факторов эволюционного процесса, выводя их из якобы присущего всему живому стремления к совершенству. Также неверно понимал причины возникновения приспособленности , прямо связывал их с влиянием окружающей среды. Это породило очень распространенные, но научно совершенно необоснованные представления о наследовании признаков, приобретаемых организмами под непосредственным воздействием среды.

Эволюционное учение Ламарка не было достаточно доказательным и не получило широкого признания среди его современников.

4. Основные положения теории Дарвина

Основные принципы эволюционного учения Дарвина сводятся к следующим положением:

1.Каждый вид способен к неограниченному размножению.

2.Ограниченность жизненных ресурсов препятствует реализации потенциальной возможности беспредельного размножения. Большая часть особей гибнет в борьбе за существование и не оставляет потомства.

3.Гибель или успех в борьбе за существование носят избирательный характер. Организмы одного вида отличаются друг от друга совокупностью признаков. В природе преимущественно выживают и оставляют потомство те особи, которые имеют наиболее удачное для данных условий сочетание признаков, т.е. лучше приспособлены.

Избирательное выживание и размножение наиболее приспособленных организмов Ч. Дарвин назвал естественным отбором.

Под действием естественного отбора, происходящего в разных условиях, группы особей одного вида из поколения в поколение накапливают различные приспособительные признаки. Группы особей приобретают настолько существенные отличия, что превращаются в новые виды.

Крупнейшие ученые в разных странах способствовали распространению эволюционной теории Дарвина, защищали ее от нападок и сами вносили вклад в ее дальнейшее развитие. Дарвинизм оказал сильнейшее влияние не только на биологию и естественные науки, но и на общечеловеческую культуру, способствуя развитию естественнонаучных взглядов на возникновение и развитие живой природы и самого человека.

Естественный отбор

Однако о правильности постулатов генетики должно быть сказано гораздо больше. Далекие от того, чтобы поддержать эволюционную теорию, исследования последних семидесяти лет приводят к единственному выводу: эволюция происходить не могла, и побеждает Библия. Рассмотрим теоретический случай того, что эволюционисты называют естественным отбором, а затем проследим за ним до логического вывода.

Представить себе популяцию морских птиц, которые могут существовать в условиях одного из нескольких различных цветов. По мере увеличения этой популяции некоторые птицы колонизируют соседний остров, цвет которого темный. Белые и светло-серые птицы на этом острове хорошо заметны хищникам, которые их уничтожают. Выживают темные птицы, которые незаметны. Постепенно порода темных птиц развивается, тогда как светлые гибнут.

Подобный же процесс происходит на другом соседнем острове, цвет которого на этот раз светлый, и птицы на нем выживают светлые. Таким образом, за счет естественного отбора из первоначальной популяции развиваются две породы птиц. В конечном счете их можно рассматривать как новые виды.

6. Доказательства единства происхождения органического мира

1. Все организмы, будь то вирусы, бактерии, растения, животные или грибы, имеют удивительно близкий элементарный химический состав.

2. У всех у них особо важную роль в жизненных явлениях играют белки и нуклеиновые кислоты, которые построены всегда по единому принципу и из сходных компонентов. Высокая степень сходства обнаруживается не только в строении биологических молекул, но и в способе их функционирования. Принципы генетического кодирования, биосинтеза белков и нуклеиновых кислот едины для всего живого.

3.У подавляющего большинства организмов в качестве молекул-аккумуляторов энергии используется АТФ, одинаковы также механизмы расщепления сахаров и основной энергетический цикл клетки.

4.Большинство организмов имеют клеточное строение.

6.1 Эмбриологические доказательства эволюции

Отечественные и зарубежные ученные обнаружили и глубоко изучили сходства начальных стадий эмбрионального развития животных. Все многоклеточные животные проходят в ходе индивидуального развития стадии бластулы и гаструлы. С особой отчетливостью выступает сходство эмбрионального стадий в пределах отдельных типов или классов. Например, у всех наземных позвоночных, так же и у рыб, обнаруживается закладка жаберных дуг, хотя эти образования не имеют функционального значения у взрослых организмов. Подобное сходство эмбриональных стадий объясняется единством происхождения всех живых организмов.

6.2 Морфологические доказательства эволюции

Особую ценность для доказательства единства происхождения органического мира представляют формы, сочетающие в себе признаки нескольких крупных систематических единиц. Существование таких промежуточных форм указывает на то, что в прежние геологические эпохи жили организмы, являющиеся родоначальниками нескольких систематических групп. Наглядным примером этого может служить одноклеточный организм эвглена зеленая. Она одновременно имеет признаки, типичные для растений и для простейших животных.

Строение передних конечностей некоторых позвоночных несмотря на выполнение этими органами совершенно разных функций, в принципиальных чертах строение сходны. Некоторые кости в скелете конечностей могут отсутствовать, другие - срастаться, относительные размеры костей могут меняться, но их гомология совершенно очевидна. Гомологичными называются такие органы, которые развиваются из одинаковых эмбриональных зачатков сходным образом.

Некоторые органы или их части не функционируют у взрослых животных и являются для них лишними - это так называемые рудиментарные органы или рудименты. Наличие рудиментов, так же как и гомологичных органов, тоже свидетельство общности происхождения.

6.3 Палеонтологические доказательства эволюции

Палеонтология указывает на причины эволюционных преобразований. В этом отношении интересна эволюция лошадей. Изменение климата на Земле повлекло за собой изменение конечностей лошади. Параллельно изменению конечностей происходило преобразование всего организма: увеличение размеров тела, изменения формы черепа и усложнение строения зубов, возникновения свойственного травоядным млекопитающим пищеварительного тракта и многое другое.

В результате изменения внешних условий под влиянием естественного отбора произошло постепенное превращение мелких пятипалых всеядных животных в крупных травоядных. Богатейший палеонтологический материал - одно из наиболее убедительных доказательств эволюционного процесса, длящегося на нашей планете уже более 3 миллиардов лет.

Биогеографические доказательства эволюции

Ярким свидетельством происшедших и происходящих эволюционных изменений является распространение животных и растений по поверхности нашей планеты. Сравнение животного и растительного мира разных зон дает богатейший научный материал для доказательства эволюционного процесса. Фауна и флора Палеоарктической и Неоарктической областей имеют много общего. Это объясняется тем, что в пролом между названными областями существовал сухопутный мост - Берингов перешеек. Другие области имеют мало общих черт.

Таким образом, распределение видов животных и растений по поверхности планеты и их группировка в биографические зоны отражает процесс исторического развития Земли и эволюции живого.

7. Исследования Менделя

7.1 Эксперимент Менделя

Что в открытии Менделя говорило против дарвиновской теории эволюции? Лучшим ответом на этот вопрос будет оценка того, что он в действительности открыл. Мендель скрещивал различные сорта пищевого гороха. При скрещивании растения с красными цветками с растением с белыми цветками потомство имело красные цветки. Затем Мендель скрестил это красноцветное потомство между собой, и обнаружил, что получилось их потомство с соотношением 3 красных : 1 белый.

Это будет более понятно, если обратиться к генам, участвовавшим в этих скрещиваниях. Понятие «ген», по Менделю, можно рассматривать как элемент наследственности, определяющий какую-то конкретную характеристику организма, в данном случае окраску цветка. Он может существовать в двух формах, вызывающей развитие красных цветков, и вызываю щей развитие белых цветков. Потомство от первоначального скрещивания красно-цветковых растений с бело-цветковыми имело, без исключения, красные цветки, хотя исходные растения имели гены как для красных цветков, так и для белых.

Мендель сделал вывод о том, что ген красного цвета должен преобладать над белым, и поэтому любое наделенное обоими этими генами растение должно быть красным. Когда эти красные растения скрестили друг с другом, стало возможным объединение двух белых генов, и получение потомства с белыми цветками. Шанс на то, что потомство получит по меньшей мере один красный ген, определяется отношением 3:1.

Мендель нашел, что когда он скрещивал красно-цветковые растения, полученные в качестве потомства от его первоначального скрещивания, он получал как белые цветки, так и красные. Теория Дарвина основывается на предположении о том, что в подобном случае белый цвет является новым признаком, приобретенным молодыми растениями, которым их родители не обладали. В конечном счете, при продолжении эволюционного развития сорт должен приобрести новые признаки.

Мендель показал, что этот признак не был приобретен. Он все время присутствовал в поколении родителей, хотя и подавлялся более преобладающим геном. Если применить к идеям Менделя статистику, можно очень легко показать, что гены у нового поколения показывают ту же частоту проявления, что и у поколения родителей. Можно было бы вызвать утрату каких-то генов путем убийства тех особей, которые ими владеют, но новые гены приобрести невозможно.

Не удивительно, что дарвиновская теория начала искать выход из этого затруднительного положения, когда выявились эти факты. Она была спасена от полного краха появлением теории, согласно которой гены могут иногда изменяться, превращаясь в совершенно новые формы. Это радикальное изменение в генах известно как мутация.

В этом виде и существует ныне дарвиновская теория. Предполагается, что мутации могут изменять гены в новую форму. Утверждается, что процесс естественного отбора действует за счет отбора этих новых генов, благоприятных для организма, и отбрасывания других.

Эволюционисты утверждают, что классическим примером этого является случай пяденицы березовой. В 1860-е годы цвет этой березовой пяденицы был светлым, хотя были известны и редкие темные экземпляры. В течение следующих 100 лет темная разновидность становилась все более и более обычной, пока в конечном счете редкой не стала светлая разновидность. Причиной этого изменения является то, что темная разновидность была непрактичной изначально, так как была очень заметна на фоне коры деревьев, и легко становилась добычей хищников. Светлую разновидность заметить было нелегко, и поэтому она была защищена от хищников. Однако, по мере промышленного развития стволы деревьев почернели от сажи, и ситуация стала обратной. Теперь светлая разновидность стала заметной хищникам, тогда как темная оказалась более защищенной.

Это пример того, что эволюционисты называют естественным отбором. Теперь гены будут отбираться в том случае, если они сообщают какое-то преимущество организму, и предполагается, что в результате мутации могут возникать новые гены.

7.2 Краткое изложение сути гипотез Менделя

Каждый признак данного организма контролируется парой аллелей.

Если организм содержит два различных аллеля для данного признака, то один из них (доминантный) может проявляться, полностью подавляя проявление другого (рецессивного).

При мейозе каждая пара аллелей разделяется (расщепляется) и каждая гамета получает по одному из каждой пары аллелей (принцип расщепления).

При образовании мужских и женских гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары (принцип независимого распределения).

Каждый аллель передается из поколения в поколение как дискретная не изменяющаяся единица.

Каждый организм наследует по одному аллелю (для каждого признака) от каждой из родительских особей.

8. Клонирование

Многие спрашивают: "Для чего клонировать человека?" Существует как минимум две веские причины: чтобы предоставить возможность семьям зачать детей-близнецов выдающихся личностей и чтобы позволить бездетным парам иметь детей. Живя в свободном обществе, мы также должны задаться вопросом: "Действительно ли отрицательные последствия настолько неизбежны, что нам следует запретить это делать взрослым людям, действующим добровольно?" Мы увидим, что в целом отрицательные последствия не так уж непреодолимы. Там, где предвидятся определенные злоупотребления, они могут быть предотвращены с помощью узконаправленных законов и регулирующих норм, о которых будет говориться ниже.

Что же мы можем ожидать от человеческих клонов? Ответ вытекает из изучения обычных идентичных близнецов. По внешности клон практически полностью повторяет оригинального индивида, имеет практически тот же рост и телосложение. Для известных супермоделей и кинозвезд это может оказаться наиболее важными качествами. Идентичные близнецы имеют 70-процентную корреляцию в интеллекте и 50-процентную корреляцию в чертах характера. Это означает, что если клонировать выдающегося ученого, то его клон-близнец может на самом деле оказаться еще умнее, чем исходный ученый! В настоящее время мы не можем с уверенностью сказать, какой процент близнецов выдающихся людей будет делать равные по значимости вклады в науку. Однако, если запретить клонирование, мы никогда и не узнаем. Решительность и энергичность - несомненно, важные характеристики многих выдающихся людей. А на них, похоже, сильно влияет генетика. Если же обнаружится, что клоны выдающихся людей не оправдывают репутацию своих предшественников, то стимул для клонирования людей ослабнет. Тогда мы увидим, что люди, будучи информированными, захотят производить клонирование менее часто.

8.1 Задачи стоящие перед клонированием
Клонирование органов и тканей - это задача номер один в области транспланталогии, травматологии и в других областях медицины и биологии. При пересадке клонированного органа не надо думать о подавлении реакции отторжения и возможных последствиях в виде рака, развившегося на фоне иммунодефицита. Клонированные органы станут спасением для людей, попавших в автомобильные аварии или какие-нибудь иные катастрофы, или для людей, которым нужна радикальная помощь из-за заболеваний пожилого возраста (изношенное сердце, больная печень и т.д.).
Самый наглядный эффект клонирования - дать возможность бездетным людям иметь своих собственных детей. Миллионы семейных пар во всем мире сегодня страдают, будучи обреченными, оставаться без потомков. По признанию Андрея Акопяна, директора Республиканского Центра репродукции человека Минздрава РФ, у нас в стране бесплодна каждая шестая - седьмая семейная пара. Какие трагедии, какие семейные драмы возникают на этой почве! И вот, оказывается, эту ситуацию можно изменить. Можно иметь своего собственного ребенка, реальное продолжение самого себя во времени.
Далее. Клонирование поможет людям, страдающим тяжелыми генетическими болезнями. Если гены, определяющие какую-либо подобную болезнь, содержатся в хромосомах отца, то в яйцеклетку матери пересаживается ядро ее собственной соматической клетки, - и тогда появится ребенок, лишенный опасных генов, точная копия матери. Если эти гены содержатся в хромосомах матери, то в ее яйцеклетку будет перемещено ядро соматической клетки отца, - появится здоровый ребенок, копия отца.
И еще. Любители всяческой экзотики, наверное, никогда не переводились среди рода человеческого. Есть они и сейчас: и те, кто завещают отправить свой прах на ракете в сторону Солнца, и те, кто тратят десятки тысяч долларов на сохранение своего тела в криогенных камерах до того времени, когда медицина сумеет вернуть их в нормальное состояние и избавить от неизлечимых сегодня болезней. Думается, и в области клонирования найдутся подобные любители экзотики. Одни пожелают увидеть свою собственную копию, свое телесное "альтер эго" еще при своей жизни. Другие захотят "возродиться" в иную историческую эпоху: спустя 50 - 100 лет.
Более скромная, но не менее важная задача клонирования - регулирование пола сельскохозяйственных животных и клонирование в них сугубо человеческих генов, "терапевтических белков", которые используются для лечения людей. Например, гемофиликов, которые страдают от мутаций в гене, кодирующем кровеостанавливающий белок ("фактор IX"). Сегодня эти белки добывают из крови доноров, а те бывают разные, в том числе и инфицированные вирусом СПИДа. Вот почему гемофилики считаются "группой риска" по СПИДу. В последнем номере за 1997 год журнал "Сайенс" сообщил о клонировании американскими учеными шести овец, три из которых несли человеческий ген фактора IX. Героиней стала овечка Полли, у которой ген активно работает! Со временем, когда она подрастет и обзаведется своим потомством, в ее молоке будет и человеческий белок, отличающийся от овечьего. Так овечка Полли станет служить на благо человечеству.
Учтя опыт шотландцев, американцы несколько модифицировали метод клонирования, использовав ядра эмбриональных, то есть зародышевых, фибробластов - клеток, дающих соединительную ткань, взятых из взрослого организма. Тем самым они резко увеличили эффективность метода, а также облегчили задачу введения "чужого" гена, поскольку в культуре фибробластов это делать значительно легче и дешевле.
Обошли они с помощью зародышевых клеток и теломерный "запрет". Вполне возможно, что все эти разумные доводы повлияли на американских законодателей, которые приняли в конгрессе билль о клональных правах: клонирование человека запрещается всего лишь на десять лет, запрет не распространяется на животных и клонирование органов и тканей... А 14 февраля, в день святого Валентина, "Радио России" сообщило, что ученые Йоханнесбургского университета обратились в свой Национальный этический комитет с просьбой разрешить им работы по клонированию человека. Вспомним, кстати, что первая пересадка сердца человеку была сделана именно в Йоханнесбурге.
8.2 Этическая проблема клонирования
Человеку свойствен страх перед новым и неизведанным. Сейчас уже забыли, что в конце семидесятых мир всколыхнула гораздо более жаркая дискуссия о возможности клонирования людей, возникшая после успешного клонировання лягушек. В ту пору ученые отмахнулись: "Млекопитающие - не лягушки. Понадобятся долгие десятилетия, если не сотни лет, чтобы научиться работать с гораздо меньшими яйцеклетками людей".
Но тогда же на волне общественного интереса Айра Левин, известный американский журналист, пишущий на темы науки, быстро опубликовал книжку "Мальчики из Бразилии", в которой рассказывалось, как в далеких джунглях этой страны клонируют гитлеров из клеток кожи фюрера... И все же не будем забывать, что полное название книги Мэри имело продолжение: "Или современный Прометей". Согласно греческому мифу, Зевс в конце концов простил "мятежника" и отпустил его с гор Кавказа.

Французскими биологами публично обсуждается перспектива проведения работ по клонированию человека.

Минувшие месяцы дали специалистам возможность трезво осмыслить ситуацию, оценить методические и технологические трудности, лежащие в области клонирования высших млекопитающих. Обдумать, наконец, и этические проблемы: ведь, при клонировании человека каждая "неудачная копия" окажется уродом, но при этом полноправным человеком и за его уродство ответственность будет нести фактически все человечество. Будет нести как сообщество людей, которые не сумели остановить безнравственные посягательства науки. В публикуемой дальше подборке высказываются мнения "за" и "против" клонирования, дается хронология работ по клонированию амфибий и млекопитающих, рассказывается об американском физике Сиде, чьи громогласные заявления о намерении приступить к работам по клонированию человека вызвали бурную реакцию в общественном мнении.

Так что прежде всего постараемся не поддаваться страхам перед новым и неизведанным. А вспомним, что клонирование постоянно происходит в естественных условиях, когда рождаются однояйцевые, или идентичные близнецы. Идентичны они в своем генном наборе, что легко доказывается возможностью пересадок органов и тканей между ними. Просто развитие нескольких зародышей из одного оплодотворенного яйца происходит редко и непредсказуемо.

При использовании клонирования, сетуют противники женского равноправия и феминизма, не нужны будут мужики. Это неверно с биологической и социальной точек зрения. Наши женщины вынуждены были после войны обходиться без мужчин, не пришедших обратно. Вряд ли это принесло кому-нибудь пользу. И вряд ли женщины, подобно геродотовским амазонкам, смогут и в плане продолжения рода всегда обходиться без мужских половых клеток. Здесь научные возражения гораздо более серьезны. Но о них чуть позже. Клонирование будет нарушать "промысел божий", заявляют с амвона. Хорошо, отвечают ученые, аппендицит тоже в божьих "руцех", однако никто, даже сам патриарх и папа, не обходится без услуг врачей. Ученые же говорят как раз об "исправлении" тех генетических дефектов, которые и возникли-то благодаря божьему "недосмотру".

Таким образом, эмоциональные возражения против клонирования людей не имеют под собой какой бы то ни было рациональной базы.

Заключение

Интерес, проявляемый учеными всего мира к наследственности человека, не случаен. В последние десятилетия человечество тесно соприкасается с чуждыми для него химическими веществами. Многие из них, часто встречающиеся, вызывают мутации. Благодаря развитию медицины человек научился бороться со многими заболеваниями, в частности, на генетическом уровне.

Повышенный интерес медицинской генетики к наследственным заболеваниям объясняется тем, что во многих случаях знание биохимических механизмов развития заболевания позволяет облегчить страдания больного. Больному вводят не синтезирующиеся в организме ферменты или исключают из пищевых рационов продукты, которые не могут быть использованы вследствие отсутствия в организме необходимых для этого ферментов. Однако следует помнить, что вылечивается только болезнь, то есть фенотипическое проявление «вредного» гена, и вылеченный человек продолжает оставаться его носителем и может передавать этот ген своим потомкам.

Таким образом можно отметить, что развитие науки в области генетики играет важную роль в предотвращении и излечении заболеваний на генетическом уровне.

Список использованной литературы

1. С. Бейкер. Камень преткновения. Верна ли теория эволюции? - М., «Протестант», 1992

2. Arthur Rook, «Origins and Growth of Biology», (Penguin, 1964)

3. R.L. Gregory, «Eye and Brain», (Weidenfeld and Nicolson, 1966)

4. Н. Грин, Биология, Москва, “МИР”, 1993.

5. Ф. Кибернштерн, Гены и генетика, Москва, “Параграф”, 1995.

6. А. Артёмов, Что такое ген, Таганрог, “Красная страница”, 1989.

7. Учение о макроэволюции, В.И. Назаров, 1991

8. Большая Российская Энциклопедия, 1997

9. Географический атлас мира, 1983

10. Популярный биологический словарь, Н.Ф. Реймерс, 1991

11. Биологический энциклопедический словарь, 1986

12. Камень преткновения, С. Бейкер, 1992

13. Опыт согласования научных данных: геология, палеонтология, археология, палеогеография, антропология, С. Ляшевский, 1996.

14. А также статьи: Ламаркизм и неоламаркизм, Сальтационизм (Коржинский), Научный креационизм (Агассис).

15. Н. Грин, У. Стаут, Д. Тейлор, Биология, Москва, «Мир», 1993 г.

16. Ф. Киберштерн, Гены и генетика, Москва, «Параграф», 1995 г.

17. Научно-популярный журнал «Знание-сила», №4, 1998 г.

18. Природа, №1000, декабрь 1998 г.

19. Русская газета, статья Стивена Вира: «Клонироварие человека аргументы в защиту»


Подобные документы

  • Сущность теорий происхождение видов Ламарка и Дарвина. Естественная эволюция как необратимое историческое развитие органического мира с постепенным его усложнением. Видовое разнообразие царства животных и значение эмбриологии в определении их родства.

    реферат [29,8 K], добавлен 11.07.2009

  • Формы взаимодействия аллельных генов: полное и неполное доминирование; кодоминирование. Основные типы взаимодействия неаллельных генов: комплементарность; эпистаз; полимерия; гены-модификаторы. Особенности влияния факторов внешней среды на действие генов.

    курсовая работа [601,5 K], добавлен 21.09.2010

  • Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.

    лекция [2,8 M], добавлен 31.10.2016

  • Дивергентная эволюция и принцип монофилии по Ч. Дарвину. Сравнение взглядов Ж.Б. Ламарка и Ч. Дарвина на изменчивость организма. Происхождение всего органического мира из единого корня. Особенности организации и функций растительных и животных клеток.

    контрольная работа [910,6 K], добавлен 17.11.2011

  • Ген как последовательность ДНК, несущая информацию об определенном белке. Идентификация генов по кластеру (группе) мутаций. Элементарный фактор наследственности: доминантные и рецессивные признаки. Независимость генов, роль хромосом в наследственности.

    реферат [2,9 M], добавлен 26.09.2009

  • Изучение понятия мутации. Отличительные черты генотипической, комбинативной, мутационной изменчивости. Причины мутаций и их искусственное вызывание. Признаки вредных и полезных мутационных процессов. Значение хромосомных и геномных мутаций в эволюции.

    реферат [37,5 K], добавлен 12.11.2010

  • Возникновение теории эволюции и ее значение. Представление о градации живых существ и теория изменчивости видов. Законы эволюции Ж.Б. Ламарка. Концепция искусственного отбора. Значение теории эволюции Ч. Дарвина. Результаты действия естественного отбора.

    контрольная работа [34,9 K], добавлен 13.11.2009

  • Особенности транскрипции генов оперонов на примере пластома ячменя. Структурно-термодинамические исследования генов. Поиск, картирование элементов геномных последовательностей. Анализ гена растительных изопероксидаз. Характеристика модифицированных генов.

    реферат [23,2 K], добавлен 12.04.2010

  • Мейоз как один из ключевых механизмов наследственности и изменчивости. Биологическое значение мейоза: поддержание постоянства кариотипа в ряду поколений, обеспечение рекомбинации хромосом и генов. Законы Грегора Менделя как основа классической генетики.

    презентация [3,3 M], добавлен 15.04.2014

  • Описание комплементарного взаимодействия генов. Рассмотрение характерных особенностей модификационной и наследственной (комбинативной, мутационной) закономерностей изменчивости организма. Задачи и методы селекции растений, животных и микроорганизмов.

    реферат [20,8 K], добавлен 06.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.