Клонирование: за и против
Достижения генной инженерии. Понятие и сущность клонирования. Клонирование животных. Репродуктивное и терапевтическое клонирование. Проблемы клонирования человека: этическая, религиозная, правовая, моральная. Возможные последствия клонирования человека.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 26.03.2009 |
Размер файла | 31,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Введение
Слово «клонирование» становится популярнее с каждых годом. Хотя лишь очень немногие до конца понимают, что же это такое. И почему одни специалисты убеждены, что клонирование спасет человечество, а другие столь же категорично считают, что скорее оно его погубит. Давайте разберемся…
История вопроса
История клонирования началась около 4 тыс. лет назад, когда неизвестные гении заметили, что растения можно размножать с помощью отростков, черенков, усиков и клубней - дочернее растение получает все гены растения-родителя в неизмененном виде. Однако термин "клонирование" появился относительно недавно. В 1963 году британский генетик Джон Бёрдон Сандерсон ХолдейнJohn Burdon Sanderson Haldane изобрел и ввел в употребление слово "клон" (греческое слово, переводится как "ветвь" или "отпрыск"). Любопытно, что впервые оно появилось в его нашумевшей речи с названием "Биологические возможности человеческих существ на следующие десять тысячелетий"Biological Possibilities for the Human Species of the Next Ten-Thousand Years.
Что же это такое?
Биологи пользуются несколькими определениями термина "клон". Чаще всего под клоном понимают совокупность организмов, появившихся на свет путем неполового размножения, сохраняющего всю наследственную информацию их единого предка. Клонирование - точное воспроизведение генной структуры того или иного живого объекта в некотором количестве копий. В ходе клонирования воспроизводится именно и только наследственная конституция организма, его генотип. В то же время, клоны вполне могут отличаться как от общего предка, так и друг от друга по своим индивидуальным надгенетическим свойствам (размеры, окраска, восприимчивость к болезням и т.п.). Совокупность таких свойств называется фенотипом; следовательно, при клонировании сохраняется генотип, но не фенотип. Например, овечка Долли отнюдь не была точной фенотипической копией овцы, клетки которой были использованы для ее клонирования. Это естественно, поскольку ее эмбрион развивался совсем в другом окружении, в матке суррогатной матери-овцы. Как известно, Долли постигла ранняя смерть, поскольку она страдала целым букетом патологий, которых не было у ее генетической "родительницы". Клонирование - универсальный способ размножения бактерий и одноклеточных растений и животных. Главное здесь то, что при клонировании все гены без изменений переходят от предков к потомкам, если не считать случайных мутаций. Напротив, при половом размножении дочерний организм получает половину генов от отца, а половину - от матери. Поэтому клонами нельзя считать даже однояйцевых близнецов - их генотипы, конечно, одинаковы, но все же не совпадают с генотипами родителей.
Первые опыты на амфибиях
Первые клоны животных были созданы еще на рубеже 19-го и 20-го столетий. Однако тогдашние методики клонирования можно было использовать лишь в опытах с небольшим числом примитивных живых существ, например, морских ежей и саламандр. Возможность клонирования эмбрионов позвоночных впервые была показана в начале 50-х годов в опытах на амфибиях. Американские исследователи Бриггс и Кинг разработали микрохирургический метод пересадки ядер эмбриональных клеток с помощью тонкой стеклянной пипетки в лишенные ядра (энуклеированные) яйцеклетки. Они установили, что если брать ядра из клеток зародыша на ранней стадии его развития - бластуле, то примерно в 80% случаев зародыш благополучно развивается дальше и превращается в нормального головастика. Если же развитие зародыша, донора ядра, продвинулось на следующую стадию - гаструлу, то лишь менее чем в 20% случаев оперированные яйцеклетки развивались нормально. Эти результаты позже были подтверждены и в других работах. Большой вклад в эту область внес английский биолог Гердон. Он первым в опытах с южноафриканскими жабами Xenopus laevis (1962) в качестве донора ядер использовал не зародышевые клетки, а уже вполне специализировавшиеся клетки эпителия кишечника плавающего головастика. Ядра яйцеклеток реципиентов он не удалял хирургическим путем, а разрушал ультрафиолетовыми лучами. В большинстве случаев реконструированные яйцеклетки не развивались, но примерно десятая часть их них образовывала эмбрионы. 6,5% из этих эмбрионов достигали стадии бластулы, 2,5% - стадии головастика и только 1% развился в половозрелых особей. Однако появление нескольких взрослых особей в таких условиях могло быть связано с тем, что среди клеток эпителия кишечника развивающегося головастика довольно длительное время присутствуют первичные половые клетки, ядра которых могли быть использованы для пересадки. В последующих работах как сам автор, так и многие другие исследователи не смогли подтвердить данные этих первых опытов. Позже Гердон модифицировал эксперимент. Поскольку большинство реконструированных яйцеклеток (с ядром клетки кишечного эпителия) погибают до завершения стадии гаструлы, он попробовал извлечь из них ядра на стадии бластулы и снова пересадить их в новые энуклеированные яйцеклетки (такая процедура называется "серийной пересадкой" в отличие от "первичной пересадки"). Число зародышей с нормальным развитием после этого увеличивалось, и они развивались до более поздних стадий по сравнению с зародышами, полученными в результате первичной пересадки ядер. Затем Гердон вместе с Ласки (1970) стали культивировать in vitro (вне организма в питательной среде) клетки почки, легкого и кожи взрослых животных и использовать уже эти клетки в качестве доноров ядер. Примерно 25% первично реконструированных яйцеклеток развивались до стадии бластулы. При серийных пересадках они развивались до стадии плавающего головастика. Таким образом, было показано, что клетки трех разных тканей взрослого позвоночного (X. laevis) содержат ядра, которые могут обеспечить развитие, по крайней мере, до стадии головастика. В свою очередь ДиБерардино и Хофнер использовали для трансплантации ядра неделящихся и полностью дифференцированных клеток крови - эритроцитовлягушки Rana pipiens. После серийной пересадки таких ядер 10% реконструированных яйцеклеток достигали стадии плавающего головастика. Однако даже с помощью многократных серийных пересадок (более 100 клеточных циклов) реконструированные яйцеклетки дальше стадии головастика не развивались. Таким образом, во многих работах показано, что в случае амфибий донорами ядер могут быть лишь зародыши на ранних стадиях развития. Некоторые авторы называют подобные эксперименты клонированием амфибий, хотя правильнее называть их клонированием эмбрионов амфибий, так как в этом случае мы размножаем бесполым путем не взрослых животных, а зародышей. Дифференцировка клеток в ходе развития позвоночных сопровождается инактивацией неработающих генов. Поэтому клетки теряют тотипотентность, дифференцировка становится необратимой. В конце концов, у одних клеток происходит полное репрессирование генома, у других - в той или иной степени деградирует ДНК, а в некоторых случаях разрушается даже ядро. Однако наряду с дифференцированными кочетками культивируемые in vitro клеточные популяции содержат малодифференцированные стволовые клетки, которые и могут быть использованы как доноры ядер для клонирования млекопитающих. Опыты с амфибиями показали, что ядра различных типов клеток одного и того же организма генетически идентичны и в процессе клеточной дифференцировки постепенно теряют способность обеспечивать развитие реконструированных яйцеклеток, однако серийные пересадки ядер и культивирование клеток in vitro в какой-то степени увеличивает эту способность.
Клонирование овец
Создатели овцы Долли применили универсальный метод ядерного трансфера. В его основе лежит перенос ядра соматической клетки (в случае с Долли это были клетки молочной железы шестилетней беременной овцы) в неоплодотворенную овечью яйцеклетку с удаленным ядром (такие клетки называются энуклеированными). Яйцеклетка, подвергнутая этой операции, после обработки биостимуляторами начинает развиваться согласно генетической программе, записанной в пересаженном ядре. Ученые во главе с Йеном ВилмутомIan Wilmut, которым обязана своим рождением Долли, создали около трех сотен таких яйцеклеток и заставили их развиваться на питательных средах до стадии ранних эмбрионов. Когда эти эмбрионы перенесли в матки взрослых овец, некоторые из них забеременели, а одна (всего одна) благополучно разродилась вполне здоровой, как тогда казалось, ярочкой (прочие клоны оказались нежизнеспособными). К слову сказать, тогда же создатели Долли "изготовили" еще пять с половиной сотен клонов с помощью переноса ядер не "взрослых", а эмбриональных или фетальных клеток. Процент успеха в этих опытах оказался гораздо выше, они привели к рождению семи ягнят. Уиладсин еще в 1986 году показал, что и у эмбрионов овец на 16-клеточной стадии развития ядра сохраняют тотипотентность. Реконструированные яйцеклетки, содержащие ядра бластомеров 16-клеточных зародышей, развивались нормально до стадии бластоцисты в перевязанном яйцеводе овцы (в агаровом цилиндре), а после освобождения от агара и пересадки в матку овцы - второго реципиента - еще 60 дней. В другом случае донорами служили ядра 8 клеточных зародышей и были получены 3 живых ягненка, фенотип которых соотнетстиовал породе овец - доноров. В 1989 году Смит и Уилмут трансплантировали ядра клеток 16 клеточного эмбриона и ранней бластоцисты в лишенные ядра неоплодотворенные яйцеклетки овец. В первом случае было получено два живых ягненка, фенотип которых соответствовал породе овец - доноров ядер. Во втором случае один полностью сформировавшийся ягненок погиб во время родов. Его фенотип также соответствовал породе - донору. Авторы считали, что в ходе дифференцировки эмбриональных клеток происходит инактивация некоторых важных для развития генов, в результате которой ядра бластоцисты уже не могут репрограммироваться в цитоплазме яйцеклетки и обеспечить нормальное развитие реконструированного зародыша. Поэтому, по мнению авторов, в качестве доноров ядер лучше использовать 16-клеточные эмбрионы или культивируемые in vitro линии эмбриональных клеток, ядра которых обладают тотипотентностью. Позднее, в 1993-1995 годах, группа исследователей под руководством Уилмута получила клон овец - 5 идентичных животных, донорами ядер которых была культура эмбриональных клеток. Клеточную культуру получали следующим образом: выделяли микрохирургически эмбриональный диск из 9- дневного овечьего эмбриона (бластоцисты) и культивировали клетки in vitro в течение многих пассажей (по крайней мере, до 25). Сначала клеточная культура напоминала культуру стволовых недифференцированных эмбриональных клеток, но вскоре, после 2-3-х пассажей, клетки становились уплотненными и морфологически сходными с эпителиальными. Эта линия клеток из 9-дневного зародыша овцы была обозначена как TNT4. Чтобы донорское ядро и реципиентная цитоплазма находились на сходных стадиях клеточного цикла, останавливали деление культивируемых клеток TNT4 на определенной стадии (GO) и ядра этих клеток пересаживали в энуклеированные яйцеклетки (соответственно на стадии метафазы II). Реконструированные эмбрионы заключали в агар и трансплантировали в перевязанные яйцеводы овец. Через 6 дней эмбрионы вымывали из яйцевода первого реципиента и исследовали под микроскопом. Отбирали те, которые достигли стадии морулы или бластоцисты и пересаживали их в матку овцы - окончательного реципиента, где развитие продолжалось до рождения. Родилось 5 ягнят (самок) из них 2 погибли вскоре после рождения, 3-й в возрасте 10 дней, а 2 оставшихся нормально развивались и достигли 8-9-месячного возраста. Фенотипически все ягнята были сходны с породой овец, от которой получали исходную линию клеток TNT4. Это подтвердил и генетический анализ.
Эта работа, особенно в части культуры эмбриональных клеток, - значительное достижение в клонировании млекопитающих, хотя она и не вызвала столь шумного интереса, как статья того же Уилмута с соавторами, опубликованная в начале 1997 года, где сообщалось, что в результате использования донорского ядра клетки молочной железы овцы было получено клональное животное - овца по кличке Долли. Последняя работа методически во многом повторяет предыдущее исследование 1996 года, но в ней ученые использовали не только эмбриональные, но еще и фибробластоподобные клетки (фибробласты - клетки соединительной ткани) плода и клетки молочной железы взрослой овцы. Клетки молочной железы получали от шестилетней овцы породы финн дорcет, находящейся на последнем триместре беременности. Все три типа клеточных культур имели одинаковое число хромосом - 54, как обычно у овец. Эмбриональные клетки использовали в качестве доноров ядер на 7-9 м пассажах культивирования, фибробластоподобные клетки плода - на 4-6-м пассажах и клетки молочной железы - на 3-6-м пассажах. Деление клеток всех трех типов останавливали на стадии GO и ядра клеток пересаживали в энуклеированные ооциты (яйцеклетки) на стадии метафазы II. Большинство реконструированных эмбрионов сначала культивировали в перевязанном яйцеводе овцы, но некоторые и in vitro в химически определенной среде. Коэффициент выхода морул или бластоцист при культивировании in vitro в одной серии опытов был даже вдвое выше, чем при культивировании в яйцеводе. Поэтому, видимо, нет строки необходимости в промежуточном реципиенте и можно обойтись культивированием in vitro. Выход морул или бластоцист в серии опытов с культурой клеток молочной железы был примерно втрое меньше, чем в двух других сериях, когда в качестве доноров ядер использовали культуру фибробластов плода или эмбриональных клеток. Число живых ягнят в сравнении с числом пересаженных в матку окончательного реципиента морул или бластоцист было также в два раза ниже. В серии опытов с клетками молочной железы из 277 реконструированных яйцеклеток был получен только один живой ягненок, что говорит об очень низкой результативности такого рода экспериментов (0,36%). Анализ генетических маркеров всех семи родившихся в трех сериях экспериментов живых детенышей показал, что клетки молочной железы были донорами ядер для одного, фибробласты плода - для двух и эмбриональные клетки - четырех ягнят. Овца по кличке Долли развилась из реконструированной яйцеклетки, донором ядра которой была культивируемая клетка молочной железы овцы породы финн дорсет и фенотипически не отличается от овец этой породы, но сильно отличается от овцы-реципиента. Анализ генетических маркеров подтвердил этот результат. Успех авторов этой работы, прежде всего, связан с использованием длительных клеточных культур, так как после многих пассажей в культуре клеток могли быть отобраны малодифференцированные стволовые клетки, которые, вероятно, и были использованы как доноры ядер. Большое значение также имел тот факт, что авторы, учитывая результаты своих предыдущих работ, синхронизировали стадии клеточного цикла яйцеклеток реципиентов и клеток доноров.
Овечки, рыбки, обезьянки...
Долли отнюдь не была первым млекопитающим, появившимся на свет в результате клонирования с помощью ядерного трансфера. Впервые такой эксперимент двенадцатью годами ранее осуществил датчанин Стин ВилладсенSteen Willadsen. В 1984 году он объявил о рождении овцы, эмбрион которой развился из энуклеированной яйцеклетки с перенесенным эмбриональным ядром, а двумя годами позже - о рождении такой же коровы. Вилладсен работал в коммерческой фирме и потому не публиковал своих результатов в научных изданиях. Однако в кругах специалистов работы датского ученого были хорошо известны и оказали несомненное влияние на Вилмута и его сотрудников. Группе Вилмута впервые удалось клонировать млекопитающее посредством переноса в энуклеированные яйцеклетки ядер, извлеченных не из эмбриональных, а из "взрослых" клеток, в этом и состоит непреходящее значение их эксперимента. Рождение Долли мгновенно стало всемирной сенсацией, прежде всего потому, что оно создало массовые ожидания неизбежного и, возможно, скорого клонирования даже не человеческих эмбрионов, а живых людей. Хорошо известно, что эти прогнозы так и не стали реальностью. Впрочем, неудача с овечкой не остановила специалистов по клонированию. Вот примерная хроника подобных успешных опытов:1963 год - карп; 1996 год - овца; 2000 год - макака-резус, свинья; 2001 год - корова, бык- гаур, кошка; 2002 год - мышь; 2003 год - кролик (в Китае был клонирован кролик с помощью хромосом человека), мул, олень, лошадь, крыса; 2004 год - муха-дрозофила. Ныне до 85% всех попыток клонирования эмбрионов животных заканчиваются неудачей. При клонировании овцы Долли ученые пытались добиться успеха 276 раз. При клонировании лошади в одном случае (Италия) потребовалось 328 попыток, в другом (США - Франция) - 400. Любопытно, что после появления клонированных лошадей Североамериканский Жокейский КлубJockey Club of North American запретил использование клонированных лошадей на скачках. Более трети из числа выживших клонов животных рождается с серьезными расстройствами, угрожающими их жизни. По данным National Academic Press, по состоянию на 2002 год, в мире было клонировано 3 156 эмбрионов овцы - живыми на свет появились лишь 50 клонированных животных. Из 8 600 попыток клонировать корову успехом увенчались 111, из 7 613 попыток клонирования мышей - 54. 78 раз ученые пытались получить клон обезьяны - успеха они достигли лишь в двух случаях.
Клонирование против болезней
Для чего же человечество проводит все эти дорогостоящие опыты? Дело в том, что клонирование способно привести к спасению многих людей, которые страдают ныне неизлечимыми болезнями. Юные эмбрионы могут служить резервуаром особого рода клеток, известных как стволовые. Клетки этого типа отличаются от обычных тем, что они генетически не запрограммированы только на воспроизведение себе подобных. По этой причине стволовые клетки в ходе многократных делений могут превращаться в клетки сразу нескольких типов. Это означает, что такие клетки в принципе можно использовать для восстановления любых специализированных тканей, поврежденных в результате несчастного случая или болезни. Например, сахарный диабет первого рода развивается вследствие гибели специализированных бетаклеток поджелудочной железы, осуществляющих синтез инсулина. Врачи надеются, что это заболевание удастся излечивать посредством подсаживания в поджелудочную железу стволовых клеток, которые будут превращаться в полноценные бета-клетки. Аналогичным образом пересадка стволовых клеток может стать средством ликвидации травматических разрывов спинного мозга или залечивания участков сердечной мышцы, претерпевших некроз в результате инфаркта. Сейчас эта возможность многократно подтверждена не только многочисленными опытами на животных, но и целым рядом клинических экспериментов. Например, в 2003 году французские кардиологи сообщили, что им удалось значительно продлить жизнь 72-летнего пациента, перенесшего обширный инфаркт миокарда. В сердце этого больного были подсажены его собственные стволовые клетки. Эта операция улучшила самочувствие пациента и подарила ему еще полтора года жизни. Позднее аналогичные результаты были опубликованы врачами из Соединенных Штатов, Бразилии, Австралии и ФРГ. Японские ученые объявили о разработке методики выращивания из человеческих стволовых клеток фрагментов роговицы глаза, а израильские - кровеносных сосудов. Впрочем, необходимо подчеркнуть, что лечебное использование стволовых клеток пока что проводится "наощупь", и многие подобные эксперименты оказались неудачными. Тем не менее, биологи и врачи все же видят в стволовых клетках едва ли не самое мощное оружие медицины 21 века. Стволовые клетки можно извлекать из различных источников. Например, костный мозг взрослого человека содержит кроветворные стволовые клетки, из которых возникают эритроциты и прочие клетки крови. В костном мозгу также найдены стволовые клетки иного типа (их называют мезенхимальными), которые могут превращаться в клетки жира и костной ткани. Однако в терапевтическом плане наиболее перспективны стволовые клетки, извлеченные из юных эмбрионов. Эмбрион пяти-шести дневного возраста, так называемая бластоцита - крошечный полый пузырек, заключенный в оболочку. Клетки оболочки со временем дают начало плаценте, а клетки внутренней массы бластоцисты - всем без исключения органам плода. Таким образом, бластоциста скрывает в себе стволовые клетки, каждая из которых способна дать начало любому семейству специализированных клеток. Стволовые клетки уже сформировавшегося организма не столь универсальны и поэтому обладают меньшим лечебным потенциалом. Эмбриональные стволовые клетки человека впервые удалось выделить и размножить сравнительно недавно, в 1998 году. В настоящее время в различных лабораториях мира имеются многие десятки, если не сотни жизнеспособных колоний таких клеток. Почти все эти колонии (их также называют линиями) созданы посредством культивирования стволовых клеток, извлеченных из избыточных эмбрионов, полученных с помощью искусственного оплодотворения. Такие эмбрионы в изобилии "добывают" в клиниках по лечению бесплодия, однако часть их всегда остается неиспользованной. Следовательно, методики терапевтического применения эмбриональных стволовых клеток в принципе можно отрабатывать, используя такие колонии. Как известно, человеку нельзя просто так пересаживать донорские органы или ткани, поскольку они будут отвергнуты его иммунной системой. Именно поэтому в процессе подготовки к подобным операциям больным вводят специальные препараты для подавления иммунитета. Такая угроза возникает и при трансплантации "чужих" стволовых клеток, даже эмбриональных. Степень этой опасности пока точно не известна, однако ее ни коем случае нельзя сбрасывать со счетов. Поэтому идеальным решением было бы извлечение стволовых клеток из бластоцист, содержащих генетический материал самого пациента. Такие бластоцисты как раз и можно получать посредством клонирования. Таким образом, терапевтическое клонирование - это создание эмбрионов по генетической мерке потенциального пациента. Первый такой эксперимент по клонированию человеческих эмбрионов осуществили в 2001 году сотрудники американской биотехнологической компании Advanced Cell Technology. Они ввели ядра в энуклеированные яйцеклетки и заставили их делиться, однако не смогли довести до стадии бластоцист. Куда дальше пошли исследователи из Сеульского Национального Университета. Они смогли вырастить клонированные человеческие эмбрионы недельного возраста, иначе говоря, настоящие бластоцисты. В самой успешное серии опытов они получили 19 бластоцист из 66 клонированных яйцеклеток - 29% удачных исходов. Однако при всем этом южнокорейским ученым удалось создать только одну колонию размножающихся стволовых клеток, хотя они рассчитывали получить не менее двух десятков таких линий. И дело не только в технических сложностях - многие клонированные эмбрионы отличались генетическими дефектами. Исход этого эксперимента наглядно показывает, что на пути к терапевтическому клонированию еще придется преодолеть множество препятствий.
Мир против клонирования
Несмотря на то, что изготовление "копий" человека еще невозможно, многие страны мира и влиятельные религиозные лидеры призывают к запрету всех попыток проведения подобных опытов. В этом году Генеральная Ассамблея ООН одобрила декларацию, призывающую покончить с любыми формами клонирования человека, "как несовместимыми с человеческим достоинством и защитой человеческой жизни". Этот документ был утвержден весьма скромным большинством (84 голоса "за" и 34 "против" при 37 воздержавшихся) и имеет лишь рекомендательный статус. Тем не менее, основные сторонники "антиклоновой" резолюции (прежде всего США, а также страны Африки, арабского Востока и Латинской Америки) рассчитывают, что она будет способствовать наложению более радикальных и обязательных к выполнению запретов на клонирование человека. В то же время резолюция не нашла поддержки у абсолютного большинства европейских и азиатских стран. В ходе дискуссии в ООН послы многих государств (Великобритании, Бельгии, Нидерландов, Китая, Южной Кореи и др.) заявили, что их страны ни в коем случае не намерены отказываться от всех без исключения исследований, предполагающих создание человеческих клонов. Представители этих стран выразили полное согласие с идеей абсолютной неприемлемости копирования людей посредством клонирования. Однако при этом они неизменно подчеркивали, что эксперименты с клонированными эмбрионами обещают революционизировать медицину и поэтому полностью оправданы в этическом плане. Эти дебаты четко выявили две принципиально разные позиции по отношению к проблеме клонирования человека. С одной стороны, речь может идти о создании человеческих клонов для их последующего развития хотя бы до стадии сформировавшегося плода (иначе говоря, эмбриона, развивающегося в материнской утробе не менее трех месяцев) или, тем более, до нормального завершения беременности и рождения. Такое клонирование называется репродуктивным и по отношению к человеку пока что существует только как теоретическая возможность. В 2002 году была создана практически полная генетическая карта человека, и в том же году компания Clonaid (входит в состав религиозной секты РаэлианRaelian Movement) объявила о том, что впервые в мире клонировала человека. За это время, по утверждению компании, на свет появилось три клонированных ребенка, однако серьезных доказательств этому не было представлено. Clonaid предлагает всем желающим заплатить $200 тыс. за право произвести собственную копию, однако специалисты уверены, что и этот анонс, и все последующие заявления такого рода были либо результатом самообмана, либо чистейшим надувательством. Резолюция ООН призвала положить конец как репродуктивному (то есть, с целью получения новой жизни), так и терапевтическому (для медицинских целей) клонированию человека. Идеологический водораздел проходит между теми, кто считает необходимым отказаться от обоих видов клонирования, и теми, кто одобряет запрет на репродуктивное клонирование, но допускает клонирование терапевтическое. Необходимость установления самых жестких запретов на репродуктивное клонирование человека повсеместно признана в качестве этической нормы. Более того, в настоящее время оно юридически запрещено более чем в тридцати странах, в том числе на большей части Европы, в России, Украине, Израиле, Сингапуре, Японии и Китае. В США таких законов пока нет, однако и широкие массы населения, и политическая элита единодушно считают его не только абсолютно неприемлемым, но даже преступным. Вряд ли можно сомневаться в том, что в ближайшие годы репродуктивное клонирование человеческих особей подвергнется правовым запретам практически во всех странах мира. Эти запреты, скорее всего, останутся в силе, по крайней мере, до тех пор, пока вероятность успеха такого клонирования, оцениваемая на основе экспериментов с человекообразными обезьянами, не приблизится к единице. Впрочем, цивилизация уже обладает неудачным опытом искусственной селекции человека. В конце 19 века двоюродный брат Чарльза Дарвина, врач Фрэнсин Гэлтон, предложил термин "евгеника" для обозначения процесса выведения человека, обладающего лучшими качествами. Парадоксально, но столетие назад евгеника пользовалась поддержкой в самых разных идеологических кругах: расистов, социал-дарвинистов, социалистов, коммунистов, феминисток и, позже, нацистов. Сторонником евгеники был известный писатель Бернард Шоу. В США и некоторых странах Европы были приняты евгенические программы искусственной стерилизации интеллектуально неполноценных людей или преступников. Евгеникой, точнее выведением "истинных арийцев" и уничтожением расово неполноценных людей, активно занимались в нацистской Германии. Аналогичные эксперименты проводились во время Второй Мировой войны в Японии. Евгеника была признана антинаучным и антигуманным учением лишь в 1960-е годы.По мнению Грегори СтокаGregory Stock, директора программ Медицины, Технологии и Общества Калифорнийского Университета Program of Medicine, Technology, and Society at the University of California, клонирование человеческих эмбрионов реально может дать множество преимуществ. Прежде всего, потому, что эти исследования могут позволить победить доныне неизлечимые заболевания, такие, как диабет или болезни Паркинсона и Альцгеймера. Грегори Сток уверен, что меры против подобных исследований, принимаемые в различных странах мира, в большинстве своем основаны на необоснованных страхах и предрассудках. "Заявления, что, запрещая такие исследования мы защищаем мораль и нравственность и спасаем мир от грядущих проблем, не выдерживают критики. Хранители нравственности своими действиями лишают надежды и обрекают на смерть миллионы людей, которые живут сегодня". Сток считает, что, запрещая подобные исследования, мир упускает шанс провести революцию в медицине, здравоохранении, экономике и вместо того, чтобы двигаться вперед, пятится назад. Философ Фрэнсис ФукуямаFrancis Fukuyama, профессор международной политической экономии, напротив, известен, как яростный противник клонирования человека. По мнению Фукуямы, развитие биотехнологий неизбежно потребует введения определенного рода запрещений, и лучше их ввести как можно раньше. Одна из причин этого - печальный опыт человечества, которое не всегда разумно обращается с научными открытиями. В своей книге Фукуяма приводит множество аргументов в пользу тотального запрещения научных исследований в области клонирования человека. Один из них заключается в том, что полный контроль над научными знаниями практически невозможен - это демонстрирует, в частности, тот факт, что сверхсекретная информация о технологии создания атомного оружия оказалась доступна практически всем желающим. Технологии клонирования также не удастся сохранить в тайне. Клонирование потенциально предоставляет колоссальные возможности агрессивным государствам, террористическим и преступным сообществам. Как показывает история, авторитарные государства часто рушатся после смерти диктатора. Поэтому диктаторы могут попытаться создать свои копии для увековечивания личной власти. Они могут создавать армии клонов, обладающих пониженным интеллектом, и затевать новые войны. Они могут копировать государственных деятелей других стран для того, чтобы подменить оригинал копией и внести хаос в мировую политическую систему и т.д. Более того, любая технология со временем удешевляется и становится общедоступной. В частности, если еще тридцать лет назад изготовление книги требовало возможностей огромной типографии и труда десятков квалифицированных специалистов, то ныне для этого хватает хорошего компьютера и принтера, умещающихся на одном столе. Возможности клонирования могут привлечь, например, китайцев или жителей исламских государств, в культурах которых рождение девочки не приветствуется. Ныне в Китае рождается 117 мальчиков на 100 девочек - клонирование может придать этому процессу необратимый характер и человечество столкнется с колоссальным дисбалансом. Грегори Сток парирует, что подобные предположения исходят из того видения ситуации, которое существует сегодня. По его мнению, мир меняется, и меняются условия жизни и взаимоотношения людей. Поэтому оперировать аргументами типа "если бы, то..." - неразумно. Сток утверждает, что никто в мире не обладает правом на истину - поэтому запрещение тех или иных научных изысканий абсурдно по определению. Что же касается права людей клонировать самих себя или родителей подбирать пол собственного ребенка, то, по мнению Стока, правом на это решение должны обладать в первую очередь сами эти люди, а не правительства и философы, пусть даже самые авторитетные. А что же думают простые люди? В США масштабное изучение взглядов американцев об их отношении к клонированию было проведено в 2003 году, после чего эта тема отошла на второй план. Тогда большинство американцев выступали против клонирования человека. К примеру, опрос газеты Los Angeles Times показал, что против клонирования выступают 84% опрошенных. Опрос службы Gallup показал, что 86% считают, что клонирование должно быть признано незаконным в США. Опрос Pew Research Center for the People & the Press показал, что 72% американцев считают попытки клонирования аморальными.
Заключение
В начале работы я поставила себе задачу выяснить, что же представляет собой клонирование и что следует от него ожидать.
Итак, работы по клонированию были начаты на амфибиях в начале 50-х годов и интенсивно продолжаются вот уже более четырех десятилетий. Под клонированием понимают совокупность организмов, появившихся на свет путём неполового размножения, сохраняющего всю наследственную информацию их единого предка.
В мире существует немало споров возникающих из-за клонирования. Одни считают, что попытки клонирования человека аморальны, другие утверждают, что оно способно спасти людей, страдающих неизлечимыми болезнями.
Я выступаю «за» клонирование, так как верю в то, что благодаря ему в медицине произойдёт революция и людей с неизлечимыми болезнями станет меньше.
Список литературы
1.Ричард Бриггс - «Трансплантация живущих ядер». 2. Джеймс Гардон - «Способность развития ядер».3. Джеймс Гардон - « Пересаженные ядра и дифференцирование ячейки». 4. Джеймс Гардон - «Генетическое содержание взрослого»
Подобные документы
Достижения генной инженерии. Понятие и сущность клонирования. Клонирование животных. Репродуктивное и терапевтическое клонирование. Проблемы клонирования человека: этическая (религиозная), правовая, моральная. Возможные последствия клонирования человека.
доклад [28,1 K], добавлен 21.01.2008Сущность и технология процесса клонирования. Естественное клонирование (в природе) у сложных организмов. Монозиготные близнецы как естественные клоны у человека. История клонирования овцы по имени Долли. Проблемы и трудности клонирования человека.
презентация [17,9 M], добавлен 18.05.2015Объекты, полученные в результате клонирования. Метод "переноса ядра" как наиболее успешный из методов клонирования высших животных. Получение стволовых клеток, генетически совместимых с донорским организмом. Репродуктивное клонирование человека.
презентация [657,4 K], добавлен 21.04.2013Определение термина "клонирование" и его применение в биологии. Технология молекулярного клонирования. Клонирование многоклеточных организмов (полное (репродуктивное) и частичное). Тема клонирования в культуре и искусстве (кино, литература, игры).
презентация [2,3 M], добавлен 06.04.2016Понятие и история клонирования, его биологическая сущность. Исторический обзор начала экспериментов по проведению клонирования. Несовершенства технологии клонирования. Громадные потенциальные преимущества клонирования и возможные негативные последствия.
реферат [27,0 K], добавлен 17.02.2010История развития и первые шаги к клонированию животных. Метод клонирования известной овечки Долли. Типы клонирования и их характеристика. Процесс, причины и проблемы клонирования растений, животных и человека. Причины запрета клонирования человека.
реферат [38,8 K], добавлен 09.06.2010История клонирования, эксперименты по клонированию эмбрионов млекопитающих. Первое клонированное животное – овечка Долли. Научные разработки шотландского эмбриолога Яна Уилмута. Идея клонирования человека. Процедура клонирования доктора Вильмута.
презентация [365,8 K], добавлен 15.05.2012Клонирование – это процесс, в ходе которого живое существо производится от единственной клетки, взятой от другого живого существа. Понятие "клонирование", его история, биологическая сущность. Примеры проведения клонирования, его недостатки и преимущества.
реферат [37,3 K], добавлен 09.12.2010Термины "Клон" и "Клонирование". Клонирование животных. Метод получения генетически однородных особей путем бесполого размножения. Терапевтическое клонирование, "запасные" ткани для трансплантологии. Искусственное изменение ДНК, шаг к бессмертию.
контрольная работа [28,2 K], добавлен 01.10.2008Клонирование органов и тканей - задача номер один в области трансплантологии, травматологии и в других областях медицины и биологии. Преимущества и предполагаемые отрицательные последствия клонирования человека. Правительственное регулирование процесса.
реферат [33,9 K], добавлен 24.03.2014