Амінокислоти: одержання, властивості, роль у біології

Значення амінокислот в органічному світі. Ізомерія. Номенклатура. Шляхи отримання амінокислот. Фізичні властивості. Хімічні властивості. Біосинтез амінокислот. Синтез незамінних амінокислот. Білкові речовини клітини: структурні білки, ферменти, гормони.

Рубрика Биология и естествознание
Вид реферат
Язык украинский
Дата добавления 07.02.2009
Размер файла 18,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат

тема: Амінокислоти: одержання, властивості, роль у біології

АМІНОКИСЛОТИ

Органічні сполуки, що містять в молекулі карбоксильну та аміно групи, називають - амінокислотами. Амінокислоти мають надзвичайно велике значення в органічному світі, тому що з них побудовані білкові речовини клітині, що виконують ряд інших важливих функцій в живому організмі: структурні білки, ферменти, гормони, транспортні білки, захисні, запасаючі, скорочувальні, токсини.

ІЗОМЕРІЯ. НОМЕНКЛАТУРА

Амінокислоти називають звичайно як замісники відповідних карбонових кислот, позначаючи положення аміно групи буквами латинського алфавіту. Застосовується також систематична номенклатура, а для найпростіших - емпіричні назви:

CN2NH2-COOH амінооцтова кислота, аміноетанова кислота, глікол, гліцин.

CH3-CHNH2-COOH -амінопропіонова кислота, 2-амінопропіонова кислота, аланін.

CH3-CH2-CH-CHNH2-COOH 2-аміно-3-метилпентанова кислота

/ ізолейцин.

CH3

CH3-CHOH-CHNH2-COOH -аміно- -оксимасляна, 2-амино-3-оксибутанова кислота, треонін.

Ізомерія амінокислот аналогічна ізомерії оксикислот. Вона може бути пов'язана з положенням функціональних груп та будовою вуглицевого скелета. Молекула амінокислоти може вміщувати як одну так і декілька карбоксильних груп і відповідно до цього амінокислоти відрізняються по основності. В молекулі амінокислоти може вміщувати також декілька аміногруп.

Гомологічний ряд одноосновних амінокислот необхідно б було починати з аміномурашиниї кислоти H2N-COOH. Проте ця кислота одночасно є неповним амідом карбонової кислоти.

Оцтова кислота має одну похідну амінокислоту H2N-CH2-COOH. Пролінова -дві: CH3-CHNH2-COOH -амінопропіонова кислота, (-аланін), CH2NH2-CH2-COOH -амінопропіонова кислота (-аланін)

Від масляної- три , від ізомасляної- дві:

CH3-CH2-CHNH2-COOH -аміномасляна кислота

CH3-CHNH2-CH2-COOH -аміномаслянакислота

CH2NH2-CH2-CH2-COOH -аміномасляна кислота

Від ізомасляної:

-аміноізомасляна кислота

-аміноізомасляна кислота H2N-CH2-CH-COOH

/

CH 3

ШЛЯХИ ОТРИМАННЯ АМІНОКИСЛОТ.

Розроблено багато шляхів отримання -амінокислот. Найважливіші з них три:

1.Дія аміака на солі хлорзамісних кислот:

NH2-H+CL-CH2-COONH4------HCL---NH2-CH2COOHNH4

Дією аміака та ціанової кислоти на альдегіди(реакція Штрекера). Ціановодень приєднується до аміду що утворюється спершу, утворений нітрил -амінокислоти омилюють та отримують -амінокислоту:

CH3-C=O ----+HN3-----H2O--CH3-CH=NH--+HCN-CH3-CH-CN--+HOH: H2---NH3

/ /

H NH2

CH3-CH-COOH

/

NH 2

3.-Амінокислоти також можна синтезувати з аміномалинового ефіра за наступною схемою:

NO-CH(COOR)2

CH2(COOR)2--R*ONO---R*OH --+H2-NiNH2-CH(COOR)2--C6H5OCL--HCL

HON=C(COOR)2

C6H5CO-NH-CH(COOHR)2--+RONa---ROH-C6H5CO-NH-C(COOR)2Na+--R*I---NaI--C6H5CONH-CR*(COOR)2--H+, HOH--C6H5COOH-NH-CR*(COOH)2 ----CO2-NH2-CHR*-COOH

При гідролізі білків отримано близько 25 різноманітних амінокислот. Розділення такої суміші являє собою вкрай складну операцію.Проте звичайно одна або дві амінокислоти отримуються в більших кількостях і ці кислоти вдається виділити досить просто. Останнім часом навчились так порушувати життєдіяльність деяких мікроорранізмів, що вони замість накопичення білка починають продукувати одну яку-небудь задану амінокислоту. Таким шляхом в промисловості отримують харчовий лізин. Із субстракта лізин виділяють з допомогою йоннообмінних смол.

Шляхи отримання -амінокислот. Найбільш важливими є наступні два способи отримання цих кислот:

Приєднання аміака до відповідних кислот. Аміак до олефінів без каталізаторів не приєднується. Приєднання тут проходить так як і інші реакції ,-ненасичених кислот, а не за правилом Марковникова:

CH2=CH-COOH --+2NH3NH2-CH2-CH2-COONH4

2.Велика кількість амінокислот була синтезована В.М.Родіоновим з малинової кислоти: CH2-CHO+CH2(COOH)2--+NH3CH3-CH-NH2-CH2COOH+H2O+CO2

Ця реакція схожа з реакцією отримання -оксикислот з альдегидів. Можливо, що проміжними продуктами тут є оксисполуки, проте механізм цієї реакції до кінця ще не з'ясовано.

Шляхи отримання інших амінокислот. Амінокислоти з більш віддаленими одна від одної функціональними групами отримують дією аміаку на галогенопохідні кислот, відновленням неповних нітрилів двохосновних кислот з допомогою бекмановского перегрупування наприклад:

H2C CH2 H2C CH2

H2C C=O -H2N-OH--HOH H2C C=N-OH--H2SO4

H2C CH2 H2C CH2

циклогексанон циклогексаноноксим

H2C CH2 OH H2C CH2

CO

H2C С=N H2C NH

H2C CH2 H2C CH2

капролактам

Капролактам при гідролізі утворює - або -амінокапронову кислоту, а при нітруванні з подальшим відновленням- лактам 2,6-диамінокапронову кислотую(лізин).

Фізичні властивості.

Амінокислоти-безбарвні кристалічні речовини з високими температурами плавлення, які мало відрізняються для цих кислот і тому не характерні. Плавлення супроводжується розкладом речовини. У воді амінокислоти є добре розчинними. Водні розчини одноосновних амінокислот майже завжди мають майже нейтральну реакцію.

Високі температури плавлення, відсутність в спектрі ліній, характерних для карбоксильної та аміно групи, та деякі інші властивості амінокислот пояснюються їх будовою. Амінокислоти являють собою внутрішні солі (біполярні іони):+NH3-CH2-CO-O-Такий іон в кислому середовищі поводить себе як катіон, так як пригнічується дисоціація карбоксильної групи; а в лужній - як аніон: +NH3-CH2-COOH+HOH- +NH3-CH2-COOHO-H+NH2-CH2-COO-

В ізоелектричній точці, коли концентрація катіонів та аніонів рівні, конценотрація біполярного іона максимальна і рух його в електричному полі не відбувається. Положення рівноваги залежить від pH середовища.

Більшість природніх амінокислот оптичноактивні вналлідок наявності асемитричного атома карбону. В пироді розповсюджені кислоти L-ряду.

ХІМІЧНІ ВЛАСТИВОСТІ.

Подібно до інших сполук із змішаними функціональними групами амінокислоти проявляють властивості як кислот так і амінів. Проте в ланцюзі перетворень сильно впливає наявність двох груп.

Амінокислоти утворюють солі з лугами. Солі -амінокислот з тяжкими металами можуть мати комплексний характер. Таку будову мають наприклад інтенсивно сині солі міді: CH2-NH2 O CO

Cu

CO O NH2-CH2

2.Подібно до інших кислот амінокислоти утворюють складні ефіри, хлорангідриди, аміди і т. д.

3.Амінокислоти утворюють солі з неорганічними кислотами наприклад(H3N+-CH2-COOH)-CL.Ці солі звичайно добре кристалізуються.

4.При дії азотистої кислоти амінокислоти утворюють оксикослоти:

H2N-CH2COOH--HNO2 N2+H2O+HOCH2-COOH

Ефіри амінокислот утворюють при цьому досить стійкі діазосполуки:

CH2-CH2-COOC2H5--HNO2---2H2ON2CH-COOC2H5

Діазооцтовий (етиловий) ефір має наступну будову:

NN+--CH-COOC2H5-N=N+=CH-COOC2H5

Він використовується при органічному синтезі.

5.Аміногрупа в амінокислотах легко ацілюється при дії ангідридів або галогенангідридів кислот:

CH2NH2 CH2-NH-COCH3

/ +(CH3CO)O2 / +CH3COOH

COOH COOH

6.При алкіруванні аміногрупи утворюються вторинні, третинні амінокислоти та зрештою чотирьохзамісні амонійні луги. Внутрішні солі таких лугів називають бетаінами.

7. В залежності від положення аміногрупи по відношенню до карбоксилу амінокислоти поводять себе порізному:

1) -амінокислоти утворюють дикетопіперазини:

CH3-CH-CO---OH CH3-HC-CO

|

H-NH+NH--H NH NH+2H2O

|

НO--CO-CH-CH3 OC-CH-CH3

-амінокислоти відщеплюють аміак і дають амонійну сіль ненасиченої кислоти. Причиною такої реакції є рухливість водневих атомів в сусідстві з карбоксильною групою:

CH2-CH-COOH

І | CH2=CH-COOONH4

NH2 H

3)-,-амінокислоти уворюють при нагріванні внутрішні аміди -лактами:

H2C CH2 H2C CH2

H2C CO -H2O H2C CO

HN---H OH NH

Цим корис

туються при визначенні будови амінокислот: визначають в якому положені знаходиться аміногрупа відносно карбоксильної.

В реакціях заміщення -амінокислот, повязаних із зміною до асимме-тричного атома карбону, частопроходить вальденівське обертання. Прикладом може бути взаємоперетворення d- та l-бромпропіонових кислот та d- і l-аланіна по наступній схемі:

d-бромпропіонова кислота---NH3d-Аланін

NOBr NOBr

l-Аланін NH3- l-Бромпропіонова кислота

Інверсія або збереження конфігурації під час реакції заміщення залежить від механізма по якому дана реакція проходить.

В сучасній хімії та біології амінокислот та білків важливу роль відіграє реакція зі зміною кольору(зміна забарвлення на синє).

Комплексони. Комплексонами називають групу -амінокислот, що вміщують два або три залишки, звязаних з азотом. Найбільш простими з цих амінополікарбонових кислот є імінодиоцтова та нитрилтриоцтова кислоти:

CH2-COOH CH2-COOH нітрилтриоцтоав

H-N HOCO-CH2-N кислота

CH2-COOH CH2-COON

імінодиоцтова кислота

By Shestopal Ruslan 1998

ТАБЛИЦЯ. L-амінокислоти знайдені в білках

(CH3)2CH-CH2-CH-COOH

|

NH2

Leu

(CH3)2CH-CH-COOH

|

NH2

Val

CH3-CH-COOH

|

NH2

Ala

H2N-CH2-COOH

Gly

CH3-CH2-CH-CH-COOH

| |

CH3 NH2

Ile

-CH2-CH-COOH

|

NH2

Phe

H2N-CO-CH2-CH-COOH

|

NH2

Asn

H2NCOCH2CH2CH-COOH

|

NH2

Gin

CH2-CH-COOH

|

NH NH2

Trp

-COOH

NH

Pro

HO-CH2-CH-COOH

|

NH2

Ser

CH3-CH-CH-COOH

| |

OH NH2

Thr

HO- -CH2-CH-COOH

|

NH2

Tyr

HO

-COOH

NH

Opr

NH2

|

NS-CH2-CH-COOH

Cys

NH2

|

S-CH2-CH-COOH

|

S-CH2-CH-COOH

|

NH2

Cys-Cys

CH3-S-CH2-CH-COOH

| NH2

HOOC-CH2-CH-COOH

|

NH2

Met

HOOC-CH2-CH2-CH-COOH

|

NH2

Glu

H2N-CH2CH2CH2CH2CH-COOH

|

NH2

Lys

H2N-C-NH-CH2CH2CH2-CH-COOH

|| |

NH NH2

Arg

N

-CH2-CH-COOH

NH |

NH2

His

ЗВ'ЯЗКИ

Амінокислоти здатні утворювати ряд хімічних зв'язків з різними реакційно здатними групами.

Пептидний зв'язок. Цей зв'язок утворюється в результаті виділення води при взаємодії аміногрупи однієї амінокислота з карбоксильною іншої. Сполука що утворилась внаслідок такої реакції називається дипептид.

Іонний зв'язок. При схожому значенні pH іонізована аміногрупа може взаємодіяти з іонізованою карбоксильною .в результаті чого утворюється іонний зв'язок. У водному розчині іонні зв'язки значно слабкіші ковалентних; іони можуть розриватися при зміні pH середовища.

Дисульфідний зв'язок. Коли дві молекули цистеїну, їх сульфгідрильні (-SH) групи, знаходяться поруч, вони окислюються утворюючи дисульфід ний зв'язок. Дисульфіді зв'язки можуть виникати при також між різними поліпептидними ланцюгами. Цей факт грає важливу роль в білковій структурі.

Водневий зв'язок. Електропозитивні водневі атоми, сполучені з азотом чи киснем в групах -OH або -NH , намагаються узагальнити електрони з найближчими електронегативними атомами кисню, наприклад з киснем в групі =СО. Утворений таким чином водневий зв'язок є слабим, але такі зв'язки виникають досить часто і сумарний вплив на стабільність в молекулі значний( наприклад структура шовку).

Біосинтез амінокислот - це процес утворення амінокислот в організмі. Він може здійснюватись кількома шляхами: прямим амінуванням ненасичених кислот, відновним амінуванням кетокислотпереамвнування амінокислот з кетокислотами, завдяки реакціям за місцем радикалів амінокислот(процеси ферментативного взаємоперетворення).

В організмі людини здійснюється синтез лише замінних протеїногенних амінокислот, а в тканинах рослин синтезуються також незамінні амінокислоти. Синтез замінних амінокислот в організмі може здійснюватися із метаболів циклу Кребса, проміжних продуктів розщеплення вуглеводів та з незамінних амінокислот. Серед метаболітів циклу Кребса джерелом утворення амвнокислот є оксалоацетат і 2-оксоглутарат. З оксалоацетату утворюється аспарагінова кислота, а з неї - аспарагін:

Оксалоацетат+ГлутаматАспарагінова кислота+2-Оксоглутарат;

Аспарагінова кислота+NH3+АТФАспарагін+H3PO4 .

Із 2-оксоглутарату утворюється глютамінова кислота, глютамін, пролін, оксипролін. З проміжних продуктів обміну вуглеводів джерелом утворення амінокислот є піруват, 3-фосфогліцерат і рибозо-5*-фосфат.

Аланін з пірувату утворюється двома шляхами: пере амінуванням і відновним амінуванням. Із 3-фосфогліцерату синтезується серин, а з серину - гліцин, з рибозо-5*- фосфату можливе утворення гістидину. Важливим шляхом синтезу замінних амінокислот є процеси взаємоперетворень їх за місцем радикалів та синтез замінних амінокислот з незамінних: фенілаланінтирозин; метіонін серин; серин гліцин; орнітин аргінін; метіонін цистеїн.

Синтез незамінних амінокислот здійснюється в тканинах рослин і бактеріальних клітинах. В організмі людини цей процес не здійснюється, оскільки там не утворюються кетокислоти, які могли б бути використані для їх синтезу. Синтез метіоніну та треоніну здійснюється з аспарагінової кислоти за участю АТФ та деяких ферментів - НАД-залежних дегідрогеназ, піридоксалевих, кобамідних, фоланових. Процес синтезу амінокислот відбувається однаково до утворення гомосерину, а далі він проходить з використанням ферментів, специфічних для кожної амінокислоти. Синтез лізину в бактеріальних клітинах здійснюється з пірувату та аспарагінової кислоти шляхом їх конденсації через циклічні проміжні продукти і діамінопімелінову кислоту. Фенілаланін і триптофан синтезуються з еритрозо-4*- фосфату і фосфоенолпірувату через шикімову, хоризмову та антранілову (триптофан) або префенову (фенілаланін) кислоти. Гістидин синтезується з АТФ, 5-фосфорибозил-1-пірофосфату і глютаміну під час багатоетапних перетворень. Валін, лейцин, ізолейцин синтезуються з пірувату внаслідок складних ферментативних перетворень, у результаті яких утворюється кетокислота з розгалуженим бічним радикалом; далі вона вступає в реакцію переамвнування з глютаміновою кислотою.

ВИКОРИСТАНА ЛІТЕРАТУРА:

1. Ф.Ф. Боєчко, Л.О. Боєчко. Основні Біохімічні поняття, визначення і терміни

2. А.А. Петров, Х.В. Бальян, А.Г. Трощенко. Органічна Хімія.

3. Н.Грін, У. Стаут, Д. Тейлор. Биология. Москва: Мир. 1996 рік.


Подобные документы

  • Дослідження штамів мікроорганізмів. Використання мутантів мікроорганізмів. Промисловий синтез амінокислот. Мікробіологічний синтез глутамінової кислоти, лізину, метіоніну, треонина, ізолейцину та триптофану. Ход реакцій і блокуванням етапів синтезу.

    реферат [34,9 K], добавлен 25.08.2010

  • Макромолекулярні сполуки (білки, вуглеводи, нуклеїнові кислоти) як органічні речовини живого організму. Олігосахариди як розчинні у воді, солодкі на смак полімерні вуглеводи. Білки як високомолекулярні біополімери, мономерами яких є залишки амінокислот.

    реферат [37,9 K], добавлен 06.10.2013

  • Аналіз сутності, складу, будови, особливостей структури білків - складних високомолекулярних природних органічних речовин, що складаються з амінокислот, сполучених пептидними зв'язками. Порівняльні розміри білків та пептидів. Функції білків в організмі.

    презентация [357,5 K], добавлен 10.11.2010

  • Біотехнологія мікроорганізмів та їх різноманітний світ. Створення мікроорганізмів-продуцентів та отримання генетичних рекомбінантів. Застосування рекомбінантних ДНК для переносу природних генів. Виробництво харчових білків, амінокислот та вітамінів.

    реферат [21,8 K], добавлен 16.01.2013

  • Історія розвитку та застосування біотехнології - комплексу наук, технічних засобів, спрямованих на одержання і використання клітин мікроорганізмів, тварин і рослин, а також продуктів їх життєдіяльності: ферментів, амінокислот, вітамінів, антибіотиків.

    реферат [27,9 K], добавлен 07.12.2010

  • Будова, фізичні та хімічні властивості білків. Для виявлення білків у різних матеріалах застосовують кольорові реакції, найважливішими з яких є ксантопротеїнова і біуретова. Елементарний склад, молекулярна маса білків. Застосування білків у промисловості.

    реферат [296,8 K], добавлен 09.11.2010

  • Процеси, які підтримують постійний зв'язок організму з навколишнім середовищем. Основні процеси біосинтезу. Властивості генетичного коду. Синтез поліпептидних ланцюгів білків по матриці іРНК. Найважливіші органічні речовини в організмі рослин і тварин.

    презентация [1,1 M], добавлен 14.03.2013

  • Біосинтез білка. Будова рибосом прокаріотів та еукаріотів. Роль мембран у формуванні клітинних компартментнів. Ароморфози як біологічний процес. Асиметричність плазматичної і внутрішніх мембран клітини. Транспортування речовин через мембрани.

    контрольная работа [69,2 K], добавлен 04.11.2010

  • Поняття та відмінні особливості біосфери, чисельність різних груп організмів в ній. Структура і розподіл життя у біосфері, три групи життєзабезпечуючих факторів. Геохімічна робота живої речовини та її властивості. Функції живої речовини в біосфері.

    реферат [452,7 K], добавлен 22.11.2010

  • Відкриття та дослідження молекули інсуліну, її хімічна будова. Біосинтез інсуліну, регуляція його секреції, функції та перетворення в організмі, властивості та біологічна дія. Методи визначення інсуліну, його застосування для виготовлення препаратів.

    реферат [2,7 M], добавлен 09.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.