Трансляция и транскрипция

Понятие, факторы и нарушения транскрипции. Транскрипция: РНК-синтезирующий аппарат. Транскрипция: основные стадии цикла. Инициация транскрипции. Элонгация транскрипции: сведения. Инициация трансляции. Трансляция (биосинтез белка): элонгация: введение.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 13.12.2008
Размер файла 511,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

8

2

СОДЕРЖАНИЕ

  • Введение 3
  • Глава 1. АНАЛИЗ ОБЩЕБИОЛОГИЧЕСКОГО АСПЕКТА ТРАНСКРИПЦИИ 5
    • 1.1. Понятие, факторы и нарушения транскрипции 5
    • 1.2. Транскрипция: РНК-синтезирующий аппарат 6
    • 1.3. Транскрипция: основные стадии цикла 8
    • 1.4. Инициация транскрипции 10
    • 1.5. Элонгация транскрипции: общие сведения 12
    • 1.6. Терминация транскрипции у эукариот: общие сведения 13
  • Глава 2. АНАЛИЗ ТРАНСЛЯЦИИ КАК ПРОЦЕССА СИНТЕЗА БЕЛКОВ В ЦИТОПЛАЗМЕ КЛЕТКИ 17
    • 2.1. Трансляция: общие сведения 17
    • 2.2. Генетический код: общие сведения 18
    • 2.3. Инициация трансляции: общие сведения 20
    • 2.4. Трансляция (биосинтез белка): элонгация: введение 22
  • Заключение 26
  • Список литературы 28

Введение

Тематика выбранной мной темы работа посвящена исследованию рибосомальных структур, функций рибосом, в связи с этим целью данной работы является проведение анализа транскрипции, трансляци.

Транскрипция является первой стадией реализации (считывания) генетической информации, на которой нуклеотидная последовательность ДНК копируется в виде нуклеотидной последовательности РНК. В основе механизма копирования при транскрипции лежит тот же структурный принцип комплементарного спаривания оснований, что и при репликации. Рибонуклеозиды (цитидин, гуанозин, уридин, аденозин), синтезированные в процессе клеточного метаболизма в форме рибонуклеозидтрифосфатов (rNTP) CTP, GTP, UTP, ATP, пристраиваются к комплементарным основаниям ДНК, а именно C к G, G к C, U к A, A к T. Транскрипция идет от начала транскрипционной единицы до ее конца. Транскрипция осуществляется ферментами РНК-полимеразами асинтезирующими РНК на ДНК-матрице из рибонуклеозидтрифосфатов с участием многочисленных факторов транскрипции - регуляторных белков, осуществляющих высокоспецифические белок-белковые и белково-нуклеиновые взаимодействия..

Трансляция - процесс синтеза белка в цитоплазме клетки. Молекулярные процессы, лежащие в основе синтеза белка, крайне сложны ( Kornberg R.D. et al, 1981 ; McGhee J.D. et al, 1980 ).

В синтезе белка участвует три таких класса молекул РНК ( мРНК, тРНК и рРНК). Началом синтеза белка принято считать процесс транскрипции ДНК, в результате которого в ядре должна образоваться соответствующая информационная, или матричная, РНК (мРНК), которая затем должна перейти в цитоплазму клетки.

Процесс трансляции начинается с присоединения малой рибосомной субчастицы к молекуле мРНК. Особая инициаторная тРНК связывает малую рибосомную субчастицу со специальным старт- кодоном на мРНК. Присоединение большой субчастицы завершает сборку рибосомы.

Цель работы обусловила обозначение задач, стоящих перед работой. В задачи работы входит рассмотрение, изучение и анализ нижеперечисленных вопросов:

- понятие, факторы и нарушения транскрипции;

- транскрипция: рнк-синтезирующий аппарат;

- транскрипция: основные стадии цикла;

- инициация транскрипции;

- элонгация транскрипции: общие сведения;

- терминация транскрипции у эукариот: общие сведения;

- трансляция: общие сведения;

- генетический код: общие сведения;

- инициация трансляции: общие сведения;

- трансляция (биосинтез белка): элонгация: введение;

- регуляция элонгации: скорость трансляции.

Глава 1. АНАЛИЗ ОБЩЕБИОЛОГИЧЕСКОГО АСПЕКТА ТРАНСКРИПЦИИ

1.1. Понятие, факторы и нарушения транскрипции

Транскрипция является первой стадией реализации (считывания) генетической информации, на которой нуклеотидная последовательность ДНК копируется в виде нуклеотидной последовательности РНК. В основе механизма копирования при транскрипции лежит тот же структурный принцип комплементарного спаривания оснований, что и при репликации. Рибонуклеозиды (цитидин, гуанозин, уридин, аденозин), синтезированные в процессе клеточного метаболизма в форме рибонуклеозидтрифосфатов (rNTP) CTP, GTP, UTP, ATP, пристраиваются к комплементарным основаниям ДНК, а именно C к G, G к C, U к A, A к T. Транскрипция идет от начала транскрипционной единицы до ее конца. Транскрипция осуществляется ферментами РНК-полимеразами асинтезирующими РНК на ДНК-матрице из рибонуклеозидтрифосфатов с участием многочисленных факторов транскрипции - регуляторных белков, осуществляющих высокоспецифические белок-белковые и белково-нуклеиновые взаимодействия..

Транскрипция у эукариот происходит в клеточном ядре, а последующая трансляция - в цитоплазме на рибосомах. РНК-транскрипт в форме рибонуклеопротеиновых частиц попадает в цитоплазму и претерпевает ряд изменений, которые называют посттранскрипционными процессами.

Факторы транскрипции: классы

Факторами транскрипции называют белки или белковые комплексы, непосредственно не участвующие в каталитическом акте образования РНК, но необходимые для прохождения основных этапов транскрипции и ее регуляции.

По функциональному признаку принято различать три класса факторов транскрипции.

К первому классу относятся основные факторы транскрипции, обеспечивающие нерегулируемый базальный уровень транскрипции и функционирующие в клетках всех типов.

Ко второму классу относятся факторы транскрипции, специфически взаимодействующие с определенными последовательностями ДНК, которые являются основными регуляторами транскрипции и обеспечивают тканеспецифическую экспрессию генов.

Третий класс факторов транскрипции (в том числе многочисленные TAF-белки (TAB-associated factors) ) представлен белками - коактиваторами транскрипции, которые действуют согласованно с основными и тканеспецифическими факторами, обеспечивая более тонкую регуляцию транскрипции.

1.2. Транскрипция: РНК-синтезирующий аппарат

Транскриптон

Синтез молекул РНК начинается в определенных местах ДНК, называемых промоторами, и завершается в терминаторах. Участок ДНК, ограниченный промотором и терминатором, представляет собой единицу транскрипции ( Lewin B., 1980 ) - транскриптон. В пределах каждого транскриптона копируется только одна из двух нитей ДНК, которая называется значащей или матричной. Во всех транскриптонах, считываемых в одном направлении, значащей является одна нить ДНК; в транскриптонах, считываемых в противоположном направлении, значащей является другая нить ДНК. Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК, а могут и перекрываться, в частности так, что в пределах участка перекрывания матричными оказываются обе нити. Разбиение ДНК на множество транскриптонов обеспечивает возможность независимого считывания разных генов, их индивидуального включения и выключения. У эукариот в состав транскриптона, как правило, входит только один ген.Термины "транскрипционная единица" или "транскриптон" по смыслу близки термину "ген", но они не всегда совпадают. Так, транскрипционные единицы прокариот, как правило, заключают в себе генетическую информацию нескольких генов и называются оперонами. Продуктами транскрипции оперонов являются полицистронные мРНК, в результате трансляции которых рибосомами образуется несколько белков. Белки, кодируемые полицистронными мРНК, обычно функционально связаны друг с другом и обеспечивают протекание какого-либо метаболического процесса, например, биосинтеза определенной аминокислоты или утилизацию углеводов в качестве источника углерода. Организация генов в виде оперонов облегчает координированную регуляцию их экспрессии на уровне транскрипции. Согласованная регуляция транскрипции (и других этапов экспрессии) многих генов, не образующих одного оперона, чаще всего осуществляется специфическими белками-регуляторами, которые взаимодействуют с гомологичными регуляторными нуклеотидными последовательностями, маркирующими гены данной группы.

Транскрипт первичный

Первичный РНК-транскрипт, или про-мРНК, синтезированный на транскрипционной единице, в большинстве случаев длиннее, чем последовательность нуклеотидов, соответствующая конечному продукту (полипептиду, тРНК, рРНК). У эукариот первичный транскрипт (молекулярная масса от 106 до 1.5.107) может быть в 10 раз длиннее, чем мРНК, поступающая для трансляции. Первичный РНК-транскрипт претерпевает изменения в совокупности называемые процессингом. При процессинге к нему сначала присоединяются колпачок и poly(A), а затем в результате многократного сплайсинга он укорачивается, и одновременно происходит внутреннее метилирование с образованием 6-метиладенозина.

Про-мРНК и мРНК всегда соединены ионными связями с белками и образуют рибонуклеопротеиновые частицы.

Матричная РНК (мРНК)

Зрелая мРНК эукариот наряду с основной последовательностью нуклеотидов, в которой закодирована информация о последовательности аминокислот в соответствующем белке, содержит целый ряд некодирующих последовательностей, присутствие которых необходимо для ее трансляции рибосомами. Одни из этих последовательностей, такие как кэп-группа и 3'-концевая поли(А), не кодируются непосредственно генами, а добавляются ко- и посттранскрипционно, другие имеют генное происхождение. Эти последовательности часто содержат регуляторные сигналы, обеспечивающие определенный уровень трансляции мРНК рибосомами.

Участок мРНК, расположенный между кэп-группой и первым инициирующим кодоном основной открытой рамки считывания (ОРС), которая и несет информацию о последовательности аминокислот в белке, получил название 5'-концевой нетранслируемой области (5'UTR - 5' untranslated region), или лидерной последовательности. Сегмент мРНК, расположенный между последним терминирующим кодоном основной ОРС и началом поли(А)- последовательности, называют 3'-концевой нетранслируемой областью (3'UTR). Первое название не совсем удачно. Последовательности 5'UTR, как правило, способны образовывать сложные вторичные структуры типа "стебель-петля" и содержать короткие ОРС (uORF - upstream open reading frame), которые оказывают сильное влияние на эффективность трансляции мРНК.

Помимо этого, 5'UTR могут включать в себя регуляторные последовательности, распознаваемые транс-действующими белковыми факторами. Последовательности 5'UTR обеспечивают регулируемую трансляцию мРНК (и координированную экспрессию соответствующих генов) в онтогенезе многоклеточных организмов.

3'UTR и поли(А)-последовательность оказывают влияние на состояние рибосом после терминации синтеза полипептидных цепей. Кроме того, 3'-концевая поли(А)-последовательность участвует в инициации трансляции.

1.2. Транскрипция: основные стадии цикла

Процесс транскрипции разделяют на 4 основные стадии: 1) связывание молекул РНК-полимеразы с ДНК и распознавание промотора ; 2) инициация ; 3) элонгация ; 4) терминация.

После связывания с ДНК молекулы РНК-полимеразы осуществляют поиск промоторов, на которых происходит формирование инициационных комплексов. Начальная стадия инициации транскрипции завершается образованием нескольких первых фосфодиэфирных связей в молекуле синтезируемой РНК, после чего наступает стадия элонгации - последовательного удлинения синтезируемых молекул РНК, которая заканчивается по достижении молекулами РНК-полимераз специальных регуляторных последовательностей ДНК, называемых терминаторами транскрипции, после чего происходит освобождение синтезированных молекул РНК и РНК-полимераз из транскрипционных комплексов. Освободившиеся молекулы РНК-полимераз приобретают способность вступать в новый цикл транскрипции.

Разделение процесса транскрипции на стадии является упрощенной моделью, оно используется для удобства описания механизмов биосинтеза РНК.

В обычных условиях холофермент РНК-полимераз эубактерий для инициации транскрипции не требует дополнительных факторов. В отличие от этого для точной инициации транскрипции РНК- полимеразой II требуется наличие, кроме ее субъединиц, еще и основных факторов транскрипции. Синтез РНК, который не зависит от присутствия регуляторных молекул, получил название базальной транскрипции. Транскрипция является регулируемым процессом, который требует участия белков-активаторов или репрессоров. Белок-активатор (тканеспецифический фактор транскрипции) взаимодействует с регуляторными последовательностями ДНК и активирует синтез РНК. Такая транскрипция получила название индуцированной, или активированной. Базальная транскрипция не может происходить in vivo, и этот термин используется только при описании результатов исследований синтеза РНК in vitro, в бесклеточных системах транскрипции.

Цикл транскрипции начинается с присоединения РНК-полимеразы к промотору - строго определенному участку ДНК, с которого начинается синтез РНК.

Следующая стадия, инициация, требует наличия субстратов РНК-полимеразы нуклеозидтрифосфатов и заключается в образовании первых нескольких звеньев цепи РНК. Матрицей для синтеза РНК у эукариот служит ДНК-гистоновый комплекс, а не свободная ДНК, как это имеет место у прокариот.

За стадией инициации начинается элонгация. В момент, который считается концом инициации и началом элонгации, от РНК-полимеразы отделяется сигма-субъединица. По мере движения РНК-полимеразы по матрице впереди нее происходит расплетание, а позади - восстановление двойной спирали ДНК. Одновременно освобождается очередное звено растущей цепи РНК из комплекса с матрицей и РНК-полимеразой.

Завершается синтез РНК в строго определенных участках матрицы - терминаторах, где происходит отделение от ДНК и готовой РНК, и минимальной РНК-полимеразы, которая, объединившись со свободной сигма-субъединицей, может вступить в следующий цикл транскрипции.

Новообразованная РНК упаковывается в рибонуклеопротеиновые частицы.

1.4. Инициация транскрипции

Инициация требует наличия субстратов РНК-полимеразы нуклеозидтрифосфатов и заключается в образовании первых нескольких звеньев цепи РНК. Первый нуклеотид входит в состав цепи, сохраняя свою трифосфатную группу, а последующие присоединяются к 3'-OH-группе предыдущего с освобождением пирофосфата. На стадии инициации РНК-продукт связан с матрицей и РНК-полимеразой непрочно и с высокой вероятностью может освобождаться из комплекса. В этом случае РНК-полимераза, не покидая промотора, снова инициирует РНК. Такой синтез ди-, три- и более длинных олигонуклеотидов называют абортивной инициацией в противоположность продуктивной (т.е. завершающейся образованием полноценного РНК-продукта ) инициации. Когда РНК-продукт достигает критической длины (от 3 до 9 нуклеотидов на разных промоторах), абортивная инициация полностью прекращается, транскрибирующий комплекс стабилизируется и уже не распадается до тех пор, пока синтез молекулы РНК не будет доведен до конца. Примерно в этот же момент, который считается концом инициации и началом элонгации, от бактериальнойРНК-полимеразы отделяется сигма- субъединица.

Эффективность инициации на разных промоторах, их "сила", существенно различается: если с некоторых промоторов инициируется всего одна-две молекулы РНК за период деления клетки, то с других (например, с промоторов генов рибосомных РНК ) инициация происходит раз в одну-две секунды. Частота, с которой инициируется транскрипция при насыщающей концентрации субстратов, зависит главным образом от равновесной константы образования закрытых промоторных комплексов и константы скорости превращения закрытого комплекса в открытый. Для самых сильных промоторов обычно характерны высокие значения обеих констант (высокое сродство РНК полимеразы к промотору и быстрый переход промоторного комплекса в активное открытое состояние). Для слабых промоторов характерны низкие значения этих величин. Слабость промоторов с низким сродством к РНК-полимеразе особенно заметна при низких концентрациях РНК-полимеразы и может быть скомпенсирована при ее высоких концентрациях. Промотор с низким сродством к РНК-полимеразе может быть достаточно сильным, если ему присуща высокая скорость перехода в открытое состояние. Сила большинства промоторов увеличивается с увеличением степени отрицательной сверхспирализации ДНК. Это объясняется тем, что отрицательная сверхспирализация облегчает расплетание ДНК и тем самым переход в открытый промоторный комплекс. Существуют, однако, промоторы, сила которых не зависит или даже уменьшается с увеличением степени сверхспирализации. Этому эффекту объяснения пока не найдено.

Инициация транскрипции начинается со сборки на промоторе прединициационного комплекса, в состав которого входят молекулы РНК-полимеразы и матричной ДНК. Если в случае РНК-полимеразы E. coli и других прокариот для осуществления этого процесса нет необходимости в присутствии других белковых факторов, то механизм сборки инициационного комплекса с участием РНК-полимеразы II носит более сложный характер.

Существуют две модели инициации транскрипции РНК- полимеразой II. В соответствии с одной из них на промоторе происходит постепенная (ступенчатая) сборка инициационного комплекса из отдельных компонентов. Другая модель акцентирует внимание на то, что Pol II может входить в состав инициационного комплекса в виде холофермента, состоящего из многих субъединиц. Сборка такого комплекса начинается с последовательного связывания с промотором основных факторов транскрипции.

1.5. Элонгация транскрипции: общие сведения

Момент перехода РНК-полимеразы от инициации транскрипции к элонгации точно не определен. Три основных биохимических события характеризуют этот переход в случае РНК-полимеразы E.coli : отделение сигма-фактора, первая транслокация молекулы фермента вдоль матрицы и сильная стабилизация транскрипционного комплекса, который кроме РНК- полимеразы включает растущую цепь РНК и транскрибируемую ДНК. Эти же явления характерны и для РНК-полимераз эукариот. Переход от инициации к элонгации сопровождается разрывом связей между ферментом, промотором, факторами инициации транскрипции, а в ряде случаев - переходом РНК-полимеразы в состояние компетентности в отношении элонгации (например, фосфорилирование CTD-домена у РНК-полимеразы II ). Фаза элонгации заканчивается после освобождения растущего транскрипта и диссоциации фермента от матрицы ( терминация ).

На стадии элонгации в ДНК расплетено примерно 18 н.п. Примерно 12 нуклеотидов матричной нити ДНК образует гибридную спираль с растущим концом цепи РНК. По мере движения РНК-полимеразы по матрице впереди нее происходит расплетание, а позади - восстановление двойной спирали ДНК. Одновременно освобождается очередное звено растущей цепи РНК из комплекса с матрицей и РНК-полимеразой. Эти перемещения должны сопровождаться относительным вращением РНК-полимеразы и ДНК. Трудно себе представить, как это может происходить в клетке, особенно при транскрипции хроматина. Поэтому не исключено, что для предотвращения такого вращения двигающуюся по ДНК РНК-полимеразу сопровождают топоизомеразы.

Элонгация осуществляется с помощью основных элонгирующих факторов, необходимых, чтобы процесс не останавливался преждевременно [ Nikolov ea 1997 ]. В последнее время появились данные, показывающие, что регуляторные факторы также могут регулировать элонгацию. РНК-полимераза в процессе элонгации делает паузы на определенных позициях гена. Особенно четко это видно при низких концентрациях субстратов. В некоторых участках матрицы длительные задержки в продвижении РНК-полимеразы, т.н. паузы, наблюдаются даже при оптимальных концентрациях субстратов. Продолжительность этих пауз может контролироваться факторами элонгации.

1.6. Терминация транскрипции у эукариот: общие сведения

У эукариот обнаружены три фактора терминации транскрипции, необходимых для освобождения РНК-полимераз из транскрипционных комплексов на терминаторах - по одному для РНК-полимераз I, II и III.

Белок N-TEF дрозофилы индуцирует освобождение транскриптов, синтезированных РНК-полимеразой II, и при его функционировании происходит расщепление ATP.

У дрожжей белковый фактор Reb-1 связывается с природными терминаторами транскрипции на ДНК, обеспечивая как остановку элонгирующей РНК-полимеразы I на этих терминаторах, так и последующее освобождение РНК из транскрипционных комплексов. Удаление в результате делеции из рибосомной транскрипционной единицы Reb-1-связывающего сайта нарушает правильное образование 3'-концов рРНК in vivo.

Мышиный фактор TTF-1, который также является ДНК- связывающим белком, необходим для правильной терминации транскрипции РНК-полимеразой I в клетках этих животных. У них же обнаружен LА-белок, специфически взаимодействующий с РНК, функционирование которого требуется для образования транскриптов полной длины под действием РНК-полимеразы III, что происходит в результате освобождения РНК из транскрипционных комплексов и реинициации транскрипции.

Терминация транскрипции у эукариот - это пока довольно плохо изученный процесс. Ясно, однако, что он происходит за пределами собственно гена в области спейсера ( Falck-Pederson ea, 1985 ). Эксперименты с разными искусственными конструкциями показывают, что для терминации транскрипции нужно существование в геноме зоны терминации и обязательно расположенного перед нею сайта полиаденилирования. Если последний убрать, то транскрипция идет за зону терминации. В то же время зону терминации можно удалять и приближать к сайту полиаденилирования, и терминация все равно будет происходить в ее пределах.

Нуклеотидные последовательности зон терминации, прилежащих к разным генам, содержат ряд гомологичных областей, однако в настоящий момент вопрос о природе сигналов терминации остается открытым. Для этого необходимы опыты по мутагенезу в зонах терминации.

Транскрипции регуляция: промоторная

Изменение характера экспрессии генов можно наблюдать в бесклеточных системах, компонентами которых являются собственно ген, энхансер и специфические регуляторные белки. Оказывается, что энхансер в зависимости от добавляемого белкового фактора может начать вести себя и как негативно действующий "глушитель" (англ. silencer) экспрессии гена. Негативное действие такого элемента, проявляется при связывании с тканеспецифичным трансдействующим белковым фактором. Негативное действие сайленсеров, как и в случае энхансеров, не зависит от положения и ориентации относительно сайта инициации транскрипции.

По мере исследования регуляторных элементов генома эукариот оказалось, что не удается провести строгих функциональных различий между энхансерами и элементами промотора. Прежде всего ориентация таких активных элементов промотора как GC-мотивы, может быть любой относительно направления транскрипции гена. Более того, промоторные элементы генов металлотионеина и генов теплового шока, отделенные от TATA-последовательности, определяющей сайт инициации транскрипции, также сохраняют специфические регуляторные свойства вне зависимости от ориентации.

Промоторный участок гена металлотионеина, включающий ряд регуляторных мотивов, способен сильно стимулировать экспрессию гена бета-глобина и в том случае, если промотор расположить на 3'-фланге относительно направления транскрипции, причем на значительном расстоянии от бета-глобина.

Примечательно, что экспрессия бета-глобина теперь будет зависеть от ионов металлов. В результате регуляторный участок гена металлотионеина можно рассматривать не только как промотор, но и как индуцируемый энхансер активности гена.

Подобным образом специфический промотор генов теплового шока, отделенный от мотивов TATA и CCAAT и находящийся на значительном расстоянии от старта транскрипции, вне зависимости от ориентации по отношению к нему активирует ген бета-глобина при повышении температуры.

Таким образом, регуляторные элементы генов, которые первоначально относили либо к промоторным, либо к энхансерам, обладают рядом общих функциональных характеристик.

На физической карте регуляторной области гена они могут располагаться в одном районе, создавая сложную мозаику регуляторных сигналов.

Примеры с генами металлотионеина или белков теплового шока показали, что цис-действующие регуляторные элементы способны активно выполнять свою роль при рекомбинации с гетерологичными или с гомологичными генами организмов, отстоящих в эволюционном плане достаточно далеко друг от друга.

Следовательно, взаимодействие этих элементов и соответствующих белковых транс-действующих регуляторов генной активности основано на достаточно общих консервативных принципах, сохраняющихся в процессе эволюции.

Возможность длительной эволюционной сохранности цис- и трансдействующих компонентов, отвечающих за строгую тканевую и временную экспрессию генов, а следовательно, за регуляцию развития организма, неоднократно была показана экспериментально.

Глава 2. АНАЛИЗ ТРАНСЛЯЦИИ КАК ПРОЦЕССА СИНТЕЗА БЕЛКОВ В ЦИТОПЛАЗМЕ КЛЕТКИ

2.1. Трансляция: общие сведения

Трансляция - процесс синтеза белка в цитоплазме клетки. Молекулярные процессы, лежащие в основе синтеза белка, крайне сложны ( Kornberg R.D. et al, 1981 ; McGhee J.D. et al, 1980 ).

В синтезе белка участвует три таких класса молекул РНК ( мРНК, тРНК и рРНК ). Началом синтеза белка принято считать процесс транскрипции ДНК, в результате которого в ядре должна образоваться соответствующая информационная, или матричная, РНК (мРНК), которая затем должна перейти в цитоплазму клетки.

Процесс трансляции начинается с присоединения малой рибосомной субчастицы к молекуле мРНК. Особая инициаторная тРНК связывает малую рибосомную субчастицу со специальным старт- кодоном на мРНК. Присоединение большой субчастицы завершает сборку рибосомы.

Далее следует фаза элонгации. Каждая очередная аминокислота (находящаяся в комплексе с tРНК) присоединяется к карбоксильному концу растущего полипептида с помощью циклического процесса, состоящего из трех последовательных этапов: связывания аминоацил-тРНК, образования пептидной связи и транслокации рибосомы. Рибосома перемещается вдоль молекулы мРНК в направлении 5'-> 3' от одного кодона к другому до тех пор, пока не будет достигнут какой-либо из трех стоп-кодонов. К этому стоп-кодону присоединяется затем фактор освобождения, останавливающий трансляцию и вызывающий отделение завершенного полипептида от рибосомы. Энергия для биосинтеза белка обеспечивается гидролизом GTP.

Большинство данных о механизмах биосинтеза белка у эукариот было получено с использованием бесклеточных белоксинтезирующих систем. Важные результаты о механизмах трансляции у эукариот были получены с использованием стабильно трансформированных клеток животных и растений, выращиваемых в культуре. Установлено, что у растений и животных в основном функционируют одни и те же механизмы трансляции.

Клетки животных, кроме основной системы трансляции, локализованной в цитоплазме, имеют дополнительную систему трансляции митохондрий, которая по ряду свойств приближается к бактериальной. Клетки растений обладают дополнительной системой биосинтеза белка, функционирующей в хлоропластах.

2.2. Генетический код: общие сведения

Нуклеотидная последовательность гена определяет последовательность аминокислот в белке.

Это соответствие обеспечивает генетический код. Три соседних нуклеотида в молекуле ДНК составляют триплет, а последовательность нуклеотидов в триплете - код определенной аминокислоты, или кодон. Кодоны есть для каждой из 20 аминокислот, входящих в состав белка; в митохондриях генетический код несколько другой. Правила соответствия кодонов определенным аминокислотам или функциям называется генетическим кодом. За небольшими исключениями генетический код универсален для всех живых организмов. (Льюин, 1987 ). Так как четыре нуклеотида объединенные по три дают 64 варианта, а аминокислот всего 20, то большинство аминокислот кодируется более чем одним кодоном или другими словами: генетический код является вырожденным.

Универсальный генетический код. Трансляция начинается со стартового кодона, чаще всего это AUG, реже GUG, и заканчивается на одном из терминирующих или стоп-кодонов: UAA,UAG,UGA. Все кодоны, за исключением стоп кодонов, называются смысловыми. Стоп кодоны еще называют нонсенс кодонами. Группу кодонов кодирующих одну и ту же аминокислоту называют серией. Вырожденность серий варьирует от 1 (Trp, Met) до 6 (Ser, Arg, Leu). Многими авторами выделяется целый ряд свойств и особенностей генетического кода, но в данной базе данных они не рассматриваются.

Некоторые отклонения от универсального генетического кода у митохондрий приведены в таблице (Минченко,Дударева,1990):

Генетический код имеет следующие особенности:

1. Код - триплетный, т.е. одна аминокислота задается последовательностью из трех нуклеотидов, называемой кодоном.

2. Код не перекрывается, т.е. в последовательности оснований первые три основания кодируют одну аминокислоту, следующие три - другую и т.д.

3. Из таблицы генетического кода видно, что код - вырожденный : 20 аминокислот представлены 61 кодоном. Почти каждой аминокислоте соответствует несколько кодонов-синонимов.

4. Особенностью кода является тенденция к группировке кодонов, соответствующих одной аминокислоте. Часто основание в третьем положении кодона оказывается несущественным для его специфичности. Одна аминокислота может быть представлена четырьмя кодонами, различающимися только по третьему основанию. Иногда различие состоит в предпочтениии пурина пиримидину в этом положении. Меньшую специфичность этого положения в кодоне называют вырожденностью третьего основания.

5. Генетический код - универсален, т.е. все живые организмы (эукариоты, прокариоты и вирусы) используют один и тот же код.

Поскольку генетический код считывается с мРНК, его обычно записывают, используя четыре основания, присутствующие в РНК: U,C,A,G.

2.3. Инициация трансляции: общие сведения

Вместо комплементарного РНК-РНК узнавания, в которое вовлечена прединициирующая последовательность Шайна-Дальгарно прокариотических мРНК, эукариотические мРНК узнаются эукариотическими рибосомами по кэпированному 5'-концу с обязательным участием белка, например, eIF-4F инициаторного фактора ( Rhoads, 1988 ). Предполагается, что этот белок участвует в расплавлении вторичных структур 5'- областей мРНК, облегчая их связывание с малыми субчастицами рибосом. В отличие от прокариот, эукариотическая мРНК образует комплексы с белками ( мРНП, или мессенджер-рибонуклеопротеиды, или информосомы ), что обусловливает ее метаболическую стабильность. Вследствие этого у эукариот отсутствует постоянная интенсивная деградация и интенсивный ресинтез мРНК, которые, как правило, моноцистронны и имеют специфически модифицированный (кэпированный) 5'-конец. Все это обусловливает целый ряд особенностей инициации трансляции и ее регуляции у эукариотических организмов. Естественно, что метаболическая стабильность эукариотической мРНК делает регуляцию на уровне трансляции особенно важной в общей картине регуляции биосинтеза белка ( Спирин, 1986).

Биосинтез белка рибосомами начинается с образования комплекса между малой 30S субчастицей рибосом, инициаторной тРНК и участком транслируемой мРНК, содержащим сайт связывания рибосом, который включает в себя инициирующий (как правило, AUG) кодон. В образовании инициационного комплекса с 30S субчастицей принимают участие три белковых фактора инициации - IF1, IF2 и IF3. В ходе этого процесса расходуется одна молекула GTP, которая взаимодействует с IF2 и изменяет его конформацию. Таким образом, на первом этапе образования инициационного комплекса происходит объединение свободной 30S субчастицы с факторами инициации и GTP, после чего с ними последовательно связываются мРНК и инициаторная тРНК (в случае E.coli, как правило, формилметионил(fMet)-тРНКfMet). Инициаторная тРНК строго специфична для этой стадии белкового синтеза. Сначала она обычным путем акцептирует Met с образованием Met-тРНКfMet, а затем специальная ферментная система E.coli формилирует NH2-группу остатка Met. Последовательность присоединения инициаторной тРНК и мРНК к 30S субчастице не имеет значения.

Вначале после объединения факторов инициации трансляции, GTP, fMet-тРНКfMet и мРНК с 30S субчастицей антикодон тРНК еще не взаимодействует с инициаторным AUG-кодоном (стадии А' и B'). Такое продуктивное взаимодействие тРНК с мРНК происходит в дальнейшем (стадия C), и этот переход является одной из лимитирующих стадий всего процесса образования инициационного комплекса. С завершением стадии C происходит формирование стабильного тройного (из трех основных компонентов) инициационного комплекса, сопровождаемое конформационными перестройками всех его компонентов. После выхода из комплекса факторов инициации трансляции IF1 и IF3 тройной комплекс приобретает способность связывать большую 50S субчастицу рибосом, что сопровождается дальнейшими конформационными перестройками всей рибосомы (стадия D). В ходе этого процесса происходит расщепление молекулы GTP до GDP и ортофосфата и освобождение из комплекса фактора IF2 (стадия E). Формилметионил-тРНКfMet вместе с инициирующим AUG-кодоном перемещаются в донорный (P) участок рибосомы, освобождая акцепторный (A) участок для следующей аминоацилированной тРНК. В результате инициационный комплекс становится полностью подготовленным для вступления в следующую фазу биосинтеза белка - элонгацию полипептидных цепей.

Инициация трансляции эукариотических мРНК может осуществляться тремя способами. В соответствии с первым наиболее распространенным механизмом ( модель сканирования ) рибосомы после взаимодействия с 5'-концевой последовательностью мРНК осуществляют поиск инициирующего AUG-кодона, перемещаясь вдоль 5'UTR. При реализации второго механизма рибосомы инициируют биосинтез белка на внутренних AUG-кодонах, удаленных от 5'- концевой кэп-группы. И, наконец, после освобождения полипептида из транслирующего комплекса рибосомы, не отделяясь от мРНК, способны реинициировать биосинтез белка на следующем инициирующем кодоне.

2.4. Трансляция (биосинтез белка): элонгация: введение

Во время элонгации происходит последовательное присоединение аминокислотных остатков к C-концевым частям строящихся полипептидных цепей, направляемое кодонами транслируемых матричных РНК.

Этап элонгации начинается со взаимодействия фактора элонгации трансляции EF-Tu, молекулы GTP и очередной аминоацилированной тРНК с A-участком рибосомыhttp://humbio.ru/humbio/genexp/001b04b1.htm.

Вхождение аминоацилированной тРНК в A-участок происходит в соответствии с установленным в нем кодоном транслируемой мРНК. При этом лишь та аминоацилированная тРНК прочно связывается с рибосомой, у которой антикодон комплементарен кодону, установленному в A-участке. После гидролиза GTP и освобождения EF-TuGDP из комплекса (стадия Е2) происходит образование новой пептидной связи между карбоксильной группой формилметионина инициаторной тРНК и NH2- группой аминокислотного остатка, находящегося в A-участке рибосомы в составе аминоацил-тРНК (стадия Е3). Эта стадия получила название транспептидации. Обмен GDP на GTP в освободившемся комплексе EF-TuGDP происходит с участием фактора EF-Ts.

Образовавшийся пептид удерживается рибосомой через остаток тРНК, находящийся в A-участке, а освободившаяся тРНК временно сохраняется в так называемом E-участке рибосомы (от англ. exit - выход). Такая соединенная с пептидом тРНК получила название пептидил-тРНК. Образовавшаяся пептидил-тРНК далее переносится из A- в P-участок рибосомы. Эта стадия элонгации (Е4) известна под названием транслокации. Транслокация индуцируется фактором элонгации EF-G, который освобождается из элонгирующего комплекса после расщепления молекулы GTP. Таким образом, энергия еще одной молекулы GTP используется в акте транслокации.

После завершения транслокации происходит освобождение фактора EF-G из элонгирующего комплекса. При этом A-участок рибосомы остается свободным. Следующий цикл элонгации начинается с вхождения в A-участок рибосомы в составе тройного комплекса очередной молекулы тРНК (стадия Е1), что сопровождается освобождением формилметионил-тРНКfMet из E-участка, после чего повторяются стадии элонгации. В физиологических условиях рибосома совершает около 20 циклов элонгации в секунду. В соответствии с этим для синтеза белка длиной в 200 аминокислотных остатков требуется около 10 секунд.

В рассмотренной классической модели биосинтеза белка с тремя участками связывания тРНК на любой стадии элонгации с рибосомой взаимодействуют две молекулы тРНК. Иными словами, до стадии транслокации тРНК занимают A- и P-участки рибосомы, тогда как после транслокации молекулы ассоциированы с P- и E-участками. Между участками A и E существует аллостерическое взаимодействие, что проявляется в отрицательном кооперативном эффекте связывания молекул тРНК этими участками и означает, что только A- или E- участки рибосомы могут быть заняты молекулой тРНК, и рибосома не содержит одновременно занятыми оба участка.

Трансляции элонгация: факторы элонгации

У эукариот имеется два фактора элонгации - eEF1 и eEF2. Не исключено, что в митохондриях и хлоропластах существуют независимые факторы элонгации, ответственные за связывание аминоацил-тРНК с рибосомой, но они еще не охарактеризованы ( Льюин Б., 1987 )

Эукариотические клетки содержат в большом количестве фактор элонгации eEF1A, который является функциональным гомологом бактериального фактора EF-Tu. Так же как и у бактерий, этот фактор образует тройной комплекс с GTP и аминоацил-тРНК, обеспечивая вхождение последней в А-участок элонгирующей рибосомы.

Два других эукариотических фактора eEF1B и eEF2 резко отличаются от бактериальных функциональных аналогов EF1B(EF-Ts) и EF2(EF-G) по аминокислотным последовательностям. Гетеротримерный фактор eEF1B, как и его бактериальный аналог, катализирует обмен GDP на GTP в комплексе eEF1A-GDP. Фактор eEF2, по аналогии с бактериальными системами, обеспечивает транслокацию пептидил-тРНК в P-участок рибосом и перенос деацилированной тРНК в E-участок. У высших организмов этот фактор служит мишенью регуляторных воздействий через фосфорилирование.

Замечательным свойством факторов eEF1A и eEF2 является способность связываться с компонентами цитоскелета эукариотических клеток. Полагают, что это их свойство может обеспечивать один из механизмов внутриклеточного транспорта мРНК, направляющих ее в полисомы.

Заключение

Таким образом, в работе были подвергнуты анализу общебиологический аспект транскрипции, исследована трансляция как процесс синтеза белков в цитоплазме клетки.

Транскрипция настолько важный процесс, что ее нарушения вызывают чрезвычано серьезные последствия для организма, вызывая болезни от неоплазий до врожденных дефектов. Вот только некоторые физиологические дефекты, возникающие в организмах вследствие нарушения транскрипции: мутации в гене PAX3, члене семейства генов, которые кодируют транскрипционные факторы, участвующие в эмбриогенезе, приводят к доминантно наследуемой аутосомной болезни - синдрому Варденбурга (Waardeburg) с потерей слуха, ненормальной пигментацией и множеством морфологических дефектов.

Мутации в гене WT1, который кодирует Zn-фингерный белок, играющий роль опухолевого супрессора, вызывает синдром Денис-Драша (Denys-Drash), характеризующийся опухолью Вильмса, почечной недостаточностью и гермафродитизмом. Этот список можно значительно расширить.

Рассматривая вопрос о трансляции, необходимо отметить, что во время элонгации полипептидных цепей в процессе трансляции не все участки мРНК транслируются с одинаковой скоростью. Рибосомы в процессе трансляции мРНК могут задерживаться на кодонах, соответствующих минорным изоакцепторным тРНК, присутствующим в клетке. В этом случае внутриклеточная концентрация изоакцепторных тРНК лимитирует весь процесс трансляции.

Кодоны, соответствующие минорным изоакцепторным тРНК, А.С. Спирин предлагает называть модулирующими, поскольку они могут изменять скорость трансляции соответствующих мРНК. Чем больше модулирующих кодонов в мРНК, тем медленнее она транслируется. Клетка может изменять эффективность трансляции определенных мРНК путем адаптации внутриклеточных концентраций изоакцепторных тРНК к числу модулирующих кодонов этих мРНК. Показано, что во время интенсивного синтеза фиброина в шелкоотделительных железах тутового шелкопряда внутриклеточный спектр изоакцепторных тРНК сильно меняется и становится идеально соответствующим потребностям белоксинтезирующего аппарата клеток, осуществляющего трансляцию мРНК фиброина.

Другим фактором, от которого зависит изменение скорости перемещения рибосомы вдоль транслируемой молекулы мРНК, является пространственная структура матрицы. Для разворачивания индивидуальных участков пространственной структуры мРНК, обладающих неодинаковой стабильностью, требуется разное время, что отражается в различной скорости трансляции рибосомами индивидуальных мРНК.

Обнаружен ряд регуляторных белков, которые после взаимодействия с транслирующей рибосомой избирательно задерживают трансляцию в определенных местах мРНК. Например, у эукариот рибонуклеопротеидная частица, содержащая 7S-РНК, которая узнает особую N-концевую гидрофобную аминокислотную последовательность растущего полипептида, присоединяется к рибосомам и блокирует трансляцию до тех пор, пока рибосома не вступит во взаимодействие с мембраной эндоплазматического ретикулума.

Регуляция экспрессии генов на уровне элонгации трансляции широко распространена в природе. Во время многих вирусных инфекций скорость элонгации полипептидов зараженных клеток резко снижается. Это обнаружено у пикорнавирусов и вирусов осповакцины. Факторы элонгации трансляции могут быть мишенями различных регуляторных воздействий.

Список литературы

1. Агол В.И., Богданов А.А., Гвоздев В.А., Грагеров А.И., Колчинский А.М., Мирзабеков А.Д., Никифоров В.Г. Молекулярная биология: Структура и биосинтез нуклеиновых кислот Под ред. Спирина А.С., М.: Высш.шк., 1990

2. Албертс Б., Брей Д., Льюис Дж., Рэфф М., Робертс К., Уотсон Дж. Молекулярная биология клетки, т.2, М.: Мир, 1986

3. Биологическая энциклопедия. /Составитель С.Т. Исмаилова. -- М.: Аванта+, 2006.

4. Биологический энциклопедический словарь. -- М.: Советская энциклопедия, 2003

5. Богданова Т.Л. Биология. Пособие для поступающих в ВУЗы. -- М., 2001

6. Власова З.А. Биология. Справочник студента - М., 2001

7. Воронцов Н. Н., Сухорукова Л. Н. Эволюция органического мира - М., 2002

8. Георгиев Г.П. Гены высших организмов и их экспрессия, М.: Наука, 1989

9. Грин Н. Биология - М., 2003

10. Де Робертис Э. Новинский В., Саэс Ф. Биология клетки. М., Мир, 2001

11. Зегнбуш П. Молекулярная и клеточная биология. М., Мир, т2004

12. Камлюк Л.В. Биология в вопросах и ответах - Минск, 1994

13. Краткий справочник по химии, под ред. О. Д. Куриленко, 4 изд.. К., 1974

14. Лемеза Н.А. Пособие по биологии - Минск, 1998

15. Мамонтов С.Г. Биология - М., 2004

16. Меншуткин Н. А., Очерк развития химических воззрений, СПБ, 1888

17. Некрасов Б. В. Основы общей химии. М., 2001

18. Неницеску К. Д. Общая химия. Пер. с рум./ Под ред. Аблова А. В. - М.: Мир, 1968.

19. Основы общей биологии. Под общ. ред. Э.Либберта, М.: Мир, 1982

20. Свердлов Д.Е. Очерки современной молекулярной генетики. По курсу лекций для студентов биологического факультета МГУ. 2003


Подобные документы

  • Процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Точки начала и конца транскрипции, основной фермент и вспомогательные факторы. Этапы обратной транскрипции, особенности транскрипции про- и эукариот.

    презентация [2,3 M], добавлен 14.04.2014

  • Транскрипция – процесс переноса генетической информации от ДНК к РНК. Природа информационной связи между ДНК и белками. Строение и организация единиц транскрипции у прокариот и эукариот. Синтез РНК - выделение стадий инициации, элонгации и терминации.

    лекция [27,1 K], добавлен 21.07.2009

  • Регуляция метаболизма как управление скоростью биохимических процессов. Регуляция биосинтеза белков и особенности процесса репликации. Транскрипция генетической информации, механизм катаболитной репрессии, регуляция на этапе терминации транскрипции.

    контрольная работа [816,0 K], добавлен 26.07.2009

  • Определение понятия и описание общих особенностей трансляции как процесса синтеза белка по матрице РНК, осуществляемого в рибосомах. Схематическое представление синтеза рибосом у эукариот. Определение сопряженности транскрипции и трансляции у прокариот.

    презентация [2,8 M], добавлен 14.04.2014

  • Положения биологической гипотезы Жакоба-Мано. Роль генов-регуляторов в синтезе белков. Особенности протекания первого этапа этого процесса – транскрипции. Трансляция как следующая ступень их биосинтеза. Основы ферментативной регуляции этих процессов.

    презентация [250,9 K], добавлен 01.11.2015

  • Свойства генетического кода, его вариации. Механизм реакции аминоацил-mРНК синтетазы. Состав и основная функция рибосомы. Ее структура и функциональные центры. Порядок присоединения белков. Инициация, элонгация и терминация трансляций у бактерий.

    презентация [2,8 M], добавлен 17.04.2014

  • Молекулярно-генетический уровень организации живого. Схема строения ДНК. Экспрессия гена как процесс реализации информации, закодированной в нем. Центральная догма молекулярной биологии. Транскрипционный аппарат клетки. Схемы транскрипции и сплайсинга.

    презентация [725,1 K], добавлен 21.02.2014

  • Молекулярная организация генетического материала. Транскрипция и трансляция мРНК прокариот. Роль рибонуклеиновых кислот в белковом синтезе. Расположение функциональных центров на субчастицах рибосомы. Свойства генетического кода. Активация аминокислот.

    курсовая работа [2,0 M], добавлен 19.11.2013

  • Транскрипция и основные ферменты, которые осуществляют транскрипцию, ДНК-зависимые РНК-полимеразы. Структурные и функциональные домены больших субъединиц эукариотической РНК-полимеразы. Регуляция экспрессии генов на уровне транскрипции у прокариот.

    реферат [373,5 K], добавлен 29.09.2009

  • Экспрессия генов - способность контролировать синтез белка. Структура и свойства генетического кода, его универсальность и просхождение. Передача генетической информации, транскрипция и трансляция. Митохондриальный и хлоропластный генетические коды.

    реферат [41,5 K], добавлен 27.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.