Вирусы и бактериофаги

Вирус: строение и свойства, размножение, классификация. Бактериофаги: строение, жизненный цикл бактериофагов, лечение. Изучение вирусов привело к пониманию тонкой структуры генов, расшифровки генетического кода, выявлению механизмов мутации. Вирусология.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 13.12.2008
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

15

СОДЕРЖАНИЕ

  • Введение 3
  • 1. Вирус, строение 4
    • 1.1. Строение и свойства 4
    • 1.2. Размножение 7
    • 1.3. Классификация 8
  • 2. Бактериофаги 10
    • 2.1. Строение 10
    • 2.2. Жизненный цикл бактериофагов 11
    • 2.3. Лечение 15
  • Заключение 16
  • Список литературы 17
  • Введение
  • В 1852 г. русский ботаник Д.И. Ивановский впервые получил инфекционный экстракт из растений табака, пораженных мозаичной болезнью. Когда такой экстракт пропустили через фильтр, способный задерживать бактерии, отфильтрованная жидкость все еще сохраняла инфекционные свойства. В 1898 г. голландец Бейеринк (Beijerink) придумал новое слово вирус (от латинского слова, означающего «яд»), чтобы обозначить этим термином инфекционную природу некоторых профильтрованных растительных жидкостей. Хотя удалось достигнуть значительных успехов в получении высокоочищенных проб вирусов и было установлено, что по химической природе это нуклеопротеины (нуклеиновые кислоты, связанные с белками), сами частицы все еще оставались неуловимыми и загадочными, потому что они были слишком малы, чтобы их можно было увидеть с помощью светового микроскопа. Поэтому-то вирусы и оказались в числе первых биологических структур, которые были исследованы в электронном микроскопе сразу же после его изобретения в 30-е годы нашего столетия.
  • Проблема вирусов в наше время очень актуальна. Она привлекает внимание всё большего числа учёных. С каждым днём появляется всё больше вирусов. Когда вирусы впервые были открыты, никто и не подозревал, что они будут так опасны и им посвятят целую науку. Меня привлекла эта тема, потому что сейчас тысячи людей заражены такими опасными вирусами заболеваниями как СПИД, рак, но и не только же люди болеют вирусными инфекциями, а и растения, и животные, и об этом надо говорить.

1. Вирус, строение

1.1. Строение и свойства

Размеры вирусов колеблются от 20 до 300 нм. В среднем они в 50 раз меньше бактерий. Их нельзя увидеть в световой микроскоп, так как их длины меньше длины световой волны.

Схематическое строение вируса.

Вирусы состоят из различных компонентов:

1) сердцевина генетический материал (ДНК или РНК). Генетический аппарат вируса несет информацию о нескольких типах белков, которые необходимы для образования нового вируса: ген, кодирующий обратную транскриптазу и другие.

2) белковая оболочка, которую называют аспидом.

Оболочка часто построена из идентичных повторяющихся субъединиц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.

3) дополнительная липопротеидная оболочка.

4) капсомеры (структурные части капсида).

Она образована из плазматической мембраны клетки-хозяина. Она встречается только у сравнительно больших вирусов (грипп, герпес).

Полностью сформированная инфекционная частица называется вирионом.

Положения о том, что вирусы представляют собой полноценные организмы, позволило окончательно объединить все три названных группы вирусов - вирусы животных, растений и бактерий - в одну категорию, занимающую определенное место среди живых существ, населяющих нашу планету. Тот факт, что их не удалось выращивать на искусственных питательных средах, вне клеток, не вызывал особого удивления, так как вирусы с самого начала были определены как строгие внутриклеточные паразиты. Это свойство признавалось не уникальным, присущим только вирусам, поскольку внутриклеточные паразиты известны и среди бактерий, и среди простейших. Как и другие организмы, вирусы способны к размножению. Вирусы обладают определенной наследственностью, воспроизводя себе подобных. Наследственные признаки вирусов можно учитывать по спектру поражаемых хозяев и симптомам вызываемых заболеваний, а также по специфичности иммунных реакций естественных хозяев или искусственных иммунизируемых экспериментальных животных. Сумма этих признаков позволяет четко определить наследственные свойства любого вируса, и даже больше - его разновидностей, имеющих четкие генетические маркеры, например: нейтропность некоторых вирусов гриппа, сниженную патогенность у вакциональных вирусов и т.п.

Изменчивость является другой стороной наследственности, и в этом отношении вирусы подобны всем другим организмам, населяющим нашу планету. При этом у вирусов можно наблюдать как генетическую изменчивость, связанную с изменением наследственного вещества, так и фенотипическую изменчивость, связанную с проявлением одного и того же генотипа в разных условиях. Примером первого типа изменчивости являются мутанты одного и того же вируса, в частности температурочувствительные мутанты. Примером второго типа изменчивости служит разный тип поражений, вызываемых одним и тем же вирусом у различных животных, растений и бактерий.

Все вирусы по своей природе - паразиты. Они способны воспроизводить себя, но только внутри живых клеток. Обычно вирусы вызывают явные признаки заболевания. Попав внутрь клетки, они “включают” ее ДНК и, используя свою собственную ДНК или РНК, дают клетке команду синтезировать компоненты вируса. Компоненты вируса способны к спонтанному образованию вириона. Клетка, израсходовав все жизнетворные соки на синтез вирусов, гибнет, перегруженная паразитами. Вирусы “разрывают” оболочку клетки и передаются в другую клетку в виде инертных частиц. Вирусы вне клетки представляют собой кристаллы, но при попадании в клетку “оживают”.

Ученные, анализируя строение вещества, до сих пор не решили: считать вирусы живыми или мертвым. Вирусы, с одной стороны, обладают способностью размножатся, наследственностью и изменчивостью, но с другой стороны, не имеют обмена веществ, и их можно рассматривать, как гигантские молекулы.

Вирусы, как и другие организмы, характеризуются приспособляемостью к условиям внешней среды. Нужно только не забывать, что для них организм хозяина является средой обитания, поэтому многие условия внешней среды влияют на вирус опосредованно - через организм хозяина. Однако многие факторы внешней среды могут и непосредственно воздействовать на вирусы. Достаточно вспомнить уже названные температурочувствительные мутанты вирусов, которые, например, размножаются при температуре 32-37. С и гибнут при температуре 38-40. С, хотя их хозяева остаются вполне жизнеспособными при этих температурных режимах. В связи с тем, что вирусы являются паразитами, они подчиняются закономерностям и к ним применимы понятия экологии паразитизма. Каждый вирус имеет круг естественных хозяев, иногда очень широкий, как, например, у мелких РНК-геномных фагов: в первом случае поражаются все млекопитающие, во втором - отдельные клоны кишечной палочки. Циркуляция вирусов может быть горизонтальной (распространение среди популяции хозяев) и вертикальной (распространение то родителей потомству). Таким образом, каждый вирус занимает определенную экологическую нишу в биосфере.

1.2. Размножение

Размножение В. происходит в клетках. Бактериофаги растворяют оболочку бактерии и вводят в бактерию нить НК, причём капсид фага остаётся вне клетки. Многие В. поглощаются клеткой путём пиноцитоза. Попав в клетку, они освобождаются от оболочки. Первые этапы развития В. в клетке в общих чертах состоят в том, что строятся так называемые ранние белки, т. е. белки-ферменты, необходимые В. для репликации (удвоения) их НК. Так называемые поздние белки участвуют в образовании белковых оболочек дочерних вироспор. Из ферментов у В., содержащих ДНК, одним из первых синтезируется полимераза РНК, которая строит на нити ДНК информационную РНК (и-РНК). Эта РНК попадает на рибосомы клетки, где и происходит синтез других белков вирусной частицы (см. Белки, раздел Биосинтез). В., содержащие РНК, синтезируют полимеразу, катализирующую синтез новых частиц вирусной РНК; эта РНК переходит на рибосомы и контролирует синтез белка капсида. Таким образом, В., содержащие РНК, не нуждаются в ДНК для размножения и передачи генетической информации потомству (см. схему). Размножение В. происходит в клетках. Бактериофаги растворяют оболочку бактерии и вводят в бактерию нить НК, причём капсид фага остаётся вне клетки. Многие В. поглощаются клеткой путём пиноцитоза. Попав в клетку, они освобождаются от оболочки. Первые этапы развития В. в клетке в общих чертах состоят в том, что строятся так называемые ранние белки, т. е. белки-ферменты, необходимые В. для репликации (удвоения) их НК. Так называемые поздние белки участвуют в образовании белковых оболочек дочерних вироспор. Из ферментов у В., содержащих ДНК, одним из первых синтезируется полимераза РНК, которая строит на нити ДНК информационную РНК (и-РНК). Эта РНК попадает на рибосомы клетки, где и происходит синтез других белков вирусной частицы (см. Белки, раздел Биосинтез). В., содержащие РНК, синтезируют полимеразу, катализирующую синтез новых частиц вирусной РНК; эта РНК переходит на рибосомы и контролирует синтез белка капсида. Таким образом, В., содержащие РНК, не нуждаются в ДНК для размножения и передачи генетической информации потомству (см. схему).

Схема размножения вирусов, содержащих в вирионе одну нить ДНК (I) или одну нить РНК (II). ДНК изображена сплошной линией, РНК -- пунктиром; А -- нуклеиновая к-та вириона; Б -- удвоенная нить нуклеиновой кислоты при ее репликации; В -- информационная РНК, (и-РНК), копирующая вирусную ДНК; Г -- цепочка рибосом (полисома), соединенная и-РНК или вирусной РНК (на рибосомах растет полипептидная цепочка из остатков аминокислот); Д -- рибосома с полипептидом, отделившаяся от полисомы; Е -- белковая молекула, образованная полипептидными цепочками; Ж -- построение дочерней нити нуклеиновой к-ты между двумя материнскими; З -- зрелый вирион. Стадия В у вирусов с РНК отсутствует, т. к. их собственная РНК выполняет при синтезе белков роль и-РНК.

1.3. Классификация

а) Вирусы классифицируются по сердцевине:

ДНК-содержащие и РНК-содержащие (ретро) вирусы.

б) По структуре капсомеров.

Изометрические (кубические), спиральные, смешанные.

в) По наличию или отсутствию дополнительной оболочки состоящей из группы сложных белков, в состав которых входят липиды.

г) По клеткам-хозяинам

Кроме этих классификаций есть еще много других. На пример, по типу переноса инфекции от одного организма к другому.

2. Бактериофаги

2.1. Строение

Спустя 25 лет после открытия вируса, канадский ученый Феликс Д'Эрел, используя метод фильтрации, открыл новую группу вирусов, поражающих бактерии. Они так и были названы бактериофагами (или просто фагами).

Электронная микрофотография фага Т2 при большем увеличении.

Заключённую в головке фага нуклеиновою кислоту защищает белковая оболочка. На нижнем своём конце головка переходит в отросток, который заканчивается шестиугольной «площадкой» (базальной пластинкой) с шестью короткими выростами (шипами) и шестью длинными фибриллами (нитями). Отросток окружён чехлом по всей длине, от головки до пластинки.

2.2. Жизненный цикл бактериофагов

Электронный микроскоп открыл тайну воспроизведения вирусов. Проще всего этот процесс наблюдать на группе вирусов, нападающих на бактерии, - бактериофагов, или просто фагов. Фаги легко размножаются в кишечной палочке Escherichia coli. Ее клетки поражаются по меньшей мере семью штаммами фагов Т1 - Т7. Эти фаги по строению напоминают ручную гранату - они имеют голову и хвост.

Природа позаботилась об этих вирусах, снабдив их необходимыми орудиями: ферментом лизоцимом, «открывателем» клеточной мембраны, и микроскопическими «мышцами», сокращение которых способствует попаданию ДНК внутрь клетки.

Электронная микрофотография бактериофагов, инфицирующих клетку.

Атака начинается с прикрепления хвостов нескольких десятков фагов к определенной части бактериальной стенки. Тотчас же лизоцим растворяет клеточную мембрану. Аппарат хвоста вируса действует наподобие шприца: «мышцы» сокращаются и нуклеиновая кислота впрыскивается внутрь клетки. Верхняя «одежда» вируса - белковый чехол - остается снаружи клетки. Так завершается «оккупация» бактерий фагами. Весь процесс длится всего несколько минут.

Нуклеиновая кислота играет главную роль в воспроизведении фага. Это, как вы помните, было доказано немецкими учеными в опытах по гибридизации вирусов.

Однако не все вирусы так агрессивны, как фаги, не у всех есть хвост с набором необходимых для взлома клетки инструментов. Как же в этих случаях вирус проникает на чужую территорию?

Как ни парадоксально, в этих случаях сама клетка осуществляет внедрение вирусов - она как бы заглатывает их. Вспомним, что на протяжении эволюции у клеток выработался механизм активного захвата из окружающей среды различных твердых частиц (фагоцитоз) и капелек жидкости (пиноцитоз). Этот механизм играет большую роль в нормальной жизнедеятельности клетки. В случае же встречи с вирусом происходит как бы «самоубийство» клетки.

Участие обратной транскриптазы в образовании комплиментарной ДНК на вирусной одноцепочечной РНК-матрице в животной клетке

При «заглатывании» вируса клетка стремится «переварить» его специальными ферментами клетки. «Война» может быть закончена миром, если клетке не удастся подобрать ключ - соответствующий фермент для растворения белковой оболочки. В случае же наличия в клетке подходящего фермента происходит трагедия. Фермент разрушит чехол вируса, освободит замурованную пленницу - нуклеиновую кислоту, которая по клеточным каналам быстро доберется до ядра клетки и проникнет в него или останется в цитоплазме. Вот с этого момента начинается размножение вируса. Дальше все понятно. Клетка будет разрушена.

«Иноземка» на чужой территории заставляет «государственный аппарат» работать на себя - производить свои копии. Как это происходит?

Вирусная нуклеиновая кислота, подавляя производство молекул клетки, вынуждает клетку производить вирусы. Вначале оккупированная клетка начинает синтезировать ферменты - полимеразы, снимающие копии с нуклеиновой кислоты вируса. Таким образом происходит редупликация, совершающаяся в разных частях клетки, в зависимости от вируса. При образовании достаточного количества вирусных нуклеиновых кислот часть из них отправляется на «фабрику белков» клетки. Рибосомы теперь вынуждены синтезировать вирусные белки вместо собственных. Оставшаяся часть вирусных нуклеиновых кислот идет на производство дочерних вирусов.

1)Фаг приближается к бактерии, и хвостовые нити связываются с рецепторными участками на поверхности бактериальной клетки.

2)Хвостовые нити изгибаются и “закоривают” шипы и базальную пластинку на поверхность клетки; хвостовой чехол сокращается, заставляя, полый стержень входить в клетку; этому способствует фермент - лизоцим, который находится в базальной пластинке; таким образом, ДНК вводится внутрь

3)ДНК фага кодирует синтез ферментов фага, используя для этого более синтезирующий аппарат (рибосомы и т.п.) хозяина.

4) Фаг тем или иным способом ин активирует ДНК хозяина, а фермент фага совсем расщепляет ее; ДНК фага подчиняет себе клеточный аппарат.

5)ДНК фага реплицируется и кодирует синтез новых белков.

6)Новые частицы фага, образующиеся в результате спонтанной само сборки белковой оболочки вокруг фаговой ДНК; под контролем ДНК фагов синтезируется лизоцим.

7) Лизис клетки, т.е. клетка, лопается под воздействием лизоцима; высвобождается около 200-1000 новых фагов; фаги индуцируют другие клетки.

Жизненный цикл фага составляет 30 минут.

Жизненный цикл бактериофага: 1 - одна молекула двухцепочечной ДНК; 2 - хвостовые нити; 3 - сократившийся чехол; 4 - шипы отростка; 5 - ДНК; 6 - пустая белковая оболочка; 7 - ДНК фага; 8 - ферменты фага; 9 - бактерия (хозяин); 10 - ДНК хозяина (двухцепочечная)

2.3. Лечение

Свойство бактериофагов разрушать бактерии используется для предупреждения и лечения бактериальных заболеваний.

Через 10-15 минут после введения бактериофагов в организм возбудителя чумы, брюшного тифа, дизентерии, сальмонеллеза обезвреживаются.

Но у этого метода есть серьезный недостаток. Бактерии более изменчивы (в плане защиты от фагов) чем бактериофаги, поэтому бактериальные клетки относительно быстро становятся к нечувствительным фагам.

Заключение

Развитие естествознания необычайно расширило представления человека об окружающем его мире. Мир невидимых живых существ - микроорганизмов, хранит ещё много тайн, познать которые очень важно для человечества.

Вирусология - быстро развивающаяся отрасль современной биологии. Её теоретическое и практическое значение для медицины, ветеринарии, сельского хозяйства - огромно. На вирусах изучаются вопросы генетики микробов и актуальные проблемы биохимии. Учёные всё более глубоко и успешно познают тончайшую структуру, биохимический состав и физиологические свойства этих ультрамикроскопических живых существ, их роль в природе, жизни человека, животного и растений. Развитие вирусологии связано с блестящими успехами молекулярной генетики. Изучение вирусов привело к пониманию тонкой структуры генов, расшифровки генетического кода, выявлению механизмов мутации. Вирусы широко применяются в работах генной инженерии. Способность вирусов приспосабливаться, вести себя непредсказуемо - не знает предела.

Миллионы людей стали жертвами вирусов - возбудителей различных болезней. И всё-таки основные успехи вирусологии достигнуты в борьбе с конкретными болезнями и это даёт основание утверждать, что в нашем третьем тысячелетии вирусология займёт ведущее место.

Список литературы

1. Богач В. В. и др., «Мир вирусных гепатитов» , №1, 2000 - стр. 8-12

2. Жданова В. М., Гайдамович С. Я. Общая и частная вирусология, Москва, Молодая гвардия, 1982

3. Коротеев И. А., Бабичев С. А. Медицинская микробиология, иммунология и вирусология, Москва, Специальная литература, 1998

4. Лозовская И. С. Тезисы докладов конференции «Гепатит С (Российский консенсус)», 26-27 сентября 2000 - стр. 82-89

5. Роберт К. Гало Вирус приобретённого иммунного дефицита. В мире науки, №3, М,, 1987 - стр. 3-11

6. Роберт Яргоан, Хироаки Мицуя, Самьэл Бродер; Лечение вирусов. В мире науки, №5, М., 1987 - стр. 7-10

7. Токарик Э. Ф. Биология в школе №2 М., Школа пресс ,2000

8. Хэзелтайн Уильям А., Флосси Вонг-Стааль Молекулярная биология вируса. В мире науки, №12, М.1988 - стр. 9-15

9. Чумаков М. П. , Львов Д. К. и др. Вопросы вирусологии, Москва, Знание, 1964


Подобные документы

  • Период жизнедеятельности клетки, в котором происходят все обменные процессы и деление. Интерфаза, метафаза и анафаза, деление клетки. Биологический смысл митоза. Вирусы и бактериофаги как неклеточные формы жизни. Виды и формы размножения организмов.

    реферат [20,3 K], добавлен 06.07.2010

  • Общая характеристика вирусов как неклеточных биологических объектов. Внеклеточная и внутриклеточная морфологические формы вирусов. Строение и химический состав простого и сложноустроенного вириона. Смешанный или сложный тип симметрии (бактериофаги).

    презентация [1,6 M], добавлен 25.10.2013

  • Бактерии – одноклеточные организмы, их признаки, строение, питание, классификация, морфология. Формы и среда обитания бактерий; размножение, образование спор; значение. Простейшие и грибы. Неклеточные формы жизни: вирусы и бактериофаги; химический состав.

    презентация [4,4 M], добавлен 02.11.2012

  • Схема строения булавовидного бактериофага. Жизненный цикл вируса на примере ортомиксовирусов, к которым относятся вирусы гриппа А, В и С типов. Описание вирусов иммунодефицита человека (ВИЧ), вызывающего СПИД, табачной мозаики, герпеса 8 типа, гриппа.

    презентация [864,8 K], добавлен 07.09.2010

  • Эволюционное происхождение. Свойства вирусов. Природа вирусов. Строение и классификация вирусов. Взаимодействие вируса с клеткой. Значение вирусов. Вирусные заболевания. Особенности эволюции вирусо на соременном этапе.

    реферат [299,2 K], добавлен 22.11.2005

  • Особенности вирусов - возбудителей опасных заболеваний человека, которые передаются при физическом контакте, воздушно-капельным, половым путем. Характеристика вирусологии - науки, изучающей природу вирусов, их строение, размножение, биохимию, генетику.

    реферат [21,1 K], добавлен 23.01.2010

  • Облигатные внутриклеточные паразиты. Морфология, строение вирусов. Сложно устроенные вирусы. Продуктивный тип взаимодействия вируса с клеткой. Представители однонитевых ДНК-вирусов. Культивирование, индикация вирусов. Внутриклеточная репродукция вирусов.

    презентация [2,4 M], добавлен 23.02.2014

  • Изучение истории, разнообразия, особенностей строения, свойств и значения вирусов. Отличия дезоксивирусов и рибовирусов. Вирусные заболевания человека (корь, СПИД, ВИЧ), заболевания животных, насекомых, растений. Бактериофаги - "пожиратели бактерий".

    презентация [976,8 K], добавлен 20.10.2013

  • История развития и сферы использования молекулярной биотехнологии; генная инженерия. Мутации и рекомбинации вирусов. Строение генетического аппарата клетки. Внехромосомные элементы наследственности. Действие мутагенов на генетический материал бактерий.

    презентация [2,0 M], добавлен 24.03.2015

  • Открытие вирусов, их размеры, особенности строения и жизненный цикл. Синтез компонентов вирусной частицы - нуклеиновой кислоты и белков капсида. Вирусы растений, животных и человека как возбудители различных заболеваний. Эволюционное развитие вирусов.

    контрольная работа [433,8 K], добавлен 15.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.