Влияние пусков ракет космического назначения на экологию Земли

Влияние ракет на озоновый слой и засорение космического пространства фрагментами ракетно-космической техники. Загрязнение территорий и акваторий от падения частей ракет. Процессы электрической природы, сопровождающие запуски ракет-носителей в ионосфере.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 01.06.2012
Размер файла 107,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Омский государственный технический университет

Кафедра "Авиа- и ракетостроение"

Направление 160400.62 - «Ракетные комплексы и космонавтика»

Реферат

по дисциплине «История ракетостроения»

за 2 семестр 2011-2012 учебного года

Тема: «Влияние пусков ракет космического назначения на экологию Земли»

Омск 2012

Оглавление

Введение

1. Влияние ракет на озоновый слой

2. Засорение космического пространства фрагментами ракетно-космической техники

3. Загрязнение территорий и акваторий от падения частей ракет

4. Процессы, сопровождающие запуски ракет-носителей в ионосфере

5. Изменения количества электричества ионосферы после запусков КЛА

Заключение

Ссылки использованных источников

озоновый ионосфера ракетный космический загрязнение

Введение

Целью данной работы является ознакомление влияния пусков ракет космического назначения на экологию Земли.

Обсуждая перспективы развития космонавтики, в том числе решение таких крупномасштабных задач, как развертывание многоцелевых орбитальных комплексов, спутниковых солнечных электростанций, создание лунной базы-станции, нельзя забывать об экологии окружающей среды. Интенсивное освоение космоса может привести к весьма ощутимым воздействиям на околоземную среду.

Воздействие ракетно-космической деятельности (РКД) на окружающую природную среду многоаспектно и охватывает все геосферы: от поверхности Земли и приземного слоя атмосферы до околоземного космического пространства.

Прежде всего это касается транспортных космических систем (ракет носителей и космических буксиров) объем операций которых продолжает расти и расширяться. Реализуемый в настоящее время мировой грузопоток в космос требует ежегодно около 100 - 120 пусков ракет носителей различной грузоподъемности. В перспективе при решении новых задач возможно его увеличение в несколько раз. Массовые пуски ракет-носителей, сопровождаемые выбросом большого количества продуктов сгорания, будут влиять на атмосферу Земли. Необходима оценка уровня такого воздействия, чтобы избежать в будущем нежелательных последствий.

Как и любая деятельность человека - освоение космического пространства - имеет как положительные, так и отрицательные последствия. К отрицательным аспектам эксплуатации ракетно-космических комплексов относят :

- вредное воздействие продуктов сгорания ракетных топлив на атмосферу Земли;

- проблемы разрушения озонового слоя Земли и электронной компоненты в атмосфере;

- засорение космического пространства фрагментами ракетно-космической техники;

- необходимость отчуждения под районы падения отделяющихся частей ракет-носителей по трассам их пусков больших земельных территорий.

Здесь мы остановимся только на некоторых аспектах воздействия запусков ракет на озоновый слой и ионосферу, а также на проблемах, связанных с «космическим мусором».

1. Влияние ракет на озоновый слой

Озон разрушается под воздействием водяных паров, содержащихся в продуктах сгорания ракетных топлив, и вследствие других процессов, происходящих под воздействием высоких температур в факелах ракетных двигателей. Источником разрушения озона служат каталитические реакции. Содержание озона в атмосфере весьма неоднородно вследствие различных скоростей озонообразующих и озоноразрушающих реакций на равных высотах. Из общей массы атмосферы Земли 5 • 1015 т на долю озона приходится 3 • 109 т. Если его привести к нормальным условиям (760 мм рт. ст., 0°С), то вокруг Земли в среднем получится слой толщиной всего около 3 мм.

На озонный слой влияют продукты сгорания РН. Они не соизмеримы по своей массе с промышленными загрязнениями, но в отличие от них выбрасываются ракетами-носителями в широком диапазоне высот атмосферы. И практически при полете любой РН в озонном слое возникает «окно», которое со временем затягивается. Размеры таких «окон» возрастают, если в составе РН используются ракетные двигатели на твердом топливе. Кроме аналогичного образования окиси азота (из воздуха), в их реактивных струях содержится большое количество хлористого водорода, который отнесен Венской конвенцией об охране озонного слоя (март 1985 г.) к особо активным озоноразрушающим веществам. Каждый атом хлора разлагает в тысячи раз больше молекул озона, чем одна молекула окиси азота. Поэтому с экологической точки зрения для реализации больших грузопотоков в космос целесообразно использовать ракеты-носители на базе жидкостных ракетных двигателей типа РН «Энергия», «Зенит», «Атлас-Центавр».

Эволюция следа РН происходит под влиянием атмосферной циркуляции и химических реакций между продуктами сгорания и воздухом. Количественно оценить изменения в озонном слое под воздействием ракетных выбросов можно с помощью разработанных фотохимических моделей, достаточно подробно описывающих весь сложный комплекс фотохимических превращений в тропосфере и стратосфере. При этом необходимо знать состав и количество продуктов сгорания, выбрасываемых ракетой по высоте траектории ее полета. [1]

Процитируем таких авторов как (Буторина, Воробьев и др., 2002):

«Модель разрушения озонового слоя при одиночном пуске РН (ракеты-носителя) «Энергия;» можно представить следующим образом. В следе ракеты диаметром несколько сотен метров озон разрушается полностью на всех высотах практически мгновенно, Под влиянием макротурбулентной диффузии выброшенные вещества перемешиваются: в столбе диаметром несколько километров за несколько часов. Содержание озона в этом столбе на высотах 16-24 км уменьшается на 15.. .20% через 2 часа, а затем происходит восстановление озона. Облако ракетных выбросов в атмосфере через неделю достигает нескольких сотен километров. Максимальное разрушение озона в облаке происходит на высотах 24-30 км примерно через 24 дня после прохождения РН. Одновременно в тропосфере и ионосфере происходит образование озона. С учетом компенсирующего положительного эффекта общее содержание озона в районе пуска РН «Энергия» (в пределах вертикального столба диаметром 550 км) снизится через 24 дня на 1,7% или в массовом отношении уменьшится на 27 тыс. т.» [2]

При ежемесячных пусках РН «Энергия» в течение неограниченного времени состав атмосферы под действием циркуляции воздушных масс переходит в новое равновесное состояние через 11 лет. Наибольший дефицит озона в атмосфере (0,4 - 0,6%) отмечается к северу от 40° с. ш. При еженедельных пусках РН «Энергия», что может потребоваться в перспективе при решении, например, такой крупномасштабной задачи, как развертывание на орбите солнечной электростанции, общие потери озона еще более возрастут. Необходимы специальные исследования по уточнению этих оценок и определению предельно допустимой интенсивности пусков РН различной грузоподъемности с точки зрения сохранения равновесного состояния озонного слоя Земли.

2. Засорение космического пространства фрагментами ракетно-космической техники

Космический мусор - это все искусственные объекты и их фрагменты в космосе, которые уже неисправны, не функционируют и никогда более не смогут служить никаким полезным целям, но являющиеся опасным фактором воздействия на функционирующие космические аппараты, особенно пилотируемые.Наблюдаемое распределение космического мусора в околоземном пространстве показано на рис. 1.

Рис. 1. Увеличение содержания мусора в околоземном космическом пространстве 1 - общее число объектов, включая не занесенные в официальные каталоги; 2 - общее число объектов, занесенных в каталоги; 3 - фрагменты космического мусора; 4 - космические аппараты; 5 - верхние ступени ракет; 6 - эксплуатационный мусор

По некоторым данным (по разным оценкам) в настоящее время в районе низких околоземных орбит (НОО) вплоть до высот около 2000 км находится от 5000 тонн (700 тыс. фрагментов) техногенных объектов («свалки»). На основе статистических оценок делаются выводы, что общее число объектов подобного рода (поперечником более 1 см) достаточно неопределенно и может достигать сотни тысяч. Из них только порядка 10 % (около 9 тыс. объектов) обнаруживаются, отслеживаются и каталогизируются наземными радиолокационными и оптическими средствами и только около 6 % отслеживаемых объектов -- действующие. Около 22 % объектов прекратили функционирование, 17 % представляют собой отработанные верхние ступени и разгонные блоки ракет-носителей, и около 55 % -- отходы, технологические элементы, сопутствующие запускам, и обломки взрывов и фрагментации.

Наиболее засорены те области орбит вокруг Земли, которые чаще всего используются для работы космических аппаратов. Это НОО, геостационарная орбита (ГСО) и солнечно-синхронные орбиты (ССО).

В настоящее время вокруг Земли уже имеются три слоя космического мусора:

1. 300-400 км. от поверхности Земли;

2. 1500-1700 км. от поверхности;

3. 36000 км. от поверхности.

Современные оптические приборы «видят» примерно около 15% этого мусора. [3]

Несмотря на незначительные, на первый взгляд, размеры большинства фрагментов ракетно-космических систем, они представляют значительную опасность из-за космических скоростей при столкновении с космическими аппаратами. Так летящая в космосе частица диаметром около 0,5 мм может пробить современный космический скафандр космонавта, находящегося в открытом космосе.

Об интенсивности повреждения космических аппаратов «космическим мусором» свидетельствует такой пример: на возвращенном на Землю американском спутнике-платформе после шестилетнего пребывания в космосе было обнаружено около 500 выбоин от частиц искусственного происхождения.

Кроме опасности, создаваемой «космическим мусором» для космических аппаратов, существует возможность образования своеобразного «мусорного экрана» вокруг земной атмосферы, который может нарушить естественные процессы обмена веществом и энергией между Землей и Космосом. [2]

Засорение космическим мусором поверхности Земли и Мирового океана еще усугублено тем, что время существования этих фрагментов весьма растянуто. Есть уже и сейчас объекты, которые упадут на Землю в течение 100-300 лет. У низколетящих срок «жизни» намного меньше, и они, поэтому еще опаснее, что и требует скорейшего разрешения проблем очистки околоземного пространства.

Современные мощные ракеты-носители при выведении на орбиту полезной нагрузки массой в несколько десятков тонн расходуют топлива в 20---30 раз больше массы полезного груза. Например, стартовая масса американской ракеты «Сатурн-5» составляла 2900 т, тогда как ее полезный груз -- около 100 т. В результате при каждом пуске мощной ракеты выбрасывались в атмосферу сотни тонн продуктов горения.

За счет сжигания топлива разных видов на Земле в атмосферу сейчас ежегодно поступает более 20 млрд. т углекислого газа и свыше 700 млн. т других газообразных соединений и твердых частиц, в том числе около 150 млн. т сернистого газа. Последний, соединяясь с атмосферной влагой, образует серную кислоту, что может приводить к выпадению так называемых кислотных дождей, отрицательно влияющих на растительный и животный мир.

Ясно, что в глобальном масштабе выбросы в атмосферу, создаваемые при запуске в течение года даже большего количества мощных ракет, ничтожно малы по сравнению с промышленными выбросами.

Расчеты и опыт прекращения существования предыдущих космических станций существенно меньшей размерности указывают на невозможность экологически безопасного прекращения существования станции "МИР" (имеющей массу более 120 т) при планируемой ликвидации "затоплением": высок риск опасных последствий для наземных объектов при падении ее фрагментов.

Известно, что крупные объекты сгорают неполностью, их фрагменты достигают поверхности Земли. Таким образом, прекращение существования крупных космических аппаратов представляет серъезную и сложную экологическую проблему, поскольку:

1) при их сгорании в атмосфере осуществляется ее загрязнение на больших высотах;

2) при выпадении несгоревших фрагментов на поверхность Земли возможно нанесение экологического ущерба (как напрямую. - пожар при падении в лес, так и косвенно, через поражение потенциально опасных техногенных объектов - химических предприятий, хранилищ топлива и т. п., а также возможное падение на крупные населенные пункты).

В конце февраля 1999 г. на орбиту вышел американский искусственный спутник "ARGOS" ("Advanced Research and Global Observation Satellite"), на который, в частности, возложена не совсем обычная задача: находящийся на его борту прибор SPADUS предназначен для измерения массы, скорости и определения траекторий космических частиц, размеры которых слишком малы для наблюдения наземными средствами. Этот прибор по заказу НАСА США был специально разработан в Чикагском университете под руководством Дж.Симпсона (J.Simpson).

Поступающие от спутника данные позволят ученым отличать космический "мусор", порожденный человеческой деятельностью, от естественной пыли, мелких обломков комет и других небесных объектов. Это будет эффективно способствовать созданию условий, безопасных для пилотируемых и непилотируемых полетов в околоземном пространстве. [6]

3. Загрязнение территорий и акваторий от падения частей ракет

Районы падения отделяющихся частей ракет-носителей. Основными факторами негативного воздействия ракетно-космической деятельности на окружающую природную среду в районах падения отделяющихся частей ракет-носителей являются:

-- загрязнение отдельных участков почвы, поверхностных и грунтовых вод компонентами ракетных топлив;

-- засорение территорий районов падения элементами отделяющихся конструкций ракет-носителей;

-- возможность взрывов и возникновения локальных очагов пожаров при падении ступеней средств выведения;

-- механические повреждения почвы и растительности, в том числе при последующей эвакуации отделяющихся частей ракет-носителей.

В местах падения РН происходит механическое загрязнение твердыми фрагментами, что приводит к перенасыщению почвы соединениями алюминия, наличие которых в почве, даже в незначительном количестве, резко снижает урожайность сельскохозяйственных культур. Кроме этого, происходит быстрое проникновение ракетного топлива в почву с последующей химической трансформацией компонентов, переносом вредных веществ потоками газа и жидкости. Это в значительной мере расширяет зону загрязнения. Следует заметить, что некоторые вредные соединения хорошо сохраняются растительностью и переходят в мясо травоядных животных. Таким способом они могут попадать в организм человека. Вызывает беспокойство тот факт, что подобные территории даже временно не исключаются из хозяйственной деятельности, а люди, проживающие на них, в большинстве случаев не владеют информацией о существующей опасности. [4]

После завершения функционирования первой ступени РН типа «Протон» на высоте 40 км в ее баках остается гарантийный запас высокотоксичного ракетного топлива. При падении первой ступени происходит разрушение баков и пролив КРТ, что приводит к загрязнению поверхности земли в месте падения изделия. Пролив КРТ может также сопровождаться их воспламенением с последующим выгоранием растительного покрова на значительных площадях.

4. Процессы, сопровождающие запуски ракет-носителей в ионосфере

При полете в ионосфере основным продуктом сгорания тяжелых ракет-носителей, работающих обычно на кислородно-водородном топливе, является вода. Учитывая отсутствие воды на больших высотах, это необычное явление можно также расценивать как фактор загрязнения природной среды, таящий в себе потенциальную возможность нарушения естественного равновесия. Действительно, на высотах 70 - 90 км, где наиболее низкая температура атмосферы, молекулы воды быстро конденсируются и смерзаются в кристаллики льда. В результате могут возникнуть искусственные облака, подобные серебристым, образующим самый верхний облачный покров в атмосфере Земли. На еще больших вы сотах в ионосфере, как уже говорилось, наблюдается взаимодействие водяных паров с ионосферной плазмой, в результате чего и образуются зоны с пониженной плотностью электронов, которые сопровождаются различного рода аномалиями в области свечения ионосферы, распространения радиоволн и пр.

Помимо РН, на ионосферу Земли могут оказывать влияние полеты космических буксиров на базе жидкостных и электрических ракетных двигателей, которые сопровождаются выбросом в окружающую среду молекул воды и водорода (при работе ЖРД) или ионов аргона и электронов (при работе ЭРД), что также может привести к образованию ионосферных «дыр», а в магнитосфере - к возникновению так называемых триггерных явлений - нарушению динамического равновесия волн и частиц этой неустойчивой среды.

Для оценки масштаба возможного воздействия на ионосферу космических буксиров приведем несколько цифр, полученных специалистами применительно к полетам перспективных межорбитальных транспортных аппаратов. Так, по расчетам запуски тяжелых космических буксиров на кислородно-водородном топливе могут сопровождаться инжектированием в ионосферу 1031 молекул Н2 и Н2О, что вызовет образование ионосферной «дыры» площадью до 20 млн. км2. В зависимости от геофизических условий длительность существования такой «дыры» может достигать 1 - 16 ч. А при регулярных запусках космических буксиров со среднеширотных полигонов в Северном полушарии может образоваться в ионосфере глобальный пояс шириной несколько тысяч километров, где степень уменьшения электронной концентрации составит не менее 10%. Таким образам, переход к массовым пускам РН и космических буксиров может привести к глобальному воздействию на ионосферу, последствия которого остаются еще до конца не изученными. [5]

5. Изменения количества электричества ионосферы после запусков КЛА

Чтобы оценить изменение количества электричества i - той электризованной зоны, схематично изобразим [6] как на приведенном ниже рис. 7, где обозначено: О - точка запуска ракеты носителя КЛА на поверхности Земли, О1-точка вхождения активного участка траектории КЛА в ионосферу снизу, О2- точка выхода активного участка траектории КЛА из ионосферы сверху, АВ и СД - области канала ионизированного газа вокруг активного участка траектории КЛА на входе и выходе из ионосферы соответственно, А1В1 и С1Д1 - нормальные проекции областей АВ и СД на поверхность Земли, А2В2 - теневая проекция участка а-в верхнего слоя ионосферы на поверхность Земли через область АВ в нижнем слое ионосферы. Знаки электричества слоёв ионосферы показаны в соответствии со схемой упомянутой статьи [6]. Для оценки изменения количества электричества i - той электризованной зоны на рис. 7 необходимо обратить особое внимание на площадь сечения канала ионизированного газа вокруг активного участка траектории КЛА в ионосфере Земли, которое многократно превосходит площадь сечения реактивной струи из сопел ракеты - носителя КЛА, так как температура и давление в реактивной струе после её истечения из сопел превосходит эти параметры в окружающей ионосфере на много порядков. Знаки электричества слоёв ионосферы показаны в соответствии со схемой упомянутой статьи [6].

Рис. 7.

Для оценки изменения количества электричества  i - той электризованной зоны на рис. 7 необходимо обратить особое внимание на площадь сечения канала ионизированного газа вокруг активного участка траектории КЛА в ионосфере Земли, которое многократно превосходит площадь сечения реактивной струи из сопел ракеты - носителя КЛА, так как температура и давление в реактивной струе после её истечения из сопел превосходит эти параметры в окружающей ионосфере на много порядков. При плотности заряженных частиц порядка 106 1/см3 и их линейной скорости суточного вращения вместе с Землей порядка 0,5 км/сек это изменение количества электричества приводит к изменению величины широтного ионосферного тока на МА! Представим себе в этом свете изменение сил по  (9) [6] в магнитосфере Земли и вспомним, например, как от громкого возгласа в горах сдвигаются снежные лавины, высвобождая свою энергию на разрушение всего на своём пути! Прямым фактическим подтверждением отмеченного выше обстоятельства являются результаты мониторинга ионосферы системой ГЛОНАС, как об этом сообщает на стр. 8 академической газеты ПОИСК № 51 от 21.12. 2007, откуда сканированы приведенные ниже вывод и рис.1, на котором отчётливо видно на порядок-два и даже три превышение амплитуды «возмущения», к. п. д. которого не превышает доли процентов:

 

Именно подобные ситуации позволили Н.Ф. Реймерсу [11] обобщить «... для энергетических процессов или воздействия на них порог «спускового крючка» или триггерного эффекта (например, при наведенных землетрясениях (!)) составляет 10-6-10-8 раз от наблюдаемой нормы энергетического состояния...». Особое внимание на рис. 7 обращает равноправность направлений образования криволинейного цилиндра О- О2через слой ионосферы: снизу вверх (запуск КЛА) или сверху вниз (посадка КЛА), так как реактивные струи раскаленных газов из сопла ракеты-носителя при запуске КЛА или из сопел реактивных двигателей торможения КЛА при посадке в одинаковой степени нарушают слой ионосферы, изменяя лишь очередность образования электризованных областей на поверхности Земли под основаниями этого цилиндра. Данный вывод фактически подтверждается при каждом рейсе КЛА типа ШАТТЛ, последний из которых «Дискавери» № 35 запущен на орбиту к МКС 31. 05. 2008 с мыса Канаверал и посажен там же 14. 06. 2008. Здесь только напомню сведения из интернет-сайта http://www.%20americanru.%20com/ метеосведения: затихшее после 12. 05. 2008 землетрясение в провинции Сычуань (КНР) внезапно возобновилось 03.06.2008, достигая магнитуд до 7 баллов 05. 06. 2008. свидетельствуя о возмущении магнитосферы Земли запуском «Дискавери» №35, а многочисленные метеосообщения о невиданных наводнениях в долине Миссури и в восточных штатах Индии после посадки «Дискавери» №35 подтверждают образование двух мощных дополнительных циклонов в атмосфере Земли аналогично ураганам 31. 08. 2005 «Катрина» в США и 03. 09. 2005 «Бабочка» в Японии.

Выводы

1. На основании изложенного можно заключить, что планета Земля со своим магнитным полем представляет собой магнитодинамическую машину в стационарном режиме работы, когда все электрические токи по всевозможным контурам между собой связаны силами электромагнитного взаимодействия.

2. Наша оценка изменения количества электричества i - той электризованной зоны по рис. 5 в свою очередь, означает, что при возмущении магнитосферы после запуска КЛА вследствие изменения на  количества электричества i - той электризованной зоны ионосферы, через который пролегает активный участок траектории ракеты - носителя КЛА, вызывая изменение величины соответствующего кольцевого тока и величины внутреннего электрического поля Земли, сразу же приводя к изменению электрических сил между геосферными электризованными зонами, чтобы обеспечить выполнение выражения (9), запуская таким образом механизм землетрясений для выполнения фундаментального положения динамики системы

.

3.Таким образом, после запуска КЛА в ионосфере Земли образуется криволинейный цилиндрический канал с осью О1О2 длиной в несколько сотен или даже тысяч километров, в зависимости от конкретных условий запуска КЛА, а сечение этого канала исчисляется также тысячами квадратных километров! Это значит, что объём канала ионосферы, в котором рекомбинация ионов раскалённого газа реактивной струи нарушает равномерность распределения электрических зарядов на значительный период восстановления её за счёт фотоионизации и светового давления, исчисляется миллионами кубических километров, тем самым обеспечивая образование минимум двух дополнительных циклонов в атмосфере Земли! [7]

Заключение

Из рассмотренных выше различных антропогенных воздействий на околоземное космическое пространство следует, что объекты современной и перспективной РКТ, особенно РН, являются основными и потенциально опасными, представляющими серьезную экологическую опасность вследствие значительных запасов высокоэнергетического химического топлива. РКТ оказывают негативное воздействие на приземную атмосферу как при эксплуатации, и при ликвидации и утилизации. Наличие на борту космических аппаратов ядерных источников энергии, ядерного топлива и радиоактивных материалов создает угрозу загрязнения приземной атмосферы, а также поверхности Земли при аварийных ситуациях.

Наиболее изученной к настоящему времени является проблема космического мусора. От успешного решения этой проблемы зависит возможность дальнейшего развития космической деятельности человечества.

Следует указать, что уже сейчас уделяется очень большое внимание обеспечению "экологической чистоты" ракетно-космической техники .

Относительно электромагнитного загрязнения околоземного космического пространства можно отметить, что оно не представляет пока значительной угрозы как для состояния биосферы, так и для состояния самой околоземной среды.

В связи с упомянутой возможностью возникновения неустойчивостей в околоземной космической среде необходимо подчеркнуть, что задача определения предельно допустимых уровней воздействия на околоземную среду может быть названа главной задачей исследований ближайших нескольких лет. Эта задача является чрезвычайно актуальной по отношению к антропогенным воздействиям всех видов, и от ее скорейшего решения зависят как дальнейшее развитие космической деятельности человечества, так и обеспечение существования современной цивилизации.

Ссылки использованных источников

1. http://epizodsspace.airbase.ru/bibl/znan/1991/7/7-kosm.html

2. http://basik-ecology.ru/antropogennye-vozdejstviya-na-okruzhayushhuyu-sredu/zasorenie-okolozemnogo-i-kosmicheskogo-prostranstva/

3. http://www.astronom2000.info/different/zk/

4. http://www.masters.donntu.edu.ua/2009/feht/gukova/library/article2.htm

5. http://dist-tutor.info/mod/resource/view.php?id=38942

6. http://www.aviationsweb.ru/study-58-6.html

7. http://www.rae.ru/

Размещено на Allbest.ru


Подобные документы

  • Разработка ракет с широким применением унифицированных базовых конструкций и доступной элементной базой. Тактико-технические характеристики ракет-носителей "Виктория-К", "Волна", "Единство". Описание двигателей, определение центра масс в процессе полета.

    курсовая работа [2,2 M], добавлен 11.12.2014

  • Влияние запусков ракет на поверхность планеты. Малоизвестные факты космической деятельности человечества и анализ негативных сторон этой деятельности. Космические угрозы (вспышки на Солнце, астероиды, метеориты). Роль угроз для Земли в массовом сознании.

    статья [1,5 M], добавлен 05.03.2011

  • Естественные и искусственные космические объекты. Изучение верхней атмосферы и космического пространства с помощью экспериментов и проведения непосредственных измерений на больших высотах с помощью искусственных спутников Земли и космических ракет.

    презентация [2,4 M], добавлен 04.02.2017

  • Экологические проблемы от эксплуатации космической техники. Загрязнение атмосферы продуктами сгорания спутников. Воздействие радиоизлучений и запусков ракет и на околоземное пространство. Разрушение озонового слоя. Падение метеорита в Челябинской области.

    презентация [1,2 M], добавлен 30.10.2013

  • Первые искусственные спутники. Животные в космосе. Первые полеты человека в космос. Запуски ракет к планетам. Групповые полеты и новое поколение спутников. Новая эра в космонавтике. Космические корабли многоразового использования. история станции "Мир".

    реферат [34,9 K], добавлен 23.09.2013

  • Преодоление земного притяжения. Истечение газов из сопла реактивного двигателя. Использование космической ракеты. Труды Константина Эдуардовича Циолковского по аэродинамике и воздухоплаванию. Использование крылатых ракет в России и других странах.

    презентация [3,5 M], добавлен 06.03.2011

  • Історія розвитку ракетобудівництва. Внесок українських учених в розвиток космонавтики. Кондратюк Юрій Васильович як розробник основ космонавтики. Внесок Корольова Сергія Павловича у розвиток ракетно-космічної техніки. Запуск супутників, космічних ракет.

    презентация [41,1 M], добавлен 06.12.2012

  • Идея Н.И. Кибальчича о ракетном летательном аппарате с качающейся камерой сгорания. Идея К. Циолковского об использовании ракет для космических полетов. Запуск первого искусственного спутника Земли и первого космонавта под руководством С.П. Королева.

    презентация [9,5 M], добавлен 29.03.2015

  • Принятие в 1955 году решения о строительстве стартовой площадки для космических ракет на Байконуре. Судьба и жизнь Циолковского - одного из отцов космонавтики. Запуск первого искусственного спутника Земли. Выведение на орбиту живых существ и человека.

    презентация [1,8 M], добавлен 14.12.2010

  • Краткое изучение биографии Сергея Королева - главного конструктора баллистических ракет дальнего действия. Космические достижения Королева. Первый искусственный спутник Земли. Другие спутники и запуск космических аппаратов на Луну. Награды и звания.

    презентация [325,1 K], добавлен 28.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.