Солнечная система
Происхождение Солнечной системы согласно гипотезе О.Ю. Шмидта. Процесс образования планет. Цивилизация и её влияние на космос. Теории немецкого философа Иммануила Канта и французского математика Лапласа о возникновении и развитии планетной системы.
Рубрика | Астрономия и космонавтика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 02.05.2012 |
Размер файла | 88,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
УО «Пинский государственный профессионально-технический колледж лёгкой промышленности»
Реферат на тему:
«СОЛНЕЧНАЯ СИСТЕМА»
Выполнила:
Мороз Василиса Васильевна
Проверил:
Какаулин Владимир Борисович
Предисловие
Современная наука располагает богатым материалом о физико-химической основе жизни, о путях, которые могли несколько миллиардов лет привести к возникновению примитивных организмов.
Глава 1. Происхождение Солнечной системы (гипотеза О.Ю. Шмидта)
Вселенная настолько грандиозна, что в ней почетно играть даже скромную роль Х а р л о у Ш е п л и
Космогония.
Космогония - наука, изучающая происхождение и развитие небесных тел, например планет и их спутников, Солнца, звёзд, галактик. Астрономы наблюдают космические тела на различной стадии развития, образовавшиеся недавно и в далёком прошлом, быстро "стареющие" или почти "застывшие" в своём развитии. Сопоставляя многочисленные данные наблюдений с физическими процессами, которые могут происходить при различных условиях в космическом пространстве, учёные пытаются объяснить, как возникают небесные тела. Единой, завершённой теории образования звёзд, планет или галактик пока не существует.
Проблемы, с которыми столкнулись учёные, подчас трудно разрешимы. Решение вопроса о происхождении Земли и Солнечной системы в целом значительно затрудняется тем, что других подобных систем мы пока не наблюдаем. Нашу солнечную систему не с чем пока ещё сравнивать, хотя системы, подобные ей, должны быть достаточно распространены и их возникновение должно быть не случайным, а закономерным явлением. В настоящее время при проверке той или иной гипотезы о происхождении Солнечной системы в значительной мере основывается на данных о химическом составе и возрасте пород Земли и других тел Солнечной системы. Наиболее точный метод определения возраста пород состоит в подсчёте отношения количества радиоактивного урана к количеству свинца, находящегося в данной породе. Скорость этого процесса известна точно, и её нельзя изменить никакими способами. Самые древние горные породы имеют возраст несколько миллиардов лет. Земля в целом, очевидно, возникла несколько раньше, чем земная кора.
В середине XVIII века немецкий философ И. Кант предложил свою теорию образования Солнечной системы, основанную на законе всемирного тяготения. Она предполагала возникновение Солнечной системы из облака холодных пылинок, находящихся в беспорядочном хаотическом движении. В 1796 году французский учёный П. Лаплас подробно описал гипотезу образования Солнца и планет из уже вращающейся газовой туманности. Лаплас учёл основные характерные черты Солнечной системы, которые должна была объяснить любая гипотеза о её происхождении. В данный период наиболее разработанной является гипотеза О. Ю. Шмидта, разработанная в середине века (см. части 2-4).
Туманность.
Давайте перенесемся в далекое прошлое, примерно на 7 миллиардов лет назад. Современная наука, как говорят ученые, с достаточной степенью вероятности позволяет нам представить происходившие тогда события. Одним словом мы "висим" в космосе и наблюдаем за жизнью одной из газово-пылевых, водородно-гелиевых(с примесью тяжелых элементов) туманностей. Той, которая в будущем даст начало нашей Солнечной системе, Солнцу, Земле и нам с вами.
Туманность темна и непрозрачна, как дым. Зловещей невидимкой медленно ползет она на фоне чёрной бездны, и о ее рваных, размытых очертаниях можно только догадываться по тому, как постепенно тускнеют и гаснут за ней далекие звезды. Через некоторое время мы обнаруживаем, что туманность медленно поворачивается вокруг своего центра , еле заметно вращается. Мы замечаем так же, что она постепенно съеживается, сжимается, очевидно уплотняясь при этом. Действует тяготение, собирая к центру частицы туманности. Вращение туманности при этом ускоряется.
Если вы хотите понять механику этого явления, вспомни те простой земной пример - вращающегося на льду спортсмена-фигуриста. Не делая никакого добавочного толчка, он ускоряет свое вращение лишь тем, что руки, до этого распахнутые в стороны, прижимает к телу. Работает "Закон сохранения количества движения". Идет время. Туманность вращается все быстрее. А от этого возникает и увеличивается центробежная сила, способная бороться с тяготением. Центробежная сила нам хорошо знакома. Она, например, "работает" в любом автобусе, когда на крутом завороте валит стоящих пассажиров. Борьба двух сил, тяготения и центробежной, начинается в туманности при ускорении её вращения. Тяготение сжимает туманность, а центробежная сила стремится раздуть её, разорвать. Но тяготение тянет частицы к центру со всех сторон одинаково. А центробежная сила отсутствует на "полюсах" туманности и сильнее всего проявляется на её "экваторе". Поэтому именно на "экваторе" она оказывается сильнее тяготения и раздувает туманность в стороны.
Туманность, продолжая вращаться все быстрее, сплющивается, из шара превращается в плоскую "лепешку", похожую на спортивный диск. Наступает момент, когда на наружних краях "диска" центробежная сила уравновешивает, а потом и пересиливает тяготение. Клочья туманности здесь начинают отделяться. Центральная часть её продолжает сжиматься, все ускоряя свое вращение, и от внешнего края продолжают отходить все новые и новые клочья, отдельные газопылевые облака.
Рождение Солнца.
И вот туманность приобрела совсем другой вид. В середине величаво вращается огромное темное, чуть сплющенное облако. а вокруг него на разных расстояниях плывут по круговым орбитам, расположенным примерно в одной плоскости, оторвавшиеся от него небольшие "облака-спутники". Последим за центральным облаком. Оно продолжает уплотняться. Но теперь с силой тяготения начинает бороться новая сила - сила газового давления. Ведь в середине облака накапливается все больше частиц вещества. Там возникает "страшная теснота" и "невероятная толчея" частиц. Они мечутся, все сильнее ударяя друг друга. На языке физиков - в центре повышаются температура и давление. Сначала там становится тепло, потом жарко. Снаружи мы этого не замечаем: облако огромно и непрозрачно. Тепло наружу не выходит. Но вот что-то внутри произошло ! Облако перестало сжиматься. Могучая сила возросшего от нагрева газового давления остановила работу тяготения. Резко пахнуло нестерпимым жаром, как из жерла внезапно открывшейся печи! В глубине черной тучи стали слабо просвечивать рвущиеся наружу клубы тусклого красного пламени. Они всё ближе и ярче. Шар величаво кипит, перемешивая вырвавшийся огонь ядра с черным туманом своих окраин. Испепеляющий жар заставляет нас отпрянуть еще дальне назад. Однако, вырвавшись наружу, горячий газ ослабил противодействие тяготению. Облако снова стало сжиматься. Температура в его центре опять начала расти. Она дошла уже до сотен тысяч градусов!
В этих условиях вещество не может быть даже газообразным. Атомы разваливаются на свои части. Вещество переходит в состояние плазмы. Но и плазма - бешенная толчея атомных ядер и электронов - не может выносить нагрев до бесконечности. Когда её температура поднимется выше десяти миллионов градусов, она как бы "воспламеняется". Удары частиц друг о друга становятся так сильны, что ядра атомов водорода уже не отскакивают друг от друга, как мячики, а врезаются, вдавливаются друг в друга и сливаются друг с другом. Начинается "ядерная реакция". Из каждых четырех ядер атомов водорода образуется одно ядро гелия. При этом выделяется огромная энергия. Такое вот "ядерное горение" водорода началось и в наше раскаленном шаре. Этот "пожар" теперь уже не остановить. "Плазма" разбушевалась.
Газовое давление в центре заработало с удесятеренной силой. Плазма рвется наружу, как пар из котла. С чудовищной силой она давит изнутри на внешние слои шара и приостанавливает их падение к центру. Установилось равновесие. Плазме не удается разорвать шар, разбросать его обрывки в стороны. А тяготению не удается сломить давление плазмы и продолжить сжимание шара. Ослепительно светящийся бело-желтым светом шар перешел в устойчивую стадию. Он стал звездой. Стал нашим Солнцем!
Теперь оно будет миллиардами лет, не меняя размера, не охлаждаясь и не перегреваясь, светить одинаково ярким бело-желтым светом. Пока внутри не выгорит весь водород. А когда он весь превратится в гелий, исчезнет "подпорка" внутри Солнца, оно сожмется. От этого температура в его недрах снова повысится. Теперь уже до сотен миллионов градусов. Но тогда "воспламениться" гелий, превращаясь в более тяжелые элементы. И сжатие снова прекратится. . Есть в запасе у звезд еще несколько ядерных реакций, требующих для своего начала все более высоких давлений и температур. В них "варятся" ядра все более сложных и тяжелых элементов. В конце концов, все возможные реакции будут исчерпаны. Звезда сожмется, станет крохотным "белым карликом". Потом постепенно остынет, потускнеет. Наконец, погаснет совсем. Молчаливой невидимкой будет плыть в космосе "чёрный карлик" - холодная "головешка", оставшаяся от некогда бушевавшего мощного костра.
Как видим из исходного материала - водорода - в недрах звезд, в ядерных реакциях синтеза "варятся" ядра атомов всех элементов. И пожалуй, можно сказать, что именно там, в недрах звезд, закладывается начало жизни. Ведь именно там возникают ядра "атома жизни" углерода. А за ним и ядра атомов всех других необходимых для жизни элементов таблицы Менделеева. Не обязательно это ценное "варево" оказывается потом похороненным в остывших "чёрных карликах". Во многих звездах, образовавшихся из более крупных сгустков туманностей, ядерное горение проходит слишком бурно. Газовое давление оказывается намного сильнее тяготения. Оно раздувает звезду, рвет её в клочья, разбрасывая во все стороны.
Эти грандиозные взрывы в звездном мире иногда наблюдаются с Земли и называются вспышками "сверхновых звезд". В результате взрыва звезда рассеивается в межзвездном пространстве, обогащая его тяжелыми элементами. Это основной источник той таинственной, жизненно важной примеси, о которой мы говорили раньше. Теперь о выделении этой примеси.
Образование планет.
Вернемся к спутникам нашего Солнца, к тем обрывкам туманности, которые оторвались от центрального сгустка под действием центробежной силы и начали кружиться вокруг него. Именно здесь создаются условия, способствующие разделению легких и тяжелых частиц туманности. Происходит нечто похожее на наш древний способ добычи золота промывкой из золотоносного песка или на провеевание зерна в молотилках.
Струя воды или воздуха уносит легкие частицы, оставляя тяжелые. Облака-спутники находятся на очень разных расстояниях от Солнца. Далекие оно почти не греет. Зато в близких - его жар испаряет все способное испариться. А его ослепительный ярчайший свет, работая как своеобразный "ветер", выдувает из них все испарившееся, вообще все легкое, оставляя лишь то, что потяжелее, что "не сдвинешь с места". Поэтому здесь почти не остается легких газов - водорода и гелия, основной составляющей газопылевой туманности. Мало остается и других "летучих" веществ. Все это уносится горячим "ветром" вдаль.
В результате через некоторое время химический состав облаков-спутников становится совершенно разным. В далеких - он почти не изменился. А в тех, что кружатся вблизи источающего жар и свет Солнца, остался лишь "прокаленный" и "обдутый" материал - выделенная "драгоценная жизненно важная примесь" тяжелых элементов. Материал для создания обитаемой планеты готов. Начинается процесс превращения "материала" в "изделие", частиц туманности - в планеты.
а). Этап первый - слипание частиц.
В далеких облаках-спутниках многочисленные молекулы легких газов и редкие легкие пылинки понемногу собираются в огромные рыхлые шары малой плотности. В дальнейшем это планеты группы Юпитера. В облаках-спутниках, близких к Солнцу, тяжелые пылинки слипаются в плотные каменистые комки. Они объединяются в огромные массивные скалистые глыбы, чудовищными серыми угловатыми громадами плывущие по орбитам вокруг своей звезды. Двигаясь по разным, иногда пересекающимся орбитам, эти "астероиды", размером в десятки километров каждый, сталкиваются.
Если на небольшой относительной скорости, то как бы "вдавливаются" один в другой, "нагромождаются", "налипают" один на другой. Объединяются в более крупные. Если на большой скорости, то мнут, крошат друг друга, порождая новую "мелочь", бесчисленные обломки, осколки, которые вновь проходят долгий путь объединения. Сотни миллионов лет идет этот процесс слияния мелких частиц в крупные небесные тела.
По мере увеличения своих размеров они становятся все более шарообразными. Растет масса - возрастает сила тяжести на их поверхности. Верхние слои давят на внутренние. Выступающие части оказываются грузом более тяжелым и постепенно погружаются в толщу нижележащих масс, раздвигая их под собой. Те, отходя в стороны, заполняют собой впадины. Грубый "ком" постепенно сглаживается. В результате вблизи Солнца образуются несколько сравнительно небольших по размеру, но очень плотных, состоящих из очень тяжелого материала, планет земной группы. Среди них - Земля. Все они резко отличаются от планет группы Юпитера богатством химического состава, обилием тяжелых элементов, большим удельным весом. Теперь посмотрим на Землю. На звездном фоне, освещенный с одной стороны яркими солнечными лучами, плывет перед нами огромный каменный шарище. Он ещё не гладкий не ровный. Ещё торчат кое-где выступы слепивших его глыб. Еще "читаются" не полностью заплывшие "швы" между ними. Пока это еще "грубая работа". Но вот что интересно. Уже есть атмосфера. Чуть мутноватая, очевидно, от пыли, но без облаков. Это выдавленные из недр планеты водород и гелий, которые в свое время прилипли к каменистым частицам и каким-то чудом уцелели, не были "сдуты" солнечными лучами. Первичная атмосфера Земли. Долго она не продержится. "Не мытьем, так катаньем" Солнце уничтожит её. Легкие подвижные молекулы водорода и гелия под действием нагрева солнечными лучами будут постепенно улетучиваться в космос. Этот процесс называется "диссипацией"
б). Этап второй-разогревание.
Внутри планеты, в смеси с другими оказываются зажатыми, "запертыми" радиоактивные вещества. Они отличаются тем, что непрерывно выделяют тепло, чуть заметно нагреваются. Но в толще планеты этому теплу некуда выйти, нет вентиляции, нет омывающей влаги. Над ними - мощная "шуба" из вышележащих слоев. Тепло накапливается. От этого радиоактивного разогрева начинается размягчение всей толщи планеты. В размягченном виде вещества, в свое время хаотично, без систем но слепившие её, начинают теперь распределятся по весу.
Тяжелые постепенно опускаются, тонут к центру. Легкие выдавливаются ими, поднимаются выше, всплывают все ближе к поверхности. Постепенно планета приобретает строение, подобное теперешней нашей Земле, - в центре, сжатой чудовищным весом навалившихся сверху слоев, тяжелое ядро. Оно окружено "мантией" толстым слоем вещества полегче весом.
И наконец, снаружи совсем тонкая, толщиной всего в несколько десятков километров, "кора", состоящая из наиболее легких горных пород. Радиоактивные вещества в основном содержатся в легких породах. Поэтому теперь они скопились в "коре", греют её. Основное тепло с поверхности планеты уходит в космос, - от планеты "чуть повеяло теплом". А на глубине десятков километров тепло сохраняется, разогревая горные породы.
в). Этап третий - вулканическая деятельность.
В некоторых местах недра планеты накаляются докрасна. Потом даже больше. Камни плавятся, превращаются в раскаленную, светящуюся оранжево-белым светом огненную кашу "магму". В толще коры ей тесно. В ней полно сжатых газов, которые готовы были бы взорвать, разбросать всю эту магму во все стороны огненными брызгами. Но сил для этого не хватает.
Слишком крепка и тяжела окружающая и придавившая сверху кора планеты. И огненная магма, пытаясь хоть как-нибудь вырваться наверх, на свободу, нащупывает между сжимающими её глыбами слабые места, протискивается в щели, подплавляя их стенки своим жаром. И понемногу с годами, столетиями набирая силу, поднимает из глубин к поверхности планеты. И вот победа! "Канал" пробит! Сотрясая скалы, с грохотом вырывается из недр столб огня. Клубы дыма и пара вздымаются к небу. Летят вверх камни и пепел. Огненная магма, которая называется теперь "лава", выливается на поверхности планеты, растекается в стороны. Происходит извержение вулкана. Таких "пробитых изнутри дырок" на планете много. Они помогают молодой планете "бороться с перегревом". Через них она освобождается от накопившейся огненной магмы, "выдыхает" распирающие её горячие газы - в основном углекислый газ и водяной пар, а с ними - разные примеси, такие, как метан, аммиак.
Постепенно в атмосфере почти исчезли водород и гелий, и она стала состоять в основном из вулканических газов. Кислорода в ней пока нет и в помине. Для жизни эта атмосфера совершенно непригодна. Очень важно, что вулканы выбрасывают на поверхность большое количество водяного пара. Он собирается в облака. Из них на поверхность планеты льются дожди. Вода стекает в низины, накапливается. И понемногу на планете образуются озера, моря, океаны, в которых может развиться жизнь. Здесь надо оговориться. Из нескольких гипотез происхождения жизни наиболее распространенную, кажущуюся нам наиболее обоснованной, гипотезу самопроизвольного зарождения жизни предложил академик А.И. Опаркин (см. главу 2)
Почему именно Земля?
А пока - о Земле, идеально подготовленной к тому, чтобы стать нашей колыбелью. Нам повезло. На земле совпало несколько благоприятных для жизни обстоятельств. Далеко не каждая звезда становится Солнцем, окруженным планетами. Стоило туманности медленнее вращается, не возникла бы центробежная сила, не оторвались бы клочки от центрального сгустка, не возникли бы планеты. И плыла бы такая одинокая "бездетная" звезда в чёрной бездне, бесплодно расточая своё тепло и свет.
Далеко не всякая звезда, породившая планеты, способна создать на них условия, пригодные для зарождения жизни. Для зарождения и развития жизни нужно очень много времени, миллиарды лет. Всё это время звезда должно гореть ровно, спокойно, одинаково. Тогда условия на планете будут постоянными - и жизнь сможет к ним приспособиться. А ведь звезды далеко не такие не все такие спокойные, как наше Солнце.
Молодые звезды иногда вспыхивают. Волна испепеляющего жара обрушивается на окружающие планеты, сжигая, испаряя все, что способно гореть и кипеть. Жизнь на планете после такого огненного урагана, безусловно, погибнет, и на пустом голом шаре надо будет начинать все сначала. Для развития жизни нужна спокойная звезда. Наше Солнце - спокойная звезда. Но поставьте нашу Землю ближе к Солнцу, например, на место Меркурия или Венеры. От нестерпимой жары на Земле даже не смогут образоваться океаны. Вода сразу выкипит. Какая уж тут жизнь. Отодвиньте Землю дальше от Солнца, куда-нибудь в район Юпитера. Тоже жизнь не возникнет. Вода - основа жизни будет там всегда замерзшей.
Нам повезло ещё в том, что орбита Земли круговая, а ведь могла быть эллиптическая. Вот представьте себе, что Земля то приближается к Солнцу так близко, что вода с её поверхности вся испаряется, то удаляется так далеко, что вода, выпав из атмосферы обратно на Землю, промерзает насквозь. Через "комфортное" место, где температуры "в самый раз", она проносится дважды в год с такой стремительностью, что "ничего не успеть сделать". Для зарождения и развития жизни просто нет времени. Подобный жар-холод может быть не только от эллиптичности орбиты. Бывают "двойные звезды". Тогда при любой орбите планета не может всегда быть на равном расстоянии от источника тепла. То одно солнце близко, то другое, то оба далеко. Нам повезло и в смысле размера нашей планеты. Будь она меньше, например, размером с Луну, не удержать ей на себе атмосферу. А значит, и воду, склонную испарятся, переходя в атмосферу. Сколько бы вулканы не подбрасывали все новые и новые порции газов и воды, всё это быстро улетучится в космос. На Луне поэтому и нет ни атмосферы, ни воды, ни жизни. Неудобна для жизни и Земля, размером, скажем с Юпитер. Неудобна из-за слишком сильного притяжения. Такая большая "Земля" будет держать на себе слой очень густой атмосферы, содержащей к тому же водород и гелий, неблагоприятные для возникновения жизни.
Толстый слой очень плотных облаков создаст на такой планете вечный мрак. А без живительных солнечных лучей какая может быть жизнь? Одним словом, когда мы глядим на небо, усыпанное звездами, не надо забывать, что, во-первых, вероятно, далеко не все звезды имеют планеты, а во-вторых, далеко не все планеты пригодны для жизни. Но звезд в нашей галактике примерно 100 миллиардов, и уж наверное, в ней достаточно планет, похожих на Землю.
Глава 2. Зарождение жизни (гипотеза А.И. Опаркина)
Задолго до того, как мы установим контакт с другими разумными существами , обитающими где-либо в галактике, мы должны понять не только то место, которое мы занимаем, но и пройденный нами долгий путь. Д. ж о н Б е р н а л
Итак, перед нами планета Земля. Она имеет океан. Представим его себе. Реки, впадающие в него, сначала текут по склонам гор, по пути кроша горные породы, и все, что могут, выносят с собой в океан. Атмосфера над океаном насыщена вулканическими газами, пылью, пеплом. Волны, разлетаясь брызгами, захватывают всё это в свои глубины. В результате вода в первозданном океане горько-соленая, мутная. Она - настоящий "бульон", столько здесь всего перемешано и растворено. Здесь можно встретить почти все элементы таблицы Менделеева.
Особенно много тех, которые необходимы для создания живых существ. Теплая вода обеспечивает молекулам и атомам хорошую подвижность, перемешивание, контакты между собой в самых разных сочетаниях. Но для химических реакций этого мало. Для них часто бывает нужна "внешняя" сила. Толчок извне может помочь атомам и молекулам соединиться, может разбить молекулы на части. Химики для ускорения реакций часто применяют нагрев. Подобным же образом действует и природа. Для этого работают не только частички света - фотоны, но и "космические лучи" - осколки атомов, выброшенные далекими звездами, которые круглые сутки проносятся сквозь атмосферу и вонзаются в толщу океана. Их удары особенно сильны и больше годятся для разбивания молекул.
Сверкнула молния
Небо заволокли черные тучи. В них и вводе накапливаются электрические разряды. Они рванулись навстречу друг другу. Ослепительная вспышка молнии озарила волны и прибрежные скалы. А в толще воды при этом резко метнулись молекулы, сшиблись друг с другом. Некоторые от ударов развалились. Зато другие, наоборот, соединились. Стихла гроза. Наступила ночь. Далеко от берега на дне океана пробудился дремавший вулкан. Горячие газы, вырвавшись из его жерла, растворились в воде, насытив её новыми порциями углекислоты, метана, аммиака, сернистого газа. Из недр планеты пошла в чёрную пучину огненная лава. Вспыхнула красным заревом, закипела вода. Тучи ослепительно сверкающих пузырей устремились вверх. Забурлили, засветились изнутри в мраке ночи черные волны. Густые облака пара накрыли их. "Бульон" над вулканом стал горячей и гуще. Целыми кучами поплыли новые, причудливые "комки" атомов - только что возникшие крупные молекулы. . .
Естественный отбор.
Океанские волны без конца перемешивают, переставляют атомы, по-разному комбинируют их. Молекулы создаются и распадаются. Снова и снова в каждой капле океана повторяются миллиарды раз уже испробованные и не оправдавшие себя сочетания. Неужели в таких условиях возможна хоть какая-то эволюция? Возможна. Сами собой, без всякого плана или системы, создаются разные, какие получатся, варианты молекул. А потом испытываются. Наверху, в небе, разыгралась гроза. И мы видим, как при вспышке молний, шарахнувшись, разваливаются, рассыпаются все слабо связанные молекулы. А те, что выдержали эту проверку на прочность, остаются.
Уже на этом этапе химической эволюции вещества работает своеобразный "естественный отбор". Эволюция идёт в направлении создания всё более сложных и при этом прочных молекул, обладающих все новыми и новыми свойствами. А это приближает возможность нащупать в дальнейшем такие формы и свойства молекул, которые сделают вещество существом. В химической эволюции вещества главную роль играют атомы углерода. это особый, незаменимый элемент. Его атомы обладают поистине неисчерпаемыми "потенциальными возможностями".
Они четырехвалентны ( т. е. очень высокая способность присоединять атомы и молекулы др. химических элементов), что в атомном мире редкость. Цепляясь друг за друга, они могут образовывать молекулы в виде колец или цепочек, при этом прихватывая другие атомы или молекулы. И тогда кольца и цепочки обрастают "гроздьями", создаются грандиозные, сложнейшие молекулы в виде ветвящихся деревьев, насчитывающие в своем составе многие тысячи атомов самых различных элементов.
Сегодня таких молекул в природе бесчисленное множество вариантов. Но пока они еще не создались. В первозданном океане идут эксперименты. Фронт работы широчайший - весь океан. Атомов - сколько угодно. Времени - сотни миллионов лет. И вот нет-нет, где-то получается что-то интересное. Возникает совершенно случайно какая-нибудь новая комбинация атомов, обладающих прогрессивными свойствами. И значит, крохотный шаг к появлению жизни сделан.
Делая, может быть, всего по одному такому шагу за тысячи лет, природа за миллиард лет все же дошла до возникновения жизни. Попробуем мысленно представить себе главные из этих шагов. Пропустим несколько миллионов лет и снова вернемся в пер возданный океан. Кроме исходных крохотных и примитивных молекул, вроде метана, аммиака и углекислого газа, с которых всё началось, перед нами теперь плавает в воде множество совершенно новых, незнакомых комбинаций атомов. Появились, например, полимеры - длинные цепочки из молекул. Иногда одинаковых, иногда разных. Появились катализаторы. Это молекулы-помощники, молекулы-посредники, облегчающие перестройку других молекул. Через много миллионов лет мы видим, что простенькие полимеры стали полипептидами. Плывут длинные, сложные, ветвистые нити, состоящие из аминокислот. Их тысячи вариантов.
Но самое поразительное - появился процесс копирования молекул - репликация. Это форменная эволюция. Раньше случайно возникшая комбинация атомов, существуя в одном экземпляре, не влияла на ход химической эволюции в целом. К тому же она могла в любой момент быть разбита шальной космической частицей и "изобретение" безвозвратно терялось. Теперь, при тиражировании молекул, "опыт" распространяется, а гибель некоторых экземпляров не представляет опасности.
Мутация.
Репликация не тормозит прогресс, как это может показаться, заполняя океан однотипными молекулами. Дело в том, что при копировании иногда происходит сбой.
Исходную молекулу или её матрицу может что-либо повредить. Например, блеснувшая вблизи молния. Получится "мутация", и травма начинает печататься во всех следующих копиях, дав начало новой серии молекул. "Мутанты" вовсе не всегда являются браком. Случается, что среди них находят ценные находки, обладающие преимуществами перед оригиналами. Поэтому, говоря шутливо, внешние силы не калечат молекулы, а вносят в них небольшие изменения, как бы с целью посмотреть: что получится? Результаты этих стихийных экспериментов природы оценивает практика.
Естественный отбор беспощадно перечеркивает все миллионы "глупых" вариантов, оставляя лишь единица "умных". В итоге мутации способствуют увеличению разнообразия молекул и этим помогают идти химической эволюции вещества.
Новый уровень эволюции.
Проходят ещё миллионы лет. Природа "нащупала" наилучшие последовательности аминокислот в цепочках полипептидов - появились белковые молекулы - будущие кирпичи живых организмов. Усложнилась и стала совершеннее репликация. Матрица теперь уже не механическая форма, а условная, химическая "запись" порядка аминокислот в белковой молекуле. Запись в виде портативной цепочки особых молекул - нуклеотидов. Эволюция вещества поднимается на новый уровень. Длинные, причудливо изогнутые нити разных белковых молекул цепляются друг за друга и понемногу собираются.
Сначала в небольшие комочки, потом в более крупные комки, похожие на клубки или капли. У молекул, тесно соприкоснувшихся в комке, разные свойства. Иногда это приводит к возможности своеобразного их сотрудничества. Например, катализаторы, оказавшиеся в гуще молекул, могут способствовать реакциям, полезным для комка в целом. Иначе говоря, кромки белковых молекул оказываются в ряде случаев "системами", способными к какой-то внутренней деятельности. Но система системе рознь. И конечно, начинается долгий путь поисков наиболее удачных сочетаний молекул в них.
Удачнее, например, те, в которых снаружи расположились особо прочные молекулы. Они служат механической защитой остальным. Удачнее те, в которых включены молекулы, способные реагировать на опасные примеси в воде. Они служат химической защитой. Но наиболее интересны те варианты, в которых оказался хороший набор катализаторов. Теперь, правда, их нужно называть ферментами. В этих комках начинается более или менее активный "обмен веществ" с окружающей средой. Идет захват материала, расщепление молекул, иногда даже с выделением энергии, выбрасывание отходов, восстановление поврежденных молекул. Даже репликация - синтез белковых цепочек. Обмен веществ - свойство очень прогрессивное.
Такой комок оказывается очень устойчивым перед разными разрушающими внешними воздействиями, независимым, прочным, долговечным. При большой сложности он становится очень живучим - то, к чему стремится химическая эволюция. Вещество в нем, в сущности, приобрело некоторые свойства живого! Эволюция белковых молекул приводит к их специализации. В од них, например, лучше идут реакции с получением энергии, другие чётко реагируют на изменения температуры, в третьих хорошо налажена репликация. И если мы снова пропустим миллионы лет, то обнаружим в океане ещё более "гигантские" сооружения, в каждом из которых миллионы молекул. Разные типы комков вошли в них в виде отдельных деталей. Сейчас биологи называют эти детали органеллами. А всё сооружение в целом одноклеточным организмом!
Вспомните предысторию жизни. Атомы - молекулы - полимеры - органеллы - одноклеточные существа. Всё идет в направлении от простого к сложному, к разнообразию структур, форм , свойств. В живых организмах добавилось важнейшее новое - могучее стремление к самосохранению, к долговечности. Нужны улучшенная защищенность, более хорошая вооруженность в борьбе за существование. Объединяясь, клетки этого достигают. Борьба за существование, в частности, способствует увеличению разнообразия форм в животном мире. Иногда куда выгоднее не вступать в бой с врагом, а просто уйти в другую "экологическую нишу", переменить образ жизни так, чтобы, даже оставаясь на том же участке земли, никогда и не в чём не соприкасаться с врагом. Перестать соперничать с ним. Не иметь с ним ничего общего. Противопоставить сопернику не силу, а какое-то совершенно особое качество, которое даёт новые возможности к существованию. Пройдет ещё очень много времени и на Земле появится человек.
Появится, и изменит мир в котором живет. Он научится наблюдать за звёзда ми, за планетами Солнечной системы, строить космические аппараты и за пускать их в космос. Многие из этих аппаратов садятся на поверхности планет и возвращаются обратно.
Глава 3. Человечество и поиск
Человечество достигло таких успехов в астрономии, технике, связи, кибернетике, которые создали реальные технические предпосылки для установления связи с разумной жизнью других миров. Академик В.А. А м б а р ц у м я н
Цивилизация и её влияние на космос.
Плоды нашей деятельности уже заметны из космоса. Это подтверждают космонавты, различающие с орбитальных станций даже шоссейные и железные дороги, мосты, корабли в море. Они видят это невооруженным глазом, а значит, с Луны то же самое можно увидеть в тысячекратный телескоп, какие стоят в наших обсерваториях. Марсиане, если бы они существовали, да же вооруженные техникой, равноценной нашей, без особого труда обнаружили бы наши города, дымы промышленности, космические аппараты, испытания атомных бомб. при более пристальном наблюдении они заметили бы искусственные моря и оросительные каналы. Ну а работу телевизионных станций можно обнаружить и с других планетных систем. Люди в мире звёзд. Цивилизация. Сообщество разумных существ, выросшее за миллиарды лет из ко мачков слизи, копошащихся в мутных лужах. Разумных существ, проникших в глубины атома и в дали Вселенной, познавших строение звёзд и тайну живой клетки, постигших законы своей эволюции!
Новый век - новое решение.
В каждую эпоху люди в своих мечтах решали проблему контактов с инопланетянами, исходя из техники своего времени. Вплоть до XVIII века люди полагали, что для полёта к звёздам достаточно будет энергии мышц, своих и домашних животных.
И поэтому, даже фантазируя, единственно что они могли предложить - это всего-навсего экипаж, запряженный в стаю птиц. Что воздух кончится сразу, как "отлетишь от дома", наши далёкие предки не знали. Они не представляли себе и огромные расстояния, отделяющие нас от Луны и планет, не говоря уже о расстояниях до звезд. Потом, измерив эти расстояния и узнав, что небесные тела разделяет почти пустое, безвоздушное пространство, стали мечтать хотя бы о взаимной сигнализации.
В XIX веке, всего каких-нибудь сто лет тому назад все серьезно верили в существование марсиан. И тогда вполне серьезно ученые выдвигали предположения об оптической связи с ними. Математик Карл Гаусс предлагал прорубить в сибирских лесах многометровую просеку в виде треугольника и засеять её пшеницей. Марсиане увидят в свои телескопы на фоне тёмно-зеленых лесов аккуратненький светлый треугольник, и поймут, что слепая природа не могла это сделать. Значит на этой планете живут разумные существа. Многим идея Гаусса понравилась, но, чтобы показать марсианам, что земляне высокообразованны, предлагали на сторонах треугольника сделать квадраты, чтобы получился рисунок теоремы Пифагора.
Этот проект обладал заметными недостатками. Ведь Сибирь часто покрыта облаками и снегом, и треугольник может долго оставаться незамеченным марсианами. А главное, даже в хорошую погоду его можно будет видеть только днем. Поэтому более правильным показался проект венского астронома Йозефа Иоганна фон Литрова. Он предлагал в пустыне Сахара, где всегда безоблачно, вырыть каналы в виде правильных геометрических фигур (возможно теорему Пифагора). Стороны многоугольника должны быть по крайней мере тридцать километров. А ночью поверх воды налить керосин и поджечь. Огненные полосы прочертят на ночной стороне планеты яркий чертеж.
Уж марсиане не могут его не заметить. Но и этот проект был отвергнут как очень дорогой. Француз Шарль Кро подсказал гораздо более дешёвый способ связи. Он посоветовал своему правительству соорудить огромную батарею зеркал для отражения солнечных лучей в сторону Марса. Зайчик, конечно, был бы ослепительно ярок. Проект Шарля Кро имел очень большое преимущество по сравнению с остальными. Зеркала можно шевелить, и тогда при взгляде с Марса ослепительная яркая точка на Земле подмигивала бы. И главное, мигание можно было передать марсиа нам сообщение. Наивно! А ведь это всё было совсем недавно, при жизни наших предков.
Тем временем создаётся целый ряд научно-фантастических произведений, посвященных перемещениям между планетами. Наиболее известны из них "Из пушки на Луну" Жуль Вена и "Война миров" Герберта Уэлса. . С развитием ракетной техники в послевоенные годы, а главное, запуск первого искусственного спутника Земли в 1957 году дали мощный толчок старым мечтам человечества о межпланетных перелётах. Хлынула целая лавина самых разнообразных научно-фантастических произведений. Полетав к Венере и Марсу, герои книг стали запросто летать к звездам, бороздя уже на огромных межзвездных кораблях бескрайние просторы Галактики, сражаясь с самой различной космической нечистью и злодеями. Но и тут снова , уже в который раз, строгий анализ охладил мечтателей. Современные ракеты, работающие на химическом топливе, изготавливаются из самых прочных и легких материалов, из двигателей "выжато" уже почти всё, но всё это делает пределом наших мечтаний полёт к Марсу или Венере.
И всё же полёты в пределах Солнечной системы реальны. Но у нас нет надежды встретить здесь разумные существа. Есть шансы найти их в других планетных системах, около других звезд. Но о полёте к звёздам на современных ракетах говорить бессмысленно: полёт до ближайшей звезды (кроме Солнца) - Альфа Центавра будет длиться 80 тысяч лет при скорости 17 километров в секунду.
Глава 4. Солнечная система (состав и особенности)
Мы рады той таинственности, которая находится за пределами нашей досягаемости Х а р л о у Ш е п л и . В Солнечную систему входит Солнце, 9 больших планет вместе с их 34 спутниками, более 100 тысяч малых планет (астероидов), порядка 10 в 11 степени комет, а также бесчисленное количество мелких, так называемых метеорных тел (поперечником от 100 метров до ничтожно малых пылинок).
Центральное положение в Солнечной системе занимает Солнце. Его масса приблизительно в 750 раз превосходит массу всех остальных тел, входящих в систему. Гравитационное притяжение солнца является главной силой, определяющей движение всех обращающихся вокруг него тел Солнечной системы. Среднее расстояние от Солнца до самой далекой от него планеты - Плутон 39, 5 а. е. , т. е. 6 миллиардов километров, что очень мало по сравнению с расстояниями до ближайших звёзд. Только не которые кометы удаляются от Солнца на 100 тысяч а. е. и подвергаются воздействию притяжения звезд. Двигаясь в Галактике , Солнечная система время от времени пролетает сквозь межзвездные газопылевые облака.
Вследствие крайней разряженности вещества этих облаков погружение Солнечной системы в облако может проявится только при небольшом поглощении и рассеянии солнечных лучей. Проявления этого эффекта в прошлой истории Земли пока не установлены. Все большие планеты - Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон - обращаются вокруг солнца в одном направлении (в направлении осевого вращения самого Солнца), по почти круговым орбитам, мало наклоненным друг к другу (и к солнечному экватору).
Плоскость земной орбиты - эклиптика принимается за основную плоскость при отсчёте наклонений орбит планет и других тел, обращающихся вокруг Солнца. Расстояния от планет до Солнца образу ют закономерную последовательность - промежутки между соседними орбитами возрастают с удалением от Солнца.
Эти закономерности движения планет в сочетании с делением их на две группы по физическим свойствам указывают на то, что Солнечная система не является случайным собранием космических тел, а возникла в едином процессе (см. главу 1). Благодаря почти круговой форме планетных орбит и большим промежуткам между ними исключена возможность тесных сближении между планетами, при которых они могли бы существенно изменять своё движение в результате взаимных притяжений. Это обеспечивает длительное существование планет ной системы.
Планеты вращаются так же вокруг своей оси, причём почти у всех планет, кроме Венеры и Урана, вращение происходит в том же направлении, что и их обращение вокруг Солнца. Чрезвычайно медленное вращение Венеры происходит в обратном направлении, а Уран вращается как бы лежа на боку. Большинство спутников обращаются вокруг своих планет в том же направлении, в котором происходит осевое вращение планеты. Орбиты таких спутников обычно круговые и лежат вблизи плоскости экватора планеты, образуя уменьшенное подобие планетной системы. Таковы, напри мер, система спутников Урана и система галилеевских спутников Юпитера.
Обратными движениями обладают спутники, расположенные далеко от планеты. Сатурн, Юпитер и Уран кроме отдельных спутников заметных размеров имеют множество мелких спутников, как бы сливающихся в сплошные кольца. Эти спутники движутся по орбитам, настолько близко расположенным к планете, что её приливная сила не позволяет им объединиться в единое тело. Подавляющее большинство орбит ныне известных малых планет располагается в промежутке между орбитами Марса и Юпитера. Все малые планеты обращаются вокруг Солнца в том же направлении, что и большие планеты, но их орбиты, как правило, вытянуты и наклонены к плоскости эклиптики. Кометы движутся в основном по орбитам, близким к параболическим. Некоторые кометы обладают вытянутыми орбитами сравнительно не больших размеров - в десятки и сотни а. е. У этих комет , называемых периодическими, преобладают прямые движения, т. е. движения в направлении обращения планет. Будучи вращающейся системой тел, Солнечная система обладает моментом количества движения (МКД).
Главная часть его связана с орбитальным движение планет вокруг Солнца, причём массивные Юпитер и Сатурн дают около 90%. Осевое вращение Солнца заключает в себе лишь 2% общего МКД всей Солнечной системы, хотя масса самого Солнца составляет более 99, 8% общей массы. Такое распределение МКД между Солнцем и планетами связано с медленным вращением Солнца и огромными размерами планетной системы - её поперечник в несколько тысяч раз больше поперечника Солнца. МКД планеты приобрели в процессе своего образования: перешел к ним из того вещества, из которого они образовались (см. главу 1).
Планеты делятся на две группы, отличающиеся по массе, химическому составу (это проявляется в различиях их плотности), скорости вращения и количеству спутников. Четыре планеты, ближайшие к Солнцу, планеты Земной группы , невелики, состоят из плотного каменистого вещества и металлов. Планеты-гиганты - Юпитер, Сатурн, Уран и Нептун - гораздо массивнее, состоят в основном из лёгких веществ и поэтому, несмотря на огромное давление в их недрах, имеют малую плотность. У Юпитера и Сатурна главную долю их массы составляют водород и гелий. В них содержится так же до 20% каменистых веществ и легких соединений кислорода, углерода и азота, способных при низких температурах концентрироваться в льды. Недра планет и некоторых спутников находятся в рас калённом состоянии.
У планет земной группы и спутников вследствие малой теплопроводности наружных слоёв внутреннее тепло очень медленно просачивается наружу и не оказывает заметного влияния на температуру поверхности. У планет-гигантов конвекция в их недрах приводит к замет ному потоку тепла из недр, превосходящему поток, получаемый им от Солнца. Венера, Земля и Марс обладают атмосферами, состоящими из газов, выделившихся из их недр. У планет-гигантов атмосферы представляют собой непосредственное продолжение их недр: эти планеты не имеют твердой или жидкой поверхности. При погружении внутрь атмосферные газы посте пенно переходят в конденсированное состояние. Девятую планету - Плутон, по- видимому, нельзя отнести ни к одной из двух групп. По химическому составу он близок к группе планет-гигантов, а по размерам к земной группе. Ядра комет по своему химическому составу родственны планетам гигантам: они состоят из водяного льда и льдов различных газов с при местью каменистых веществ.
Почти все малые планеты по своему современному составу относятся к каменистым планетам земной группы. Сравнительно недавно открытый Хирон, движущийся в основном между орбитами Сатурна и Урана, вероятно, подобен ледяным ядрам комет и небольшим спутникам далёких от Солнца планет. Обломки малых планет, образующиеся при их столкновении друг с другом, иногда выпадают на Землю в виде метеоритов. У малых планет, именно вследствие их малых размеров, недра подогревались значительно меньше, чем у планет земной группы, и поэтому их вещество зачастую претерпело лишь небольшие изменения со времени их образования. Измерения возраста метеоритов (по содержанию радиоактивных элементов и продуктов их распада) показали, что они, а следовательно вся Солнечная система существует около 5 миллиардов лет. Этот возраст Солнечной системы находится в согласии с измерениями древнейших земных и лунных образцов.
Солнце.
Солнце - центральное тело Солнечной системы - представляет собой раскалённый плазменный шар. Солнце - ближайшая к Земле звезда. Свет от него до нас доходит за 8, 3 мин. Солнце решающим образом повлияло на образование всех тел Солнечной системы (см. главу 1) и создало те условия, которые привели к возникновению и развитию жизни на Земле (см. главу 2). Его масса в 33300 раз больше массы Земли и в 750 раз больше массы всех других планет, вместе взятых. За 5 миллиардов лет существования Солнца уже около половины водорода в его центральной части превратилось в гелий. В результате этого процесса выделяется то количество энергии, которое Солнце излучает в мировое пространство. Мощность излучения Солнца очень велика: около 3, 8 * 410 520 степени МВт.
На Землю попадает ничтожная часть Солнечной энергии, составляющая около половины миллиардной доли. Она поддерживает в газообразном состоянии земную атмосферу, постоянно нагревает сушу и водоёмы, даёт энергию ветрам и водопадам, обеспечивает жизнедеятельность животных и растений. Часть солнечной энергии запасена в недрах Земли в виде каменного угля, нефти и других полезных ископаемых. Видимый с Земли диаметр Солнца незначительно меняется из-за эллиптичности орбиты и составляет, в среднем, 1 392 00 км. (что в 109 раз превышает диаметр Земли). Расстояние до Солнца в 107 раз превышает его диаметр. Солнце представляет собой сферически симметричное тело, находящиеся в равновесии. Всюду на одинаковых расстояниях от центра этого шара физические условия одинаковы, но они заметно меняются по мере приближения к центру.
Плотность и давление быстро нарастают вглубь, где газ сильнее сжат давлением вышележащих слоёв. Следовательно, температура также растёт по мере приближения к центру. В зависимости от изменения физических условий Солнце можно разделить на несколько концентрических слоёв, посте пенно переходящих друг в друга.
В центре Солнца температура составляет 15 миллионов градусов, а давление превышает сотни миллиардов атмосфер. Газ сжат здесь до плотности около 150 00 кг/ 4м 53. Почти вся энергия Солнца генерируется в центральной области с радиусом примерно 1/3 солнечного. Через слои, окружающие центральную часть, эта энергия передаётся наружу. На протяжении последней трети радиуса находится конвективная зона. Причина возникновения перемешивания (конвекции) в наружных слоях Солнца та же, что и в кипящем чайнике: количество энергии, поступающее от нагревателя, гораздо больше того, которое отводится теплопроводностью. Поэтому вещество вынужденно приходит в движение и начинает само переносить тепло. Ядро и конвективная зона фактически не наблюдаемы.
Об их существовании известно либо из теоретических расчётов, либо на основании косвенных данных. Над конвективной зоной располагаются непосредственно наблюдаемые слои Солнца, называемые его 1 Атмосферой. Они лучше изучены, т. к. об их свойствах можно судить из наблюдений.
а). Солнечная атмосфера
так же состоит из нескольких различных слоёв. Самый глубокий и тонкий из них - фотосфера, непосредственно наблюдаемая в видимом непрерывном спектре. Толщина фотосферы приблизительно около 300 км. Чем глубже слои фотосферы, тем они горячее. Во внешних более холодных слоях фотосферы на фоне непрерывного спектра образуются Фраунгоферовы линии поглощения. Во время наибольшего спокойствия земной атмосферы можно наблюдать характерную зернистую структуру фотосферы.
Чередование маленьких светлых пятнышек - гранул - размером около 1000 км. , окруженных тёмными промежутками, создаёт впечатление ячеистой структуры - грануляции. Возникновение грануляции связано с происходя щей под фотосферой конвекцией. Отдельные гранулы на несколько сотен градусов горячее окружающего их газа, и в течение нескольких минут их распределение по диску Солнца меняется. Спектральные измерения свидетельствуют о движении газа в гранулах, похожих на конвективные: в гранулах газ поднимается, а между ними - опускается.
Это движение газов порождают в солнечной атмосфере акустические волны, подобные звуковым волнам в воздухе. Распространяясь в верхние слои атмосферы , волны, возникшие в конвективной зоне и в фотосфере, передают им часть механической энергии конвективных движений и производят нагревание газов последующих слоёв атмосферы - хромосферы и короны. В результате верхние слои атмосферы с температурой около 4500К оказываются самыми "холодными" на Солнце. Как вглубь, так и вверх от них температура газов быстро растёт. Расположенный над фотосферой слой называют хромосферой, во время полных солнечных затемнений в те минуты, когда Луна полностью закрывает фотосферу, виден как розовое кольцо, окружающее тёмный диск. На краю хромосферы наблюдаются выступающие язычки пламени - хромосферные спикулы , представляющие собой вытянутые столбики из уплотнённого газа.
Тогда же можно наблюдать и спектр хромосферы, так называемый спектр вспышки. Он состоит из ярких эмиссионных линий водорода, гелия, ионизированного кальция и других элементов, которые внезапно вспыхивают во время полной фазы затемнения. Выделяя излучение Солнца в этих линиях, можно получить его изображение. Хромосфера отличается от фотосферы значительно более неправильной неоднородной структурой. Заметно два типа неоднородностей - яркие и тёмные. По своим размерам они превышают фотосферные гранулы.
В целом распределение неоднородностей образует так называемую хромосферную сетку, особенно хорошо заметную в линии ионизированного кальция. Как и грануляция, она является следствием движения газов в под фотосферной конвективной зоне, только происходящих в более крупных масштабах. Температура в хромосфере быстро растёт, достигая в верхних её слоях десятков тысяч градусов. Самая верхняя и самая разряжённая часть солнечной атмосферы - корона, прослеживающаяся от солнечного лимба до расстояний в десятки солнечных радиусов и имеющая температуру около миллиона градусов. Корону можно видеть толь ко во время полного солнечного затемнения либо с помощью коронографа.
Вся солнечная атмосфера постоянно колеблется. В ней распространяются как вертикальные, так и горизонтальные волны с длинами в несколько тысяч километров. Колебания носят резонансный характер и происходят с периодом около 5 мин. В возникновении явлений происходящих на Солнце большую роль играют магнитные поля. Вещество на Солнце всюду представляет собой намагниченную плазму. Иногда в отдельных областях напряженность магнитного поля быстро и сильно возрастает. Этот процесс сопровождается возникновением целого комплекса явлений солнечной активности в различных слоях солнечной атмосферы. К ним относятся факелы и пятна в фотосфере, флоккулы в хромосфере, протуберанцы в короне. Наиболее замечательным явлением, охватывающим все слои солнечной атмосферы и за зарождающимся в хромосфере, являются солнечные вспышки (см. Солнечная активность).
Подобные документы
Анализ строения Солнечной системы, гипотез ее происхождения. Монистические теории Лапласа, Канта. Момент количества движения механической системы. Гипотеза о возникновении Солнца из газовой туманности. Происхождение планет земного типа и газовых гигантов.
курсовая работа [4,7 M], добавлен 06.01.2015Происхождение Солнечной системы; гипотеза Канта-Лапласа, Джинса-Вулфсона, Шмидта-Литтлтона. Влияние солнечной активности на земные процессы. Появление и развитие жизни на Земле. Ранняя история и геологическая история. Солнечная энергия органического мира.
реферат [103,2 K], добавлен 05.05.2009Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий.
доклад [6,8 K], добавлен 16.10.2002Космогония - научная дисциплина, изучающая происхождение и развитие небесных объектов: галактик, звезд и планет. Гипотезы Лапласа, Шмидта и Джинса о возникновении Солнечной системы. Иоганн Кеплер и его законы о движении планет. Закон всемирного тяготения.
творческая работа [236,0 K], добавлен 23.05.2009Характеристика и анализ различных гипотез образования Солнечной системы, их положительные и отрицательные стороны, а также сущность общепризнанной теории Шмидта. Выражение эмпирической зависимости закономерностью распределения расстояний планет от Солнца.
реферат [256,0 K], добавлен 21.12.2009Образование первичного Солнца. Теории Ньютона и Канта о строении Вселенной. Происхождение и строение планет Солнечной системы, ее закономерности и тайны. Открытие лептонной структуры вещества высоких энергий внутри элементных частиц и атомных ядер.
реферат [25,0 K], добавлен 12.04.2009Гипотезы о происхождении солнечной системы. Современная теория происхождения солнечной системы. Солнце – центральное тело нашей планетной системы. Планеты-гиганты. Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон.
реферат [181,9 K], добавлен 21.03.2004Древнейшая проблема происхождения Солнечной системы. Рождение эволюционных космогонических гипотез образования Солнца, планет и других тел. Происхождение вещества Солнечной системы, пути формирования ее тел и способы становления их механических структур.
реферат [25,4 K], добавлен 28.02.2010Пять миллиардов лет назад наша солнечная система была газопылевым облаком. Солнце. Рождение планет солнечной системы. Солнечная система. Меркурий. Венера. Инные миры. На Венере могла появиться жизнь. Спасение жизни. Угроза из космоса. Черные дыры.
доклад [9,4 K], добавлен 31.05.2008Строение Солнечной системы, внешние области. Происхождение естественных спутников планет. Общность газовых планет-гигантов. Характеристика поверхности, атмосферы, состава Меркурия, Сатурна, Венеры, Земли, Луна, Марса, Урана, Плутона. Пояса астероидов.
реферат [115,6 K], добавлен 07.05.2012