Эволюция вещества во Вселенной

Фундаментальные взаимодействия физических объектов в природе, их особенности и проявления. Модель однородной изотропной нестационарной горячей расширяющейся Вселенной на основе общей теории относительности и релятивистской теории тяготения Эйнштейна.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 04.11.2011
Размер файла 487,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Современные экспериментальные данные свидетельствуют, что существует только четыре качественно различных вида взаимодействий, в которых участвуют элементарные частицы. Эти взаимодействия называются фундаментальными, то есть самыми основными, исходными, первичными. Если принять во внимание все многообразие свойств окружающего нас Мира, то кажется совершенно удивительным, что в Природе есть только четыре фундаментальных взаимодействия, ответственных за все явления Природы.

Помимо качественных различий, фундаментальные взаимодействия отличаются в количественном отношении по силе воздействия, которая характеризуется термином интенсивность. По мере увеличения интенсивности фундаментальные взаимодействия располагаются в следующем порядке: гравитационное, слабое, электромагнитное и сильное. Каждое из этих взаимодействий характеризуется соответствующим параметром, называемым константой связи, численное значение которого определяет интенсивность взаимодействия.

Каким образом физические объекты осуществляют фундаментальные взаимодействия между собой? На качественном уровне ответ на этот вопрос выглядит следующим образом. Фундаментальные взаимодействия переносятся квантами. При этом в квантовой области фундаментальным взаимодействиям отвечают соответствующие элементарные частицы, называемые элементарными частицами - переносчиками взаимодействий. В процессе взаимодействия физический объект испускает частицы - переносчики взаимодействия, которые поглощаются другим физическим объектом. Это ведет к тому, что объекты как бы чувствуют друг друга, их энергия, характер движения, состояние изменяются, то есть они испытывают взаимное влияние.

В современной науке высоких энергий все большее значение приобретает идея объединения фундаментальных взаимодействий. Согласно идеям объединения, в Природе существует только одно единое фундаментальное взаимодействие, проявляющее себя в конкретных ситуациях как гравитационное, или как слабое, или как электромагнитное, или как сильное, или как их некоторая комбинация. Успешной реализацией идей объединения послужило создание ставшей уже стандартной объединенной теории электромагнитных и слабых взаимодействий. Идет работа по развитию единой теории электромагнитных, слабых и сильных взаимодействий, получившей название теории великого объединения. Предпринимаются попытки найти принцип объединения всех фундаментальных взаимодействий. Мы последовательно рассмотрим основные проявления фундаментальных взаимодействий.

Фундаментальные взаимодействия в природе и их особенности

Фундаментальные взаимодействия -- качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.

Исследуя окружающий нас мир, мы можем заметить множество самых разнообразных сил: сила тяжести, сила натяжения нити, сила сжатия пружины, сила столкновения тел, сила трения, сила сопротивления воздуха, сила взрыва и т. д. Однако когда была выяснена атомарная структура вещества, стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку основной вид межатомного взаимодействия -- электромагнитное, то, как оказалось, большинство этих сил -- лишь различные проявления электромагнитного взаимодействия. Одно из исключений составляет, например, сила тяжести, причиной которой является гравитационное взаимодействие между телами, обладающими массой.

К началу XX века выяснилось, что все известные к тому моменту силы сводятся к двум фундаментальным взаимодействиям: электромагнитному и гравитационному.

В 1930-е годы физики обнаружили, что ядра атомов состоят из нуклонов (протонов и нейтронов). Стало понятно, что ни электромагнитные, ни гравитационные взаимодействия не могут объяснить, что удерживает нуклоны в ядре. Было постулировано существование нового фундаментального взаимодействия: сильного взаимодействия. Однако в дальнейшем оказалось, что и этого недостаточно, чтобы объяснить некоторые явления в микромире. В частности, было непонятно, что заставляет распадаться свободный нейтрон. Тогда было постулировано существование слабого взаимодействия, и этого оказалось достаточно для описания всех до сих пор наблюдавшихся явлений в микромире.

К настоящему времени известны четыре вида основных фундаментальных взаимодействий: гравитационное, электромагнитное, сильное, слабое.

Гравитационное взаимодействие характерно для всех материальных объектов вне зависимости от их природы. Оно заключается во взаимном притяжении тел и определяется фундаментальным законом всемирного тяготения. Ньютон решил, что именно Солнце может являться источником сил, управляющих движением планет. Анализируя эмпирические законы Кеплера, он убедился, что отклонения движения планет от прямой в точности радиальны, что является следствием того, что все силы направлены точно к Солнцу. Кроме того, из анализа третьего закона Кеплера можно сделать вывод, что чем дальше от Солнца планета, тем слабее сила. Сравнивая движение двух планет на разных расстояниях, Ньютон пришел к выводу, что силы притяжения их к Солнцу обратно пропорциональны квадратам расстояний от планет до Солнца. Сочетая оба закона, он заключил, что должна существовать сила, обратная квадрату расстояния и направленная по прямой между Солнцем и планетой.

Будучи человеком, склонным к обобщениям, Ньютон предположил, что эта связь применима не только к Солнцу, удерживающему планеты, но что она носит более общий характер. Он предположил, что такая же сила удерживает Луну вблизи Земли, удерживает нас на Земле, что эта сила всеобщая и что все притягивается ко всему.

Ньютон связал способность одного тела притягивать другое с их массами: сила притяжения любых двух тел прямо пропорциональна произведению масс этих тел, обратно пропорциональна квадрату расстояния между ними и направлена вдоль прямой, соединяющей эти тела:

Коэффициент пропорциональности G=6.672Ч 10-11 НЧ м2/кг2. Он называется постоянной всемирного тяготения, или гравитационной постоянной, и одинаков для всех тел в природе.

Это позволило очень легко объяснить опыты Галилея. Брошенные им с Пизанской башни легкая пуля и тяжелое ядро падали под действием силы тяготения Земли. Под ее влиянием они получали одинаковое ускорение 9.8 м/с2, которое определяется массой Земли M » 6 Ч 1024 кг и ее радиусом R » 6378 км (радиус R много больше высоты башни h):

Закон всемирного тяготения Ньютона позволил с высокой точностью определить орбиты планет Солнечной системы, благодаря ему была строго доказана справедливость законов Кеплера. Для самого Ньютона наиболее важным доводом в пользу этого закона послужило полученное им доказательство того, что притяжение Земли действует и на Луну. Анализ движения Луны, проведенный Ньютоном на основе закона всемирного тяготения, с высокой точностью совпадал с астрономическими наблюдениями.

Закон тяготения объяснил многие явления, прежде не совсем понятные и таинственные. Например, периодическое повышение уровня воды морей и океанов, называемое приливом и связанное с притяжением воды Луной.

Закон тяготения Ньютона позволил сделать множество ценных предсказаний, он позволил глубже понять устройство окружающего мира. Знание о существовании тяготения позволяет понять, например, почему Земля круглая (ну, почти круглая): так как между всеми телами существует притяжение, то и все, из чего возникла Земля, тоже взаимно притягивалось до тех пор, пока было куда притягиваться. Из закона тяготения, таким образом, следует, что и Солнце, и Луна, и Земля, и другие планеты, и звезды, которые по современным представлениям возникли в результате взаимного притяжения частиц межзвездных пылевых облаков, должны быть приблизительно шарами.

Притягиваясь друг к другу подобно частицам космической пыли, звезды (расстояние между которыми измеряется в световых годах!) вместе со своими планетами образуют звездные скопления. Взаимное притяжение звездных скоплений (расстояния между которыми достигают сотен тысяч световых лет!) приводит к образованию галактик, а галактики образуют скопления галактик.

Трудно даже представить себе мир, в котором не было бы тяготения. Трудно даже представить, как развивалась бы наука без открытия Ньютоном основных законов механики и закона всемирного тяготения. Вместо царивших в прежние века неуверенности, сомнений, бесконечных споров и парадоксов перед людьми предстали четкие и простые законы окружающего мира. Как важно было, что все луны, все планеты, все звезды подчиняются столь простым правилам! Но еще важнее оказалось то, что человек оказался в состоянии понять эти правила и сделать с их помощью предсказания на будущее. У людей появилась надежда, что и в других явлениях мира прячутся такие же простые закономерности. Второй закон Ньютона дает нам простой рецепт вычисления ускорения тел, а значит - вычисления всех характеристик их движения на основе анализа сил, действующих на эти тела. Таким образом, этот закон предполагает, что силы обладают некоторыми независимыми свойствами, которые еще предстоит выяснить.

Одно из важнейших свойств силы - ее материальное происхождение. Говоря о силе, мы всегда неявно предполагаем, что когда нет физических тел, то сила равна нулю. Если мы видим, что сила не равна нулю, мы ищем по соседству ее источник. Можно сделать вывод: на тело действует столько сил, сколько других тел находится по соседству. При этом ускорение рассматриваемого тела будет определяться результирующей силой, равной геометрической сумме (ведь сила - это вектор!) всех сил, действующих на тело.

В этих утверждениях есть нечто новое: мы поняли, что анализ силы вообще, действующей на тело, может быть сведен к анализу более простых сил, действующих между рассматриваемым телом и другим каким-то телом из его окружения.

Примером такой простой силы является сила тяготения. Формулируя свой закон тяготения Ньютон отвечал на вопрос: что такое сила и как ее вычислить? Если бы ничего, кроме тяготения, не существовало, то сочетание закона тяготения и второго закона Ньютона оказалось бы завершенной теорией. Но кроме сил тяготения в природе существуют и другие силы.

Первое, что приходит в голову, когда мы говорим о силах в природе,- это сила тяжести, действующая на все тела вблизи поверхности Земли. Но теперь-то мы знаем, что сила тяжести - это просто частный случай силы тяготения, действующей между всеми телами, обладающими массой. Величина этой силы определяется законом тяготения Ньютона:

К силам тяготения можно свести и силу, действующую на все тела, погруженные в жидкости или газы:

(здесь r - плотность жидкости (газа), V- объем погруженной в эту жидкость (газ) части тела). Об этом говорит хотя бы величина ускорения свободного падения g, входящая в выражение.

Сила впервые была описана еще знаменитым Архимедом. Ее действие всегда сводится к тому, что жидкость (газ) стремится вытолкнуть всякое погруженное в нее тело. При определенных условиях эта сила может быть даже больше или равна силе тяжести, действующей на тело. И тогда это тело не тонет. Именно действием силы Архимеда можно объяснить плавание больших, тяжелых кораблей в океанах, “плавание” воздушных шаров и т.д.

Следующая сила, с которой мы чаще всего встречаемся на практике - это сила трения скольжения. Эта сила всегда возникает при скольжении одного тела по поверхности другого и препятствует движению, т.е. направлена против скорости движения. Опыт показывает, что величина силы трения пропорциональна величине силы реакции опоры , действующей на движущееся тело со стороны поверхности соприкосновения и всегда направленной перпендикулярно этой поверхности:

Коэффициент трения m зависит от многих факторов: от природы соприкасающихся тел (т.е. от рода вещества), температуры, от того, смазаны соприкасающиеся поверхности или нет, от вида смазки и т.д. Уже это указывает на то, что сила трения не является такой простой, как сила тяготения. И действительно, она может рассматриваться как результирующая более простых сил взаимодействия между атомами - мельчайшими частицами, из которых состоят движущееся тело и поверхность.

К силам взаимодействия между отдельными атомами может быть сведена и сила трения иного рода - сила сопротивления, действующая на тела, движущиеся в жидкостях или газах. Наблюдения показывают, что эта сила действует всегда против скорости движения и пропорциональна величине этой скорости:

(b- коэффициент сопротивления, зависящий от природы жидкости или газа).

Взаимодействием между атомами объясняется сила упругости, возникающая при деформации упругих тел (пружин, реальных нитей, стержней и т.п.), которая стремится вернуть их в исходное, недеформированное, состояние и пропорциональна величине деформации х:

(k- коэффициент жесткости, различный для разных тел).

Но даже силы взаимодействия между атомами, из которых состоят все предметы, все окружающие нас вещества, не являются простыми и, в свою очередь, могут быть сведены к силам, действующим между электрическими зарядами, образующими атом. Величина этих электрических сил, как показывает опыт, определяется таким же простым законом, как и закон всемирного тяготения. Она пропорциональна величине зарядов q1 и q2 и обратно пропорциональна квадрату расстояния между ними:

Закон взаимодействия зарядов был впервые опубликован в работах французского инженера и физика Шарля Огюстена Кулона (Coulomb, 1736-1806) и очень похож на закон тяготения Ньютона. Сила Кулона направлена вдоль прямой, соединяющей заряды, но, в отличие от силы тяготения, может быть как силой притяжения, так и силой отталкивания. Дело в том, что в природе обнаружены заряды двух видов, или, как говорят, двух знаков (“+” и “-”). При этом заряды одного знака (одноименные) отталкиваются, а заряды противоположных знаков (разноименные) притягиваются друг к другу.

Примеры сил, действующих в природе, которые мы рассмотрели выше, показывают, что есть простые, или фундаментальные, силы, которые уже не сводятся ни к каким другим типам сил, и есть силы, которые можно рассматривать как результат суммарного действия более простых сил.

К фундаментальным силам природы можно отнести:

1) силы тяготения, действующие между любыми телами, обладающими массой;

2) электрические силы, действующие между любыми телами, обладающими зарядом;

3) силы магнитного взаимодействия, действующие между любыми движущимися зарядами;

4) силы, которые называют силами слабого взаимодействия, их действие проявляется в процессах взаимного превращения мельчайших частиц материи, называемых элементарными частицами;

5) ядерные силы, действующие между частицами, входящими в состав атомного ядра.

Удивительно, что все многообразие явлений природы можно, в принципе, объяснить действием всего пяти типов сил! Подобно тому, как в основе мира музыки лежат всего семь нот, в основе несопоставимо более богатого явлениями и красочного мира Природы лежат всего пять (даже не семь!) фундаментальных взаимодействий. Больше того, в настоящее время можно с определенностью сказать, что пять - это даже преувеличение. Дело в том, что некоторые фундаментальные взаимодействия, о которых мы говорили выше, просто упомянуты нами несколько раз.

Открытие английским физиком Майклом Фарадеем еще в XIX веке закона электромагнитной индукции показало, что электрические и магнитные силы - это всего лишь различные проявления единого электромагнитного взаимодействия зарядов. А открытия ученых последних лет, которые стали возможны только с появлением мощных ускорителей элементарных частиц, показали, что и слабое взаимодействие частиц нельзя рассматривать отдельно от электромагнитного. Родилась теория единого электрослабого взаимодействия. Таким образом, сегодня уже можно говорить не о пяти, а о трех (!) фундаментальных силах, к которым могут быть сведены все остальные силы, действующие в природе: тяготение, электрослабые силы и ядерные силы.

Итак, мы сделали обзор основных сведений, касающихся четырех фундаментальных взаимодействий Природы. Кратко описаны микроскопические и макроскопические проявления этих взаимодействий, картина физических явлений, в которых они играют важную роль. Везде, где это было возможно, мы старались проследить тенденцию объединения, отметить общие черты фундаментальных взаимодействий, привести данные о характерных масштабах явлений

Горячая модель Вселенной

фундаментальное взаимодействие модель горячая вселенная

Модель горячей Вселенной -- космологическая модель, в которой эволюция Вселенной начинается с состояния плотной горячей плазмы, состоящей из элементарных частиц, и протекает при дальнейшем адиабатическом космологическом расширении.

Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивистской теории тяготения, созданной Альбертом Эйнштейном в 1916 году.

В основе этой модели лежат два предположения: 1) свойства Вселенной одинаковы во всех ее точках (однородность) и направления (изотропность); 2) наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь, кривизны с плотностью массы. Космологию, основанную на этих постулатах называют релятивистской. Важным пунктом данной модели является ее нестационарность, это означает, что Вселенная не может находиться в статическом, неизменном состоянии.

Новый этап в развитии релятивистской космологии был связан с исследованиями русского ученого А.А. Фридмана (1888-1925), который математически доказал идею саморазвивающейся Вселенной. Работа А.А. Фридмана в корне изменила основоположения прежнего научного мировоззрения. По его утверждению космологические начальные условия образования Вселенной были сингулярными.

Разъясняя характер эволюции Вселенной, расширяющейся начиная с сингулярного состояния, Фридман особо выделял два случая:

а) радиус кривизны Вселенной с течением времени постоянно возрастает, начиная с нулевого значения;

б) радиус кривизны меняется периодически: Вселенная сжимается в точку (в ничто, сингулярное состояние), затем снова из точки, доводит свой радиус до некоторого значения, далее опять, уменьшая радиус своей кривизны, обращается в точку. На этот вывод не было обращено внимания вплоть до открытия американским астрономом Эдвином Хабблом в 1929 году так называемого «красного смещения».

Красное смещение -- это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, воспринимаемая вами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», т. е. линии спектра сдвигаются в сторону более длинных красных волн.

Так вот, для всех далеких источников света красное смещение было зафиксировано, причем, чем дальше находился источник, тем в большей степени.

Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждает гипотезу об удалении их, т. е. о расширении Метагалактики -- видимой части Вселенной.

Составной частью модели расширяющейся Вселенной является представление о Большом Взрыве, происшедшем где-то примерно 12 --18 млрд. лет назад.

Джордж Лемер был первым, кто выдвинул концепцию «Большого взрыва» из так называемого «первобытного атома» и последующего превращения его осколков в звезды и галактики. Конечно, со стороны современного астрофизического знания данная концепция представляет лишь исторический интерес, но сама идея первоначального взрывоопасного движения космической материи и ее последующего эволюционного развития неотъемлемой частью вошла в современную научную картину мира.

Принципиально новый этап в развитии современной эволюционной космологии связан с именем американского физика Г.А. Гамова (1904-1968), благодаря которому в науку вошло понятие горячей Вселенной. Согласно предложенной им модели «начала» эволюционирующей Вселенной «первоатом» Леметра состоял из сильно сжатых нейтронов, плотность которых достигала чудовищной величины - один кубический сантиметр первичного вещества весил миллиард тонн. В результате взрыва этого «первоатома» по мнению Г.А. Гамова образовался всоеобраэный космологический котел с температурой порядка трей миллиардов градусов, где и произошел естественный синтез химических элементов. Осколки первичного яйца - отдельные нейтроны затем распались на электроны и протоны, которые, в свою очередь, соединившись с нераспавшимися нейтронами, образовали ядра будущих атомов. Все это произошло в первые 30 минут после «Большого Взрыва.

Горячая модель представляла собой конкретную астрофизическую гипотезу, указывающую пути опытной проверки своих следствий. Гамов предсказал существование в настоящее время остатков теплового излучения первичной горячей плазмы, а его сотрудники Дльфер и Герман еще в 1948 г. довольно точно рассчитали величину температуры этого остаточного излучения уже современной Вселенной. Однако Гамову и его сотрудникам не удалось дать удовлетворительное объяснение естественному образованию и распостраненности тяжелых химических элементов во Вселенной, что явилось причиной скептического отношения к его теории со стороны специалистов. Как оказалось, предложенный механизм ядерного синтеза не мог обеспечить возникновение наблюдаемого ныне количества этих элементов.

Ученые стали искать иные физические модели «начала». В 1961 году академик Я.Б. Зельдович выдвинул альтернативную холодную модель, согласно которой первоначальная плазма состояла из смеси холодных ( с температурой ниже абсолютного нуля) вырожденных частиц - протонов, электронов и нейтрино. Три года спустя астрофизики И.Д. Новиков и А.Г. Дорошкевич произвели сравнительный анализ двух противоположных моделей космологических начальных условий - горячей и холодной и указали путь опытной проверки и выбора одной из них. Было предложено с помощью изучения спектра излучений звезд и космических радиоисточников попытаться обнаружить остатки первичного излучения. Открытие остатков первичного излучения подтверждало бы правильность горячей модели, а если таковые не существуют, то это будет свидетельствовать в пользу холодной модели.

В конце 60-х годов группа американских ученых во главе с Р. Дикке приступила к попыткам обнаружить реликтовое излучение. Но их опередили Л. Пепзиас и Р. Вильсон, получившие в 1978 г. Нобелевскую премию за открытие микроволнового фона (это официальное название реликтового излучения) на волне 7,35 см. Примечательно, что будущие лауреаты Нобелевском премии не искали реликтовое излучение, а в основном занимались отладкой радиоантенны, для работы по программе спутниковой связи. С июля 1964 г. по апрель 1965 г они при различных положениях антенны регистрировали космическое излучение, природа которого первоначально была им не ясна. Этим излучением и оказалось реликтовое излучение.

Таким образом, в результате астрономических наблюдений последнего времени удалось однозначно решить принципиальный вопрос о характере физических условий, господствовавших на ранних стадиях космической эволюции: наиболее адекватной оказалась горячая модель «начала». Сказанное, однако, не означает, что подтвердились все теоретические утверждения и выводы космологической концепции Гамова. Из двух исходных гипотез теории - о нейтронном составе «космического яйца» и горячем состоянии молодой Вселенной - проверку временем «выдержала «только «последняя, указывающая на количественное преобладание излучения над веществом у истоков ныне наблюдаемого космологического расширения.

В модели горячей Вселенной считается, что Вселенная от наших дней до большого взрыва описывается одной из моделей Фридмана. В подобных моделях оказывается, что по мере расширения Вселенной вещество и излучение в ней охлаждаются. (С удвоением размеров Вселенной ее температура становится вдвое ниже). Поскольку температура - это просто мера энергии (т. е. скорости) частиц, охлаждение Вселенной должно сильно воздействовать на вещество внутри нее. При очень высоких температурах частицы движутся так быстро, что могут противостоять любому взаимному притяжению, вызванному ядерными или электромагнитными силами, но при охлаждении можно ожидать, что некоторые частицы будут притягиваться друг к другу и начнут сливаться. Более того, даже типы частиц, существующих во Вселенной, должны зависеть от температуры. При достаточно высоких температурах энергия частиц столь велика, что при любом столкновении образуется много разных пар частица-античастица, и, хотя некоторая доля этих частиц аннигилирует, сталкиваясь с античастицами, их образование происходит все равно быстрее аннигиляции. Но при более низких температурах, когда энергия сталкивающихся частиц меньше, пары частица-античастица будут образовываться медленнее и аннигиляция частиц будет происходит быстрее рождения.

Считается, что в момент большого взрыва размеры Вселенной были равны нулю, а сама она была бесконечно горячей. Но по мере расширения температура излучения понижалась. Через секунду после большого взрыва температура упала примерно до десяти тысяч миллионов градусов; это примерно в тысячу раз больше температуры в центре Солнца, но такие температуры достигаются при взрывах водородной бомбы. В это время Вселенная состояла из фотонов, электронов, нейтрино (нейтрино - легчайшие частицы, участвующие только в слабом и гравитационном взаимодействиях) и их античастиц, а также из некоторого количества протонов и нейтронов. По мере того как Вселенная продолжала расширяться, а температура падать, скорость рождения электрон-антиэлектронных пар в соударениях стала меньше скорости их уничтожения за счет аннигиляции. Поэтому почти все электроны и антиэлектроны должны были аннигилировать друг с другом, образовав новые фотоны, так что осталось лишь чуть-чуть избыточных электронов. Но нейтрино и антинейтрино не аннигилировали друг с другом, потому что эти частицы очень слабо взаимодействуют между собой и с другими частицами. Поэтому они до сих нор должны встречаться вокруг нас. Если бы их можно было наблюдать, то у нас появился бы хороший способ проверки модели очень горячей ранней Вселенной. К сожалению, их энергии сейчас слишком малы, чтобы их можно было непосредственно наблюдать. Однако если нейтрино не является безмассовой частицей, а обладает небольшой собственной массой, обнаруженной в неподтвержденном эксперименте советских ученых 1981 г., то мы смогли бы обнаружить их косвенно: они могли бы оказаться одной из форм темной материи, упоминавшейся ранее, гравитационное притяжение которой достаточно для того, чтобы прекратить расширение Вселенной и заставить ее опять сжиматься.

Примерно через сто секунд после большого взрыва температура упала до тысячи миллионов градусов, что отвечает температуре внутри самых горячих звезд. При такой температуре энергии протонов и нейтронов уже недостаточно для сопротивления сильному ядерному притяжению, и они начинают объединяться друг с другом, образуя ядра дейтерия (тяжелого водорода), которые состоят из протона и нейтрона. Затем ядра дейтерия присоединяют к себе еще протоны и нейтроны и превращаются в ядра гелия, содержащие два протона и два нейтрона, а также образуют небольшие количества более тяжелых элементов - лития и бериллия. Вычисления показывают, что, согласно горячей модели большого взрыва, около четвертой части протонов и нейтронов должно было превратиться в атомы гелия и небольшое количество тяжелого водорода и других элементов. Оставшиеся нейтроны распались на протоны, представляющие собой ядра обычных атомов водорода.

Описанная картина горячей Вселенной на ранней стадии развития была предложена ученым Джорджем (Г.А.) Гамовым в знаменитой работе, которую Гамов написал в 1948 г. вместе со своим аспирантом Ральфом Альфером. Обладая прекрасным чувством юмора, Гамов уговорил физика-ядерщика Ганса Бете добавить свою фамилию к списку авторов, чтобы получилось "Альфер, Бете, Гамов", что звучит, как названия первых трех букв греческого алфавита альфа, бета, гамма, и чрезвычайно подходит для статьи о начале Вселенной! В этой статье было сделано замечательное предсказание о том, что излучение (в виде фотонов), испущенное на очень ранних стадиях развития Вселенной, должно до сих пор существовать вокруг нас, но за это время его температура упала и равна всего лишь нескольким градусам выше абсолютного нуля. Это именно то излучение, которое в 1965 г. обнаружили Пензиас и Вильсон. Когда Альфер, Бете и Гамов писали свою работу, ядерные реакции с участием протонов и нейтронов были плохо изучены. Поэтому предсказанные ими соотношения между концентрациями разных элементов в ранней Вселенной оказались весьма неточными, однако, будучи повторены в свете новых представлений, все вычисления дали результаты, прекрасно согласующиеся с современными наблюдениями. Кроме того, очень трудно объяснить как-то иначе, почему во Вселенной должно быть так много гелия. Поэтому мы совершенно уверены в том, что эта картина правильна, по крайней мере спустя секунду после большого взрыва и позже.

Всего через несколько часов после большого взрыва образование гелия и других элементов прекратилось, после чего в течение примерно миллиона лет Вселенная просто продолжала расширяться и с ней не происходило ничего особенного. Наконец, когда температура упала до нескольких тысяч градусов и энергии электронов и ядер стало недостаточно для преодоления действующего между ними электромагнитного притяжения, они начали объединяться друг с другом, образуя атомы. Вся Вселенная как целое могла продолжать расширяться и охлаждаться, но в тех областях, плотность которых была немного выше средней, расширение замедлялось из-за дополнительного гравитационного притяжения. В результате некоторые области перестали расширяться и начали сжиматься. В процессе сжатия под действием гравитационного притяжения материи, находящейся снаружи этих областей, могло начаться их медленное вращение. С уменьшением размеров коллапсирующей области ее вращение ускорялось, подобно тому, как ускоряется вращение фигуриста на льду, когда он прижимает руки к телу. Когда наконец коллапсирующая область стала достаточно малой, скорости ее вращения должно было хватить для уравновешивания гравитационного притяжения - так образовались вращающиеся дискообразные галактики. Те области, которые не начали вращаться, превратились в овальные объекты, называемые эллиптическими галактиками. Коллапс этих областей тоже прекратился, потому что, хотя отдельные части галактики стабильно вращались вокруг ее центра, галактика в целом не вращалась.

Состоящий из водорода и гелия газ внутри галактик со временем распался на газовые облака меньшего размера, сжимающиеся под действием собственной гравитации. При сжатии этих облаков атомы внутри них сталкивались друг с другом, температура газа повышалась, и в конце концов газ разогрелся так сильно, чти начались реакции ядерного синтеза. В результате этих реакций из водорода образовалось дополнительное количество гелия, а из-за выделившегося тепла возросло давление и газовые облака перестали сжиматься. Облака долго оставались в этом состоянии, подобно таким звездам, как наше Солнце, превращая водород в гелий и излучая выделяющуюся энергию в виде тепла и света. Более массивным звездам для уравновешивания своего более сильного гравитационного притяжения нужно было разогреться сильнее, и реакции ядерного синтеза протекали в них настолько быстрее, что они выжгли свой водород всего за сто миллионов лет. Затем они слегка сжались, и, поскольку нагрев продолжался, началось превращение гелия в более тяжелые элементы, такие как углерод и кислород. Но в подобных процессах выделяется не много энергии, и потому, как уже говорилось в главе о черных дырах, должен был разразиться кризис. Не совсем ясно, что произошло потом, но вполне правдоподобно, что центральные области звезды коллапсировали в очень плотное состояние вроде нейтронной звезды или черной дыры. Внешние области звезды могут время от времени отрываться и уноситься чудовищным взрывом, который называется взрывом сверхновой, затмевающей своим блеском все остальные звезды в своей галактике. Часть более тяжелых элементов, образовавшихся перед гибелью звезды, была отброшена в заполняющий галактику газ и превратилась в сырье для последующих поколений звезд. Наше Солнце содержит около двух процентов упомянутых более тяжелых элементов, потому что оно является звездой второго или третьего поколения, образовавшейся около пяти миллионов лет назад из облака вращающегося газа, в котором находились осколки более ранних сверхновых. Газ из этого облака в основном пошел на образование Солнца или был унесен взрывом, но небольшое количество более тяжелых элементов, собравшись вместе, превратилось в небесные тела планеты, которые сейчас, как и Земля, обращаются вокруг Солнца.

Сначала Земля была горячей и не имела атмосферы. Со временем она остыла, а вследствие выделения газа из горных пород возникла земная атмосфера. Ранняя атмосфера была непригодна для нашей жизни. В ней не было кислорода, но было много других, ядовитых для нас газов, например сероводорода (это тот газ, который придает специфический запах тухлым яйцам). Правда, есть и другие, примитивные формы жизни, которые могут процветать в таких условиях. Предполагают, что они развились в океанах, возможно, в результате случайных объединений атомов в большие структуры, называемые макромолекулами, которые обладали способностью группировать другие атомы в океане в такие же структуры. Таким образом они самовоспроизводились и множились. Иногда в воспроизведении могли произойти сбои. Эти сбои большей частью состояли в том, что новая макромолекула не могла воспроизвести себя и в конце концов разрушалась. Но иногда в результате сбоев возникали новые макромолекулы, даже более способные к самовоспроизведению, что давало им преимущество, и они стремились заменить собой первоначальные. Так начался процесс эволюции, который приводил к возникновению все более и более сложных организмов, способных к самовоспроизведению. Самые первые примитивные живые организмы потребляли различные вещества, в том числе сероводород, и выделяли кислород. В результате происходило постепенное изменение земной атмосферы, состав которой в конце концов стал таким, как сейчас, и возникли подходящие условия для развития более высоких форм жизни, таких, как рыбы, рептилии, млекопитающие и, наконец, человеческий род.

Картина, в которой Вселенная сначала была очень горячей и охлаждалась по мере своего расширения, па сегодняшний день согласуется с результатами всех наблюдений. Тем не менее целый ряд важных вопросов остается без ответа.

Почему ранняя Вселенная была такой горячей?

Почему Вселенная так однородна в больших масштабах? Почему она выглядит одинаково во всех точках пространства и во всех направлениях? В частности, почему температура космического фона микроволнового излучения практически не меняется при наблюдениях в разных направлениях? Когда на экзамене нескольким студентам подряд задается один и тот же вопрос и их ответы совпадают, вы можете быть совершенно уверены в том, что они советовались друг с другом. Однако в описанной модели с момента большого взрыва у света не было времени, чтобы попасть из одной удаленной области в другую, даже если эти области располагались близко друг к другу в ранней Вселенной. Согласно же теории относительности, если свет не может попасть из одной области в другую, то и никакая другая информация тоже не может. Поэтому разные области ранней Вселенной никак не могли выравнять свои температуры друг с другом, если у них не были одинаковые по какой-то непонятной причине температуры прямо с момента рождения.

Почему Вселенная начала расширяться со скоростью, столь близкой к критической, которая разделяет модели с повторным сжатием и модели с вечным расширением, так что даже сейчас, через десять тысяч миллионов лет, Вселенная продолжает расширяться со скоростью, примерно равной критической? Если бы через секунду после большого взрыва скорость расширения оказалась хоть на одну сто тысяча миллион миллионную (1/100.000.000.000.000.000) меньше, то произошло бы повторное сжатие Вселенной и она никогда бы не достигла своего современного состояния.

Несмотря на крупномасштабную однородность Вселенной, в ней существуют неоднородности, такие, как звезды и галактики. Считается, что они образовались из-за небольших различий в плотности ранней Вселенной от области к области. Что было причиной этих флуктуаций плотности?

Общая теория относительности сама по себе не в состоянии объяснить перечисленные свойства или ответить на поставленные вопросы, так как она говорит, что Вселенная возникла в сингулярной точке большого взрыва и в самом начале имела бесконечную плотность. В сингулярной же точке общая теория относительности и все физические законы неверны: невозможно предсказать, что выйдет из сингулярности. Как мы уже говорили, это означает, что большой взрыв и все события до него можно выбросить из теории, потому что они никак не могут повлиять на то, что мы наблюдаем. Следовательно, пространство-время должно иметь границу - начало в точке большого взрыва.

Наука, по-видимому, открыла все те законы, которые в пределах погрешностей, налагаемых принципом неопределенности, позволяют предсказать, как Вселенная изменится со временем, если известно ее состояние в какой-то момент времени. Может быть, эти законы были даны Богом, но с тех пор Он, судя по всему, предоставил Вселенной развиваться в соответствии с ними и теперь не вмешивается в ее жизнь. Но какими он выбрал начальное состояние и начальную конфигурацию Вселенной? Какие "граничные условия" были в момент "начала времени"?

Один из возможных ответов - это сказать, что при выборе начальной конфигурации Вселенной Бог руководствовался соображениями, понять которые нам не дано. Это, безусловно, было во власти Бога, но почему, выбрав такое странное начало, Он все же решил, чтобы Вселенная развивалась но понятным нам законам? Вся история науки была постепенным осознанием того, что события не происходят произвольным образом, а отражают определенный скрытый порядок, который мог или не мог быть установлен божественными силами. Было бы лишь естественно предположить, что этот порядок относится не только к законам науки, но и к условиям на границе пространства-времени, которые определяют начальное состояние Вселенной. Возможно большое число разных моделей Вселенной с иными начальными условиями, подчиняющихся законам науки. Должен существовать какой-то принцип для отбора одного начального состояния и, стало быть, одной модели для описания нашей Вселенной.

Процессы переноса тепла, массы и электрического заряда

ПЕРЕНОСА ЯВЛЕНИЯ (кинетические процессы) - необратимые процессы переноса массы, энергии, импульса, заряда, происходящие в средах вследствие движения и взаимодействия микрочастиц. Причина переноса явления - наличие в среде градиентов температуры, концентрации и др. К переносам явления относятся диффузия, вязкость, термодиффузия, теплопроводность, электропроводность, Дюфура эффект, термоэлектрические явления.

Многие физические явления, наблюдаемые в природе и окружающей нас жизни, не могут быть объяснены только на основе законов механики, молекулярно-кинетической теории и термодинамики. В этих явлениях проявляются силы, действующие между телами на расстоянии, причем эти силы не зависят от масс взаимодействующих тел и, следовательно, не являются гравитационными. Эти силы называют электромагнитными силами.

О существовании электромагнитных сил знали еще древние греки. Но систематическое, количественное изучение физических явлений, в которых проявляется электромагнитное взаимодействие тел, началось только в конце XVIII века. Трудами многих ученых в XIX веке завершилось создание стройной науки, изучающей электрические и магнитные явления. Эта наука, которая является одним из важнейших разделов физики, получила название электродинамики.

Основными объектами изучения в электродинамике являются электрические и магнитные поля, создаваемые электрическими зарядами и токами.

Электрическое поле. Электрический заряд. Закон Кулона

Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

Электрический заряд - это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

Электрический заряд обычно обозначается буквами q или Q.

Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

Существует два рода электрических зарядов, условно названных положительными и отрицательными.

Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

Одноименные заряды отталкиваются, разноименные - притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

q1 + q2 + q3 + ... +qn = const

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы - нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e.

В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером. Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела - дискретная величина:

Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными. Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков - частиц с дробным зарядом

и

Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр - прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

Рисунок 1.1.1 Перенос заряда с заряженного тела на электрометр

Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора - крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10-9 Н.

Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Рисунок 1.1.2 Прибор Кулона

Рисунок 1.1.3 Силы взаимодействия одноименных и разноименных зарядов

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Силы взаимодействия подчиняются третьему закону Ньютона:

Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

Кулон - это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения.

Коэффициент k в системе СИ обычно записывают в виде:

где

- электрическая постоянная.

В системе СИ элементарный заряд e равен: e = 1,602177·10-19 Кл ? 1,6·10-19 Кл.

Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции.

Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Рисунок 1.1.4 Принцип суперпозиции электростатических сил

Модель. Взаимодействие точечных зарядов

Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов.

Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.

Процессы теплопередачи, как внутри одного тела, так и от одного тела к другому, находящимся с ним в прямом контакте, происходят по той причине, что кинетическая энергия атомов и молекул из участков, где она выше, под влиянием упругих соударений с соседними атомами переходит в области, где кинетическая энергия атомов и молекул меньше. В соответствии с этим, описание процессов теплопередачи должно осуществляться не на основе разности температур, как это делалось до сих пор, а на основе разности их внутренних энергий теплового движения. Поэтому процесс переноса тепла от тела с большей кинетической энергией к телу с меньшей кинетической энергией может происходить, даже если температура первого меньше температуры второго, т.е. тепло может переходить от более холодного тела к более горячему, что противоречит формулировке второго закона термодинамики. Его следует сформулировать более точно: тело с меньшей кинетической энергией теплового движения атомов (молекул) не может отдать тепло телу, атомы (молекулы) которого обладают большей кинетической энергией теплового движения. Если привести в соприкосновение два разных металла или полупроводника с сильно отличающимися характеристическими температурами, то, кроме контактной разности температур, возникает и контактная разность потенциалов. Не исключено поэтому, что, составив замкнутую электрическую цепь, за счет контактной разности температур и потенциалов можно получить электродвижущую силу и создать, таким образом, новый прямой способ преобразования тепловой энергии окружающей среды в электрическую - один из способов, предложенных П.К. Ощепковым. Кроме основной, традиционной, формулировки второго закона термодинамики (тело с более низкой температурой самопроизвольно не может отдавать тепло телу с более высокой температурой), существуют еще две. Одна из них: при всех процессах в замкнутых системах энтропия не убывает. Эта, претендующая на всеобщий закон, формулировка абстрактна, и ее правильность, по мнению С.В. Цивинского, не подтверждена ни экспериментами, ни безупречными теоретическими выводами. Более того, правильность этой формулировки, как закона природы, не подтверждается даже простым рассмотрением процесса смешения двух идеальных одноатомных газов в замкнутой системе: никакого изменения энтропии здесь не будет. Понятие энтропии не пригодно для точного описания тепловых процессов, так же, как и традиционная формулировка второго закона термодинамики. Теплопроводность является одним из видов переноса тепла. Способность вещества проводить теплоту характеризуется коэффициентом теплопроводности l. Согласно основному закону теплопроводности (закону Фурье - q = - l grad t) коэффициент теплопроводности равен плотности теплового потока q при градиенте температуры 1 К/м. Наименьшим коэффициентом теплопроводности обладают газы, наибольшим - металлы. Для сравнения воздух имеет l "0,025 Вт/(мЧК), вода l" 0,6 Вт/(мЧК), сталь l "50 Вт/(мЧК), серебро и медь l" 400 Вт/(мЧК). В ограждениях холодильников используемые строительные материалы (кирпич, бетон) имеют l "0,7…1,0 Вт/(мЧК), а теплоизоляция (пенопласты, минеральная вата l "0,04…0,09 Вт/(мЧК).

Теплоотдача путем конвекции - перемещение частиц газа или жидкости, смешивание их нагретых слоев с охлажденными. В воздушной среде даже в условиях покоя на теплоотдачу конвекцией приходится до 30% потерь тепла. Роль конвекции на ветру или при движении человека еще более возрастает.

Передача тепла излучением от нагретого тела к холодному совершается согласно закону Стефана-Больцмана и пропорциональна разности четвертых степеней температуры кожи (одежды) и поверхности окружающих предметов. Этим путем в условиях "комфорта" раздетый человек отдает до 45% тепловой энергии, но для тепло одетого человека особой роли теплопотери излучением не играют.


Подобные документы

  • Происхождение и эволюция Вселенной, ее дальнейшие перспективы. Креативная роль физического вакуума. Парадоксы стационарной Вселенной. Основные положения теории относительности Эйнштейна. Этапы эволюции горячей Вселенной, неоднозначность данного сценария.

    курсовая работа [62,6 K], добавлен 06.12.2010

  • Сущность понятия "Вселенная". Изучение истории развития крупномасштабной структуры Вселенной. Модель расширяющейся Вселенной. Теория большого взрыва (модель горячей Вселенной). Причина расширения в рамках ОТО. Теория эволюции крупномасштабных структур.

    контрольная работа [19,8 K], добавлен 20.03.2011

  • Космология как наука о Вселенной, методика и закономерности изучения. Структура и составные части Вселенной, законы взаимодействия, существующие модели. Теории эволюции Вселенной, их отличительные особенности и доказательства, современные исследования.

    контрольная работа [28,5 K], добавлен 25.11.2010

  • Происхождение Вселенной - гипотезы и модели; космологические теории Большого взрыва и горячей Вселенной. Образование Солнечной системы. Биологическая, экологическая, социально-экономическая и культурно-историческая эволюции; возникновение жизни на Земле.

    контрольная работа [35,7 K], добавлен 24.09.2011

  • Модель Фридмана, два варианта развития Вселенной. Строение и современные космологические модели Вселенной. Сущность физических процессов, источники, создающие современные физические законы. Обоснование расширения Вселенной, этапы космической эволюции.

    контрольная работа [43,4 K], добавлен 09.04.2010

  • Учение о Вселенной как о едином целом. Охваченная астрономическими наблюдениями область Вселенной (Метагалактика). Гипотетическое представление о Вселенной. Взгляды ученых на механизм расширяющейся Вселенной. Процессы рождения и развития Вселенной.

    реферат [122,9 K], добавлен 24.09.2014

  • Модель Большого Взрыва как модель эволюционной истории Вселенной, согласно которой она возникла в бесконечно плотном состоянии и с тех пор расширяется, ее преимущества и недостатки. Расширяющаяся Вселенная, теории рождения и гибели, их сторонники.

    курсовая работа [182,1 K], добавлен 27.11.2010

  • Характеристика наиболее известных моделей Вселенной: модель де-Ситтера, Леметра, Милна, Фридмана, Эйнштейна-де Ситтера. Космологическая модель Канта. Теория Большого взрыва. Календарь Вселенной: основные эры в развитии Вселенной и их характеристика.

    презентация [96,5 K], добавлен 17.11.2011

  • Идеи современной физики. Основные этапы развития представлений о Вселенной. Модель Птолемея, Коперника. Эпоха Великих географических открытий. Релятивистская космология (А. Эйнштейн, А. А. Фридман). Концепция расширяющейся Вселенной, "Большого Взрыва".

    реферат [42,4 K], добавлен 07.10.2008

  • История развития представлений о Вселенной. Космологические модели происхождения Вселенной. Гелиоцентрическая система Николая Коперника. Рождение современной космологии. Модели Большого взрыва и "горячей Вселенной". Принцип неопределенности Гейзенберга.

    реферат [359,2 K], добавлен 23.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.