Астрономия и современная картина мира

Научная картина мира, Вселенная и сознание. Самоорганизация пространства-времени в процессе эволюции Вселенной. Антропный принцип и мир постнеклассической науки. Теория элементарных частиц. Астросоциологический парадокс и проблема внеземных цивилизаций.

Рубрика Астрономия и космонавтика
Вид материалы конференции
Язык русский
Дата добавления 10.10.2011
Размер файла 287,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Вопросы неустойчивости стали рассматриваться в учении о Вселенной достаточно широко. В последнее время стала доказываться неустойчивость структуры Вселенной относительно численных значений фундаментальных постоянных: „небольшое изменение фундаментальных постоянных приводит к качественному изменению структуры Вселенной. Это изменение сводится к исчезновению одного или нескольких основных элементов Вселенной: ядер, атомов, звезд и галактик” [13, c. 77]. Соответственно этому „реализованный в нашей Метагалактике набор фундаментальных постоянных - весьма резкая флуктуация” [13, c. 111]. Отсюда и следует вывод, что мы живем в случайном мире, в мире, обязанном редчайшему сочетанию значений фундаментальных постоянных.

Дальнейшие модификации в наших общих представлениях о случайности возможны в связи с развитием учения о физическом вакууме и разработкой квантовой теории гравитации. Согласно современным взглядам вакуум „перенасыщен” короткоживущими виртуальными и спонтанно возникающими и исчезающими частицами, которые непрерывно воздействуют на „обычные” квантовые частицы. „Вакуум следует рассматривать, - пишет П. Девис, - как своего рода „фермент” квантовой активности, кишащий виртуальными частицами и насыщенный сложными взаимодействиями. Очень важно понять, что в рамках квантового описания вакуум играет определяющую роль. То, что мы называем частицами - всего лишь редкие возмущения, подобные „пузырькам” на поверхности целого моря активности” [8, c. 210]. Свойства вакуума дают ключ к пониманию космического отталкивания, к анализу физических сценариев Большого взрыва. На этих же путях стали разрабатываться идеи о первичной энергии Вселенной и пришли к экзотическим представлениям о том, что Вселенная возникла „из ничего”.

Поскольку вакуум имеет квантовую природу, то его анализ включает и идею случая, но поскольку учение о вакууме является дальнейшим развитием квантовых идей, то можно предположить, что здесь наука может сказать и новое слово о случае, его природе и основаниях вхождения в учение о мироздании. Весьма существенно, что в учении о вакууме представления о случайности соотносятся с самим фактом существования исходных, фундаментальных частиц, с проблемой рождения Вселенной, с проблемой „порождения материи”.

Случайность является одним из важнейших начал мира. Принципы строения и эволюции природы в своих (физических) основах имеют и жесткое, и пластичное начала, и оба они необходимы для целостного анализа реальных процессов и систем. Жесткое начало характеризуется однозначными, неизменными связями, непреодолимо наступающим действием. Случайность олицетворяет гибкое начало мира и сопряжена с такими понятиями как независимость, неопределенность, непредсказуемость, спонтанность и хаотичность. Астрономия интенсивно развивает эволюционный подход и понятие случайности служит тому, чтобы раскрыть основания становления нового, ибо новое всегда несет на себе черты неожиданности, которых не было в его предыстории. Невольно вспоминается пушкинское: „Случай - бог изобретатель”.

7. Осознающая себя Вселенная

Настало время говорить о вездесущности сознания. Иными словами, нужно готовиться к тому, чтобы подойти к построению сверхъединой теории поля, описывающей как физические, так и семантические проявления Мира. Первые шаги здесь сделаны: это теоретические разработки Д. Бома, с одной стороны, и с другой стороны - эксперименты в области аномальных явлений, выполненные Брендой Данн и Робертом Джаном со всей строгостью, предъявляемой современной наукой.

Желая продвинуться дальше в этом направлении, нам нужно: (1) преодолеть некоторые, довлеющие над нами ограничения, утвердившиеся в парадигме нашей культуры; (2) набросать контуры осознающей себя Вселенной. Построить модель такой Вселенной мы еще не можем, но готовиться к этому, кажется, начинаем.

8. Преодоление мешающих предпосылок

1. Над нами до сих пор тяготеет жесткое картезианское разграничение ума и материи. Основанием для этого было утверждение о том, что материя пространственно протяженна, а ум - нет. Теперь мы можем игнорировать эту аргументацию. Мы знаем, что пространственное восприятие физической реальности задается не столько окружающим нас Миром, сколько изначально заданной нашему сознанию способностью видеть Мир пространственно упорядоченным. Мы можем также научиться пространственно воспринимать Мир смыслов, если сумеем неким, достаточно наглядным способом задать образ семантического поля. Так мы можем геометризовать наши представления о сознании и создать язык, близкий языку современной физики.

2. Для того, чтобы задать образ семантического поля, надо признать, что смыслы первичны по своей природе. Иными словами, необходимо согласиться с тем, что элементарные смыслы (не являющиеся еще текстами) заданы изначально. Здесь мы подходим очень близко к позиции Платона, кстати, сформулированной им недостаточно четко. Такой подход больше нельзя считать ненаучным - признаем же мы изначальную заданность фундаментальных физических констант, природа которых скорее ментальна, чем физична.

Будем считать, что все смыслы изначально упорядочены на линейном континууме Контора. Иными словами, они упакованы на числовой оси ( также, как там упакованы действительные числа. Это еще только семантический вакуум - здесь еще отсутствует система предпочтения. Желая дать модель текста, мы вводим вероятностную меру предпочтения - ((() . Возникающая здесь селективность в оценке различных участков шкалы ( порождает тексты. Интерпретация текста p (() в некоторой ситуации y осуществляется путем спонтанного появления фильтра p ((/(), мультипликативно взаимодействующего с исходной функцией ((((. И тогда теорема Бейеса становится силлогизмом: р (((y) = kp (()(y((), где p (((y) - условная плотность вероятности, задающая семантику нового текста, возникающего в результате эволюционного толчка y, k - константа нормировки. Следовательно, можно утверждать, что мы имеем дело с Бейесовским силлогизмом. Естественно, что в некоторых случаях возможно и необходимо задавать текст многомерной функцией распределения . Так, скажем, Эго человека в нашей системе представлений задается моделью многомерного текста.

Возможна и более глубокая геометризация. Можно обратиться к широко известной в современной физике калибровочной теории поля, используя представление о метрически гетерогенных пространствах. И в этом случае вместо того, чтобы строить модель изменения текста, опираясь на представление об изменении вероятностной меры, будем говорить о локальных изменениях метрики в семантически насыщенном пространстве. Тогда текст будет выступать перед нами как возбужденное (некоторым образом) семантическое пространство, иначе говоря, - как семантический экситон.

Итак, из сказанного выше следует, что деятельность ума может быть описана пространственно.

3. Одно из серьезных ограничений возникло в наши дни в связи с появлением там называемых ограничительных теорем. Из теоремы Геделя следует, что всякая достаточно богатая формальная система неполна - в ней имеются истинные и ложные утверждения, которые в рамках этой системы недоказуемы и неопровержимы; финитное расширение аксиом не может сделать систему полной. Некоторые авторы полагают, что попытка построения единой модели мироздания должна непременно столкнуться с геделевской трудностью. Но это на самом деле не так. Всякую достаточно широко задуманную формально построенную систему и, тем более, философски звучащую мы воспринимаем все же иррационально, хотя бы потому, что в ней используются смыслы, размытые по семантическому континууму.

Таким образом, мы не видим серьезных преград для построения всеединой модели мироздания. Но в то же время мы понимаем, что такая модель должна быть метафоричной, может, даже мифологичной (несмотря на обращение к языку математики и теоретической физики) и, конечно, не единственно возможной.

9. Наброски контуров осознающей себя Вселенной

Мы отдаем себе отчет в том, что у нас еще нет до конца разработанного языка для выполнения поставленной задачи. Нет и достаточного опыта - здесь нужно говорить о модели нового типа, объединяющей в себе как опыт философских построений нашей Культуры, так и опыт построений теоретической физики и космологии, заимствующей при описании образы из математических структур современной математики. Но кое-что можно сказать уже и сейчас.

1. Рассмотрим в качестве примера построение модели, описывающей возникновение собственного (личностного) ритма в результате непосредственного воздействия текста на сознание человека.

Мы знаем, что даже при чтении глубоко абстрактного текста у нас в организме могут возникнуть биоритмы, отражающие удовлетворение, внутреннюю радость. Поэтому и знаменитый квадрат Малевича мы можем воспринимать как произведение искусства. Будем при моделировании этого явления опираться на представление о том, что Эго человека - это семантический экситон, т.е. метрически неоднородное состояние семантически насыщенного пространства.

В качестве метафоры возьмем формулу математического маятника T=2((L/(, положив, что постоянная будет задаваться пространством, геометрия которого определяется физическим состоянием Мира, а L - длина маятника - будет определяться переменной масштабностью семантического пространства. Если мы готовы допустить возможность существования некоего воображаемого маятника в семантическом пространстве, то он не будет конгруэнтен самому себе. Следовательно, осознание какой-то новой серьезной мысли, изменяющей метрическую неоднородность семантического пространства, приведет к изменению собственных ритмов.

2. В одной из наших работ, мы попытались показать, что к двум формам априорного созерцания Мира - пространству и времени (отмеченным Кантом) надо добавить еще число, ибо природа числа, данная нам во всем многообразии его проявления, ментальна. То же самое, конечно, можно сказать и о вероятностной мере. К 12-ти кантовским категориям возможности априорных синтетических суждений нужно добавить стохастичность, или даже шире - спонтанность. Отметим, что сейчас мы можем говорить не только об априорности пространственного упорядочения, но и о гораздо большем - об априорной заданности множества различных геометрий, являющихся атрибутами пространства.

Из сказанного можно сделать следующие, существенные, как это нам представляется, выводы: (1) С развитием культуры наше Сознание расширяется путем освоения новой - фундаментальной априорности; (2) Фильтры, через которые мы воспринимаем Мир, математичны по своей природе, ибо они опираются на базовые математические представления: пространство, время, число, вероятность и, следовательно, случайность. Так устроен наш Ум (mind), но не все это понимают; (3) Но что представляет собой эта математизированная фильтрация? Не следует ли это рассматривать как некоторое проявление врожденной параноидальности? Или эта фильтрация коррелирована с некой не зависимой от нас реальностью - с тем, что мы готовы назвать метасознанием, регулирующим мироустройство? Можем ли мы говорить о математичности Трансличностного - неперсонализированного сознания, участника всего происходящего?

3. Еще одно дополнение к сказанному выше. Мы знаем, что в знаменитом уравнении Шредингера используется пси-функция. Квадрат модуля пси-функции интерпретируется как плотность вероятности. Вероятностной мерой оценивается размазанность микрочастицы в пространстве-времени. С точки зрения экспериментатора, речь идет о мере перехода из возможного к действительному. Чтобы воспринять сказанное здесь как некую реальность мироздания, надо допустить существование Универсального трансличностного наблюдателя. Иначе представление о размытости частицы - это некая фикция, раскрывающаяся лишь в сознании физика наших дней. Другими словами, микрочастица в квантово-механическом представлении просто не существует (никак не проявляется) - она появляется только с появлением физика-экспериментатора. Похожим образом мы можем говорить и о разуме человека: сознания, самого по себе, или не существует в мироздании, или оно воплощено каким-то непонятным для нас образом в Универсальном наблюдателе.

4. Если природа числа ментальна, то как можно представить себе возникновение фундаментальных физических констант? Антропный принцип, возникший полтора десятилетия тому назад, - это прямой путь к признанию Универсального наблюдателя-участника.

5. Теперь несколько слов о биосфере. Биологический эволюционизм выглядит так же, как творчество человека. Появление одного резко выделяющегося признака, наверное, было бы губительно для организма. Возникновение нового вида разумно описывать как появление нового фильтра на континууме морфофизиологических признаков. Естественный отбор невозможно теперь (после 30-летнего опыта взаимодействия с кибернетикой) представить себе без заранее заданной системы критериев оптимальности. Как возникают такие критерии - это опять разговор об Универсальном наблюдателе-участнике происходящего. Сюда же относится проблема эстетического в биосфере и, более того, в морфологии нашей планеты - Земли. Мы снова должны вернуться к представлению древних греков о Земле как о живом организме - богине, именуемой Гея.

Мы сейчас приходим к следующему выводу: граница между живым и неживым размывается. Живым хочется называть все то, что сопричастно спонтанности, т.е. то, что совершенно (т.е. принципиально) непредсказуемо. Все живое в спонтанности своего проявления несет в себе те или иные черты сознания.

Повторяю: мы еще не готовы к тому, чтобы дать развернутую модель Универсального - неперсонифицированного сознания. В самой общей формулировке сознание - это свободное осознавание самого себя. Универсальное сознание - это осознание Вселенной самой себя.

В развиваемой нами модели Разум человека выглядит двухслойно. С одной стороны, он опирается на изначальную заданность семантического континуума (статического по преимуществу), с другой стороны, на динамическое начало - Космический разум. Человек принадлежит обоим мирам одновременно. Он соприкасается с динамизмом Космического разума, когда генерирует фильтры, реинтерпретирующие тексты, опираясь на статически заданный континуум элементарных смыслов. (Упакованные на числовом континууме смыслы могут перегруппировываться, но это особая ситуация - семантическая революция). Другое проявление Космического сознания - это биологический эволюционизм, задающийся генерированием фильтров, квантующих континуум морфофизиологических признаков (придание признакам селективности, образующей индивидуальные биологические тексты).

Сознание многообразно по возможностям своего проявления. Можно говорить и о квазисознании, реализующемся непосредственно (без обращения к континууму смыслов) в физической материальности Мира. В микромире это реализуется через спонтанное поведение частиц, в макромире - через спонтанное появление фундаментальных физических констант и, наверное, как-нибудь еще.

Сказанное здесь является компендиумом следующих работ:

10. Вселенная как целое в научной картине мира

Обращаясь к проблеме методологического обоснования современной космологии, мы не можем не коснуться вопроса о надобности такой процедуры. Действительно, как зарубежными (Х. Дингл, М. Мюнитц, Д. Норт, Ф. Типлер и др.), так и отечественными (Г.М. Идлис, В.В. Казютинский, А. Турсунов и др.) авторами проблема эта ставилась и дебатировалась неоднократно. Полученные результаты, в интересующем нас разрезе - направление эволюции космологического знания, т.е. в вопросе о ее пути (методе) - можно, не претендуя на полноту, свести к следующим положениям:

1) Космология имеет свой собственный предмет, отличный от предмета физики или математики - физико-геометрический аспект Вселенной как целого.

2) Предмет ее исследования задается языком математики.

3) Следствия космологической теории должны получать в конечном счете опытное (наблюдательное, экспериментальное) подтверждение или опровержение, чем утверждается научный статус космологии.

Под опытной проверкой понимается наблюдательная и экспериментальная - в той мере, в какой физика элементарных частиц сопряжена с космологией - верифицируемость и фальсифицируемость космологического знания, производимая инструментальными средствами.

4) Любые попытки элиминировать эмпирическую верифицируемость космологического знания, или реинтерпретировать ее, расцениваются как угроза ее научному статусу, а поэтому, предварительно подвергнутые критике, должны быть выведены за пределы собственно научных исследований.

Первые два из приведенных пунктов как правило не являются спорными, а если и оспариваются, то различия альтернативных мнений не принципиальны. Гораздо сложнее обстоит дело с двумя другими. Неоднозначность оценки роли опыта в космологии породила два широких направления в методологической ориентации исследователей - проплатоновский и проаристотелевский - названные так в 30-е годы первоначально Динглом и позднее, видимо, заимствовавшим эту классификацию Турсуновым. И хотя сама эта классификация далеко несовершенна, ибо и Платон и Аристотель, например, в дедуктивном методе построения истинного знания о космосе не расходились, здоровое зерно в ней содержится.

Так Аристотель, в вопросах о свойствах Вселенной был более склонен к „эмпиризму”, о чем прямо говорит в трактате „О небе”: „конечная цель творческой науки - произведение, а физической - то, что в каждом конкретном случае непреложно является через ощущение” [1, с.359]. Платон, наоборот, скорее был склонен к геометрическому (умозрительному) объяснению и обоснованию знания, хотя всегда надо помнить, что геометрия Платона - телесна. В основании количественного отношения элементов космоса, по Платону, лежит правильная соразмерность, к которой их привел Бог, „упорядочивая все тщательно и пропорционально”, говорит он в „Тимее” [2, с.499]. Причем все эти элементы столь малы, что единичный элемент любого рода „по причине своей малости для нас невидим” [2, с.499]. И совершенно непонятно, как собирался Аристотель „непреложно” явить этот факт „через ощущения”, имевшимися в его время средствами. Понимание Платоном такой невозможности, соединенное с его философской (научной) объективностью, побуждало строить умозрительную картину космоса, а следовательно, как он сам неоднократно отмечает - картину правдоподобную: „Космос был создан по тождественному и неизменному образцу постижимому с помощью рассудка и разума” [2, с.470].

Как видим, еще в античности последние три пункта приведенных выше положений, вызывали различную реакцию. Тем более впечатляющей эта реакция может быть сегодня, когда тотальная математизация научного знания позволяет совершенно по-новому взглянуть на пифагорейско-платоновскую традицию и ее роль в истории европейской культуры, в целом, и новоевропейской науки, в частности, а особенно ее космологической отрасли середины и конца ХХ века, когда „космологичность” фундаментальных физических теорий, по словам А.Д. Линде, становится мерилом их реалистичности [3, с.5-6].

Обращение к истории и обоснованию современной космологии неслучайно еще и потому, что она аккумулировала в себе новейшие достижения математики, физики и философии. Поэтому по состоянию космологии, образно выражаясь, можно судить и о самом человеке. В его взгляде на „мир как целое” отражается он сам таким как он есть сам по себе, а не таким, каким он хочет себя видеть. Здесь справедливо утверждение: скажи каков твой космос (Вселенная) и я скажу кто ты сам. Именно эта странная зависимость человека от космоса (Вселенной) и обратная (антропный принцип) позволяет выявить и оценить те сдвиги в структуре космологического знания, которые имели место в течение нынешнего столетия. Этими сдвигами и определены задачи нашей статьи: 1) проследить на конкретном анализе истории космологических теорий и сценариев сформулированных и выдвинутых за последние 80-90 лет, взаимоотношение „эмпирического” и „внутритеоретического” факторов в обосновании космологического знания, 2) сделать допустимые обобщения выявленных тенденций.

В качестве предметной области нашего анализа выбраны, преимущественно, три последовательно господствовавшие до настоящего времени космологические парадигмы: ньютоновская теория Вселенной, теория Фридмана-Леметра и инфляционная теория Гуса, Линде, Альбрехта и Стейнхарда.

1. Ньютоновский этап становления научной космологии

Ньютоновская космологическая парадигма в начале века была представлена теорией иерархической Вселенной Шарлье, в основу которой была положена теория механики и модифицированная теория гравитации Ньютона*. Еще в 1900 г. С. Аррениус писал о концептуальной основе ньютоновской космологии то, что она опирается на незыблемый закон, из которого не было сделано ни одного исключения [4, с.86]. Однако абсолютизация механики Ньютона приводила не только к проблемам в физике, связанным с возникновением полевой теории Максвелла, но и к проблемам в космологии, где в частности, возникла необходимость устранения гравитационного парадокса Зеелигера.

Основной характеристикой ньютоновской космологии, которая оказала влияние и на создателя новой механики - была идея статичности, пространственной устойчивости вещества во Вселенной, распределение которого считалось равномерным*

Незыблемыми считались и сами законы, которым подчиняются небесные тела. Получив блестящее эмпирическое подтверждение в масштабах солнечной системы, теория Ньютона испытывала к концу 19-го века трудности внутритеоретического характера, поскольку не удавалось свести уравнения электромагнитного поля к уравнениям механики. И несмотря на то, что „прямого” отношения это к космологии не имело, трудности объективно указывали на „ограниченность” господствующей теории. Тогда же встал вопрос об отказе описания электромагнитных явлений с помощью теории сил, а значит мгновенное дальнедействие заменялось близкодействием, вводилось понятие эфира (поля), что объективно вело к разрушению представлений об абсолютном пространстве и абсолютном времени, их независимости от вещества, а значит и „падению” господства всей схематики мира Ньютона. Кроме внутритеоретических проблем накапливались и эмпирические, например,оставались необъясненными 43( столетнего смещения перигелия Меркурия и некоторые другие.

Все это говорило о том, что внутри и „вне” теории обнаружились границы ее применимости. Между тем, не взирая на это ньютоновская космологическая картина мира продолжала оставаться господствующей вплоть до начала 20-го столетия [6, с.7]. Концепции Ламберта, Райта, Гершеля, Шарлье и др. исследователей, не строили, принципиально отличной от ньютоновской, теории гравитации и механики - концепция устройства Вселенной Мичелла, построенная с учетом динамической теории материи Бошковича, являлась скорее исключением, чем правилом - а поэтому вынуждены были спасать положение либо введением ad hoc гипотез, либо решать те же проблемы, что и теория Ньютона. Это господство ньютоновской картины мира дает естественное объяснение оптимизму Аррениуса: в то время было невозможно представить какую-либо альтернативу бесконечной Вселенной, в которой „небесные тела рассеяны повсюду в безграничном пространстве в таком же приблизительно количестве, как в ближайшем соседстве нашей солнечной системы” [4, с.41]. В космологии конца 19 в. создалось специфическое положение, когда с одной стороны, постулировались какие-либо качества Вселенной, например бесконечность пространства и времени, равномерное распределение вещества*, а с другой стороны делалось логическое завершение собственно ньютоновской картины мира, исходя из анализа уравнений его механики. Наступил момент, когда, метафизическая часть картины мира Ньютона пришла в противоречие с ее физической частью. Уравнения механики приводили к бесконечному миру с неравномерным распределением вещества. В подлинно ньютоновской механической картине мира, Вселенная должна была сжиматься, но этого эмпирически не наблюдалось.

Принципиальное устранение гравитационного парадокса было возможно только благодаря созданию новой теории гравитации, которая бы своим появлением разрушила не только старые представления о вечной и статичной Вселенной как целом, но и изменила бы гносеологические акценты в описании внешнего мира. Чем глубже оказывался „срез” отображаемой Вселенной, тем слабее становились его огрубления, тем далее исследователь уходил от непосредственной наблюдаемости. Закон всемирного тяготения Ньютона получил в соединении с его механикой блестящее подтверждение в масштабах Солнечной системы. Подтверждение тому - не только интерпретация законов Кеплера, но предсказание существования новой планеты - Нептун. Позднее законы Ньютона прикладываются и к таким объектам как Галактика и скопление галактик. Однако, в применении ко Вселенной как целому гравитационная теория Ньютона теряла свою убедительность и гравитационный парадокс лишь высвечивал границу применимости теории, ее экстраполяционных возможностей. Поэтому ньютоновская космологическая программа, именно как первая попытка дать научное объяснение „современному” состоянию Вселенной как целого, была логически завершена и явно оформилась трудами ученых только в конце 19-го и начале 20-го века. До этого она была слишком „умозрительной”, хотя и отвечала наблюдательным требованиям того времени. „Умозрительность” заключалась в необоснованной экстраполяции законов Ньютона (гравитации и механики) на Вселенную как целое. Такая процедура объективно приводила к коллапсу*, который получает свое теоретическое осмысление еще до создания ОТО.

Принцип Маха содержал в себе идеи дальнодействия, а он, как известно, послужил одним из оснований при создании ОТО. Даже в этом еще чувствовалось влияние идей классической гравитации и механики. „В соответствии с идеями Маха, инерациональные силы, наблюдаемые локально в ускоренной лаборатории могут быть интерпретированы как гравитационный эффект, имеющий свое происхождение в отдаленной материи, ускоренной относительно лаборатории” [7, с.925]. Но сама ньютоновская концепция как теория устойчивой бесконечной Вселенной получила свое наблюдательное опровержение лишь в 1929 г. открытием Хаббла, т.е. намного позже того, когда она была „опровергнута” теоретически на бумаге. Решающую роль в опровержении теории иерархической Вселенной (как последней оригинальной формы выражения ньютоновской космологической концепции) и подтверждение новой фридмановской космологии, построенной на базе уравнений поля Эйнштейна сыграло эмпирическое обоснование. Эмпирическое опровержение оказалось более весомым аргументом, чем множество парадоксов, выявленных теоретически, и вообще чисто теоретических трудностей. Если с парадоксами еще можно было бороться с помощью различного рода допущений, то спорить с наблюдательными фактами было гораздо труднее.

Таким образом, эмпирический критерий был главным в принятии теории Фридмана и опровержении (отбрасывании) теории иерархической Вселенной, построенной на базе теории гравитации и механики Ньютона. Внутритеоретические критерии обоснованности теории - непротиворечивость, простота, красота, независимость и др. рассматривались как необходимые, но недостаточные условия ее принятия или забраковки.

Опытная верифицируемость или фальсифицируемость космологического знания стала возможна благодаря доступности для земного наблюдателя тех явлений, которые подтверждали или опровергали теорию (свет от далеких галактик и их скоплений, реликтовый фон и др.), на конкретном этапе развития человеческого познания.

Перед космологией Ньютона вопрос о происхождении Вселенной стоял еще в чисто „метафизической” форме (никаких, собственно физических, механизмов не предполагалось - Вселенную создал Бог, а далее она существует по своим законам).

11. Релятивистская космология: Эйнштейн

Создавая свою космологическую теорию, Эйнштейн находился, несомненно, под влиянием картины мира Ньютона не только в вопросах детерминизма, что общеизвестно, но и под влиянием концепции неподвижной (статичной) Вселенной. Для устранения недостатков космологии Ньютона (нулевая плотность вещества на бесконечности влечет за собой нулевую плотность вещества в центре Вселенной, следовательно, такая картина Вселенной оказывается нереалистичной, ибо коллапсирует к центру* ) в уравнение Пуассона Эйнштейном вводится величина (() - универсальная постоянная, которая приводит к равномерному распределению неподвижных звезд, чем устраняется неравномерное распределение вещества, а этим, в свою очередь, устранялся и гравитационный парадокс Зеелигера. Здесь Эйнштейн стремился еще только исправить старую космологическую картину мира для того, чтобы спасти ее. Но этим самым Эйнштейн ее и существенно изменяет, т.к. отбрасывается надобность в граничных условиях в пространственно бесконечной Вселенной. Это приводит его к замкнутому миру, пространственному трехмерному континууму [8, с.605]. Помимо введения ( -члена Эйнштейном, Зеелигером для устранения парадокса предлагалось ad hoc допущение - изменить закон всемирного тяготения Ньютона таким образом, чтобы притяжение масс на огромном расстоянии убывало быстрее, чем по закону. И несмотря на то, что допущение Эйнштейна было также ошибочным (см. ниже), в целом оно оказалось более продуктивным для построения новой космологической картины, чем допущение Зеелигера.

Здесь необходимо отметить, что Эйнштейн верил в конечность мира [8, 588]. Конечность, сферичность и статичность были тремя китами эйнштейновской космологической картины мира. И даже тогда, когда концепция Фридмана была создана и Хаббл получил ее первое наблюдательное подтверждение (первоначально подтверждение выглядело как интерпретация), он продолжал некоторое время настаивать на этих качествах Вселенной, указывая на то, что в рамках фридмановского подхода нельзя однозначно решить вопрос о том, является Вселенная конечной или бесконечной, между тем как в концепции статичной Вселенной Эйнштейна она пространственно замкнута и конечна (хотя и безгранична). Однако хаббловское и последующие наблюдательные подтверждения эволюционной космологической картины мира оказались весомее теоретических трудностей (ведь первоначально возраст Вселенной Фридмана и Хаббла расходился с возрастом Вселенной, определяемым по возрасту звезд и их скоплений). Наблюдательная основа космологии продолжала оставаться преимущественным фактором в выборе космологических теорий.

Значение внутритеоретических факторов резко возросло в период, который мы называем „периодом эмпирической невесомости теории”, т.е. когда предсказанные теорией новые эмпирические факты не получили еще наблюдательного (экспериментального) подтверждения. Например, статическое решение уравнений гравитации было получено Эйнштейном в 1917 г.* , а динамическое решение Фридмана было получено только в 1922 г. [9]. Безусловно, не имея эмпирической обоснованности, уравнения Фридмана выглядели ошибочными и противоестественными в рамках устоявшегося представления о неподвижной Вселенной с равномерным распределением вещества. Более того, свою первую статью по космологии „О кривизне пространства” Фридман заканчивает на ноте неуверенности относительно будущего его концепции. Ни о каком эмпирическом обосновании тогда не могло быть и речи, точно также как сегодня многие исследователи не могут себе представить эмпирическое обоснование инфляционных сценариев. Фридман писал: „Данные, которыми мы располагаем совершенно недостаточны для каких-либо численных подсчетов и для решения вопроса о том, каким миром является наша Вселенная...” [9, с.237].

Как мы видим, ситуация „эмпирической невесомости” теории Фридмана в начале века в точности совпадает по духу с той, которая возникла сегодня в связи с инфляционными сценариями.

Возвращаясь к Эйнштейну заметим, что никаких наблюдательных подтверждений статическая концепция Вселенной также не имела. На нее „работали” - авторитет ученого и относительная неразвитость внегалактической астрономии. Поэтому обе концепции Вселенной, Эйнштейна и Фридмана, не имея наблюдательного подтверждения выглядели как равноправные в эмпирическом отношении. Неравенство их имело чисто внутритеоретическую природу. Эйнштейном вводилось „дополнение” в форме космологического лямбда-члена, который, с одной стороны, не имел эмпирического обоснования, а с другой стороны, нарушал принцип простоты. Развитие релятивистской космологии столкнулось здесь с весьма специфической проблемой взаимосвязи физики и „метафизики”: что обусловило дальнейшую эволюцию космологии, что было решающим - требования физического порядка или такой нефизический фактор как философия (через общемировоззренческие установки самого ученого)? Создавалось впечатление, что философия здесь не играет существенной роли, что введение (-члена было обусловлено чисто физической заинтересованностью ученого, т.е. чисто физико-геометрическими причинами [10, c. 127]. Эйнштейн предполагал, что статичность, т.е. независимость от времени, соответствует большему возрасту небесных тел. Во времена Эйнштейна уже был известен возраст Земли в несколько миллиардов лет. Другими словами, нужна была теория, хорошо соответствующая опыту.

С другой стороны, замкнутая модель считалась предпочтительной как более соответствующая физическому принципу Маха. В замкнутой модели должно было бы содержаться конечное количество вещества и, следовательно, можно было предположить, что оно как-то выделяет локально инерциальную систему координат. Самое интересное, однако, заключается в том, что позже, при анализе уравнений Эйнштейна, выяснилось: не только уравнения, в которых отсутствует космологический член, имеют нестатическое решение (например, решения Фридмана, Казнера и др.), но и уравнения с космологическим членом могут быть как статическими, так и нестатическими [10, c. 127]. Отсюда можно справедливо заключить, что Эйнштейн искал решения строго определенного типа (статические), а значит руководствовался прежде всего мировоззренческой установкой на классическую картину статичного мира.

На этом примере можно проследить, когда в первом приближении проблема выглядит как чисто физическая, а во втором „проявляется” на философском уровне. Влияние философии в качестве мировоззренческих установок обнаруживается не в конкретном решении той или иной частнонаучной проблемы, а в ориентации ученого на то или иное направление ее решения. Эйнштейна до конца его жизни* более привлекал устроенный по божественным законам мир элеатов (отсюда может быть и желание найти унификацию всех сил), мир устойчивый и конечный нежели противоречивый и неустойчивый (эволюционирующий) мир Гераклита. В самом конце жизни Эйнштейн почти с сожалением говорит о том, что теория статичной Вселенной не имеет эмпирического подтверждения [11, c. 311]. Если бы она подтвердилась, он был бы согласен поступиться ради нее и принципом простоты в построении космологической теории. Что может говорить более красноречиво о значении в его творчестве общемировоззренческих ориентаций?

Причем эйнштейновское понимание простоты является скорее классическим (эстетический или прагматический смысл) чем неклассическим (например попперовским), в котором простота связывается со степенью фальсифицируемости теории [12, c. 190]. Введение космологического члена должно было бы, с точки зрения Поппера, только облегчить фальсификацию теории, ибо вводилось допущение, которое заранее оговаривало возможные условия опровержения: „В космическом пространстве одновременно с положительным давлением вещества и излучения имеется отрицательное давление вещества и излучения, действия которых уравновешиваются и делают Вселенную статичной”. Достаточно было опровергнуть это утверждение, как космологическая теория Эйнштейна должна была бы рухнуть. Так что, в чисто попперовском понимании „простоты”, Эйнштейн „упростил” свою теорию, а не усложнил, ибо степень ее фальсифицируемости повысилась. В то же время, поиски физического аналога космологического члена ведутся по сей день и пока к каким-либо положительным результатам не привели.

Поэтому шаг, совершенный Эйнштейном по отношению к своей теории гравитации был сродни шагу Зеелигера, совершенному по отношению к теории гравитации Ньютона - вводилось дополнительное условие: в первом случае отрицательное давление, во втором случае - необъяснимое в рамках ньютоновской картины мира убывание силы притяжения с расстоянием на бесконечности. Дополнительные условия нарушали одно из главных требований построения научной теории, высоко ценимое самим же Эйнштейном - классический принцип простоты. Именно это нарушение позже побудило Эйнштейна полемизировать с Леметром по поводу его приверженности к космологическому члену: „Введение такого члена означает далеко идущий отказ от логической простоты теории, который, на мой взгляд, был бы неизбежным лишь в том случае, если бы не было причин сомневаться в существенно статической природе пространства” [11, c. 311].

Как мы видим, нарушение одного из фундаментальных требований построения научной теории послужило весомым основанием для отказа как от ad hoc гипотезы Зеелигера, так позднее и от космологического члена. Кроме того, само нарушение сразу стимулировало поиски учеными альтернативных направлений в построении адекватной теории. Одним из таких направлений было создание Фридманом теории эволюционирующей Вселенной, свободной от космологического члена. Спустя некоторое время после объявления ее ошибочной, Эйнштейн признает правильность выводов Фридмана. И здесь мы видим, что „каноны” научности берут верх над мировоззренческой установкой. Эйнштейн отказывается от идеи статичной Вселенной до того как эволюционная теория получает свое эмпирическое подтверждение!

12. Фридмановский этап становления научной космологии

Проблема эмпирической обоснованности теории Фридмана оказалась не менее сложной, чем проблема ее внутритеоретического обоснования. Сразу же после открытия в 1929 г. красного смещения в спектральных линиях галактик Хабблом, возникло несколько возможных его интерпретаций. Груз старых идей давил на познавательные установки космологов. Сформировалось своеобразное „критическое лобби”, нейтрализующее оптимизм сторонников теории Фридмана. „Если мы предполагаем, что некогда произошел взрыв первородного атома, то отсюда следует, что галактики должны двигаться в соответствии с законом Хаббла; но обратное несправедливо: из закона Хаббла не следует неизбежность „Большого Взрыва” [13, c. 26]. Таково, хотя бы, сомнение шведского космолога Альвена Х. В целом же было предложено три объяснения „красного смещения”: 1. На пути от источника света до наблюдателя находятся объекты (газовые облака и др.), с которыми фотоны испущенные наблюдаемым источником, вступали во взаимодействие, в результате чего терялась часть энергии, следствием этого мы и наблюдаем красное смещение. 2. Эффект красного смещения происходит за счет воздействия гравитационной силы на собственную частоту фотона. 3. Красное смещение объясняется удалением галактик друг от друга, со скоростью прямо пропорциональной квадрату расстояния между ними.

К семидесятым годам окончательно выяснилось, что наиболее конкурентоспособным оказалось последнее объяснение как наиболее адекватное реальным процессам. Вселенная расширяется - таков безусловный вывод космологов и физиков. Однако сразу после создания теории и получения первого эмпирического подтверждения это все не выглядело столь убедительно как сегодня. Кроме того, между данными возраста Вселенной, полученными теоретически и данными по возрасту звезд образовалась „вилка”. В 50-60-е годы было установлено более точное значение возраста звезд. Выяснилось, что раньше по ошибке принимали яркие объекты за более слабые: например светящиеся облака газа за звезды, а для оценки брали только яркие объекты. Получением более точного значения возраста звезд эта вилка устранялась.

Желание устранить расхождения в возрасте послужило основанием для создания новых теорий гравитации. Вообще, в 40-е годы возникла специфическая ситуация, когда активно работающее воображение космологов грозило потерять связь между выдвигаемыми гипотезами и объективной реальностью. Основатель „кинематической относительности” Е.А. Милн выдвинул новую гносеологическую программу: „Является фактом то, что возможно рационально устанавливать законы динамики... без обращения к опыту” [14, c. 329]. Чрезмерная рационализация природы, вызванная стремительной математизацией знания, уже тогда породила надежду о возможности чисто дедуктивистской программы построения космологического знания, к которой, кроме Милна, в одинаковой мере, можно отнести Дирака, Уокера и Эддингтона. Последовательное проведение этой гносеологической программы в жизнь грозило, по мнению некоторых методологов науки, свести науку к околорелигиозным представлениям, когда Вселенная, по словам Х.Дингла, превращается в божество [15, c. 784], а сама космология превращается в космолатрию [15, c. 784].

Поставленный Динглом в 40-е годы вопрос о наблюдаемости фактов, предсказываемых космологическими теориями, предполагал жесткую дихотомию (дизъюнкцию): или факты предсказанные теорией наблюдаемы, или она не есть теория, а лишь фантастическое измышление ее автора. Последовавшее затем в 1964 г. открытие коротковолнового фона излучения, по существу, способствовало опровержению подавляющего числа космологических теорий „второго поколения”, если теории Эйнштейна, Фридмана, Де-Ситтера, Леметра, Казнера считать теориями „первого поколения” научной космологии.

Нереалистические концепции Милна, Дирака и Эддингтона были предвестниками современного состояния в космологии, когда инфляционная теория, являясь, безусловно, реалистической концепцией, пока еще не имеет наблюдательного подтверждения. Этим мы хотим подчеркнуть лишь то, что гносеологические идеалы нового типа науки, в частности космологии, начали заявлять о себе задолго до создания теорий объединения, теории супергравитации и теории суперструн.

Очевидной чертой сторонников „дедуктивистской программы” в описании Вселенной было, по замечанию А. Турсунова, „гипертрофирование гносеологических особенностей космологии” [16, c. 49]. Здесь обнаруживается очень интересный период в эволюции космологического знания именно как знания научного. Дело в том, что современная научная космология как самостоятельная наука о Вселенной как целом в 40-е годы еще только набирала силу и была сравнительно молодой. Поэтому, первые успехи достигнутые собственно космологией, а не физикой и другими областями знания, в 20-30-е г. породили веру во всемогущество новой науки. Уклон в „панкосмологизм” был естественным следствием молодости космологии. Аналогичные процессы имели место и в эпоху возникновения научной механики,физики, биологии и др. дисциплин в 17-18 вв., когда механическая картина мира и механические методы исследования становились господствующими в других отраслях знания, а сама механика бралась объяснять процессы выходящие за пределы ее предмета (в биологии, социологии и т.д.). Однако дальнейшее развитие космологического знания сгладило эту „аксиологическую преувеличенность”, особенно в период ломки - 60-е годы, расставив все на свои места.

Попытка создания универсальной космологической теории, например теории Эддингтона, своеобразной „априорной космологии”* , и на ее основе построения нового типа научного знания в целом, отразилась на полемике Дингла с Милном и др. космологами. Возникла такая ситуация, когда стал необходим возврат к истокам научного мировоззрения, к ориентации на эмпирическую установку, заложенную еще Ньютоном и Галилеем. Другими словами проблему соотношения теории и наблюдательных данных сегодня по меньшей мере следует формулировать не жесткой дизъюнкцией „наблюдаемость или фантазия”, а „слабой” - „наблюдаемость или временная ненаблюдаемость”. Объект может существовать реально и, тем не менее, не обнаруживать себя на конкретном уровне эмпирической науки, познания вообще. При описании и объяснении явлений квантового мира начальных эпох эволюции Вселенной мы не можем пока принципиально наблюдать некоторые явления. Трудности „принципиальной ненаблюдаемости” имеют не столько субъективную (плохое качество теорий) сколько объективную природу (например, недостаточная развитость технических средств). Вызвано это наличием огромной разницы [8] (так называемой „пустыни”) между планковскими масштабами (например Epl 1019 ГэВ) и масштабами доступными сегодня земному экспериментатору. (Eexp 103 ГэВ). Разница между которыми и образует „пустыню”. В связи с этим возникает вопрос как „наблюдать” явления, которые находятся за пределами возможной видимости?

Возникает и другой вопрос: может ли наличие „пустыни” остановить познание Вселенной. Думается, что нет! Прорыв в технических возможностях человека вполне может оказаться непредсказуемо огромным. Кроме того, постоянно осуществляется поиск „опосредований”, т.е. вторичных, третичных и т.д. явлений. Видимо, именно это состояние в космологии побудило М.Ю. Хлопова говорить полусерьезно о „космоархеологии”, т.е. такой сфере интерпретации космологических и физических построений, в которой необходимо обнаруживать не „живое явление”, так сказать, в „чистом виде”, а его „реликтовый отпечаток в совокупности астрофизических данных” [19, c. 37].

Именно перед лицом современной ситуации в физике и космологии оказывается непродуктивной и „индуктивистская программа” самого Дингла [15, с.786]. Следовательно, нет никаких оснований опасаться „самоубийства науки”, страх перед которым его постоянно преследовал [15, с.786].

Не менее нереалистичным оказались и теории „третьего поколения”: концепции Бранса-Дикке, Хойла, Бонди, Нордстрема и других исследователей. Все они нарушали при своем построении принцип простоты, потому что вводили дополнительные параметры типа скалярного поля, С-поля, „априорной геометрии” и т.д.

По признанию самого Ф. Хойла, С-поле вводится исключительно с одной целью - устранить проблемы фридмановской космологии, и, в первую очередь, устранить необходимость допущения начальных условий [20, 95]. Подход Хойла ограничен прежде всего тем, что его теория основывается на постулировании связи С-поля с концевыми точками частиц. Поскольку это постулирование ничем не подкрепляется, то это, во-первых, нарушает принцип простоты в построении теории, а во-вторых, не находит эмпирического подтверждения в действительности, т.к. простота теории является специфическим аналогом „простоты” самой природы. Радиус во Вселенной Хойла сократился до 108 см против наблюдаемого 1028 см, а ее масса от 1023 до 1013 солнечных масс. Теория не объяснила наличие в мире барионной асимметрии. Не обнаружен и обратный процесс превращения барионов в „С-поле”. Не решила теория и вопрос с объяснением реликтового излучения.

Подобная ситуация складывалась и с теорией Нордстрема, в которой физическая метрика имеет лишь одну степень свободы. Главный ее недостаток заключается в том, что гравитация может влиять только на одну степень свободы геометрии пространства-времени. Остальные же степени свободы фиксируются априорно, представляя таким образом „априорную геометрию” [21, c. 60]. Поскольку априорность фиксации других степеней свободы никакими физическими аналогами не затребована, то может считаться дополнительным введением в теорию, то есть ее введение нарушает принцип простоты построения теории, а это скажется через искажение значений космологических параметров, что приведет к несоответствию с наблюдательными данными.

Подход, разрабатывавшийся Дикке и Брансом предполагал построение такой теории гравитации, которая отличается от ОТО добавлением к полю метрического тензора скалярного поля. „Это оказывает локальное влияние на силу гравитационного взаимодействия так, что „сильный” принцип эквивалентности уже не выполняется” [22, c. 92]. Введение дополнительного поля, естественно, нарушает принцип простоты построения новой теории гравитации. Несмотря на то, что скалярно-тензорная теория предлагала решение некоторых проблем фридмановской космологии (например, устраняется сингулярность в будущем, решалась проблема „вилки” в возрасте Вселенной) она была забракована научным сообществом прежде всего из-за несоответствия ее предсказаний - наблюдательным данным. Предсказывалась слишком высокая плотность вещества во Вселенной 2.10-29 г/см3, слишком маленький возраст Вселенной 7 . 109 лет и низкое содержание гелия в начальной стадии эволюции Вселенной [23, c. 22].

Отбор космологических теорий, а в равной степени космологических моделей построенных на их основе, все еще должен иметь эмпирическое основание, но при этом уже все большая роль отводится внутритеоретическим достоинствам конкурирующих теорий. Историческая практика показывает, что те теории, которые были „максимально простыми” (как, например, общая теория относительности с физической стороны) - получили и хорошее эмпирическое подтверждение наблюдениями.

Итак, несмотря на то, что роль внутритеоретических критериев совершенства космологических теорий постоянно стимулировала возникновение новых концепций Вселенной, решающее значение на фридмановском этапе развития космологии, как и на ньютоновском этапе оставалось за наблюдательными подтверждениями. Весь период эволюционной космологии, начиная с 1928 г. наполнен не столько попытками подтвердить теорию Фридмана-Леметра (в 1929 г. собственно период „эмпирической невесомости” заканчивается и начинается период „эмпирической устойчивости” теории); сколько попытками избавиться от внутритеоретических проблем содержательного характера (проблема сингулярности, плоскостности, горизонта и др.). Девис П. по этому поводу замечает: „при бесконечной плотности вещества уравнения Эйнштейна уже не могут давать разумное описание реальности. Наличие сингулярности в моделях Фридмана свидетельствует о том, что на достаточно раннем этапе расширения ОТО, а возможно даже и само пространственно-временное описание мира теряет силу” [24, c.204].

Эти проблемы также определялись внутренним развитием самой фридмановской теории, как и проблемы теории иерархической Вселенной. Как средство от внутреннего недуга в физике и космологии неднократно предлагались выходы устранения трудностей с помощью полумер, так предпринимались попытки искусственного введения обрезающих функций, чем-то напоминающих допущение Зеелигера по отношению к ньютоновской теории гравитации, которые приводили к замене интеграла на сумму, в результате чего устранялись расходимости [25]. Однако такой метод решения проблемы сингулярности не может дать полного удовлетворения в построении и сохранении жизнеспособной теории. Как показывает история теоретического знания - все эти „грубые приемы” есть не что иное как подпорки той теории, которая сходит с исторической научной сцены как господствующая теория. Устранение этих трудностей сегодня выглядит многообещающим в области соединения супергравитации с квантовой теорией поля. Спустя столетие, научное сообщество все больше начинает осознавать, что идеи М. Планка о квантовой природе наиболее глубоких структур мира могут быть более фундаментальны, чем идеи его гениального современника.


Подобные документы

  • Главное звено в эволюции Вселенной - жизнь, разум. Самоорганизация пространства-времени в процессе эволюции Вселенной. Случайность в научной картине Вселенной. Философско-мирровоззренческие проблемы космологической эволюции.

    реферат [61,9 K], добавлен 24.04.2007

  • Картина мира, движение планет. Первые модели мира, первая гелиоцентрическая система, системы Птолемея и Коперника. Солнце и звезды, Галактика, звездные миры, Вселенная. Что лежит за границами наблюдаемой области мира, как зародилась жизнь во Вселенной.

    реферат [30,3 K], добавлен 03.11.2009

  • О развитии Вселенной, её возрасте и "большом взрыве". Гипотезы автора о научной картине Мира, строении и происхождении Вселенной. История жизни галактик, образование звезд и ядерных реакций в их недрах. Авторская теория об "Эволюции молока Вселенной".

    статья [29,4 K], добавлен 20.09.2010

  • Сущность понятия "Вселенная". Изучение истории развития крупномасштабной структуры Вселенной. Модель расширяющейся Вселенной. Теория большого взрыва (модель горячей Вселенной). Причина расширения в рамках ОТО. Теория эволюции крупномасштабных структур.

    контрольная работа [19,8 K], добавлен 20.03.2011

  • Современная картина Вселенной. Межзвездный газ и пыль. Фундаментальная простота эллиптических галактик. Закон всеобщего "разбегания" галактик. Гипотеза Фридмана. Космические монстры. Спектр квазаров. Понятие "чёрные дыры". Что ждёт Вселенную в будущем.

    курсовая работа [82,8 K], добавлен 23.01.2009

  • Древнее представление о Вселенной. Объекты астрономического исследования. Расчеты небесных явлений по теории Птолемея. Особенности влияния астрономии и астрологии. Гелиоцентрическая система мира с Солнцем в центре. Исследование Дж. Бруно в астрономии.

    реферат [22,7 K], добавлен 25.01.2010

  • Картина мира. Движение планет. Первые модели мира и гелиоцентрическая система. Система мира - это представления о положении в пространстве и движении Земли, Солнца, Луны, планет и звезд. Система Птолемея и Коперника. Галактика. Звездные миры. Вселенная.

    реферат [29,4 K], добавлен 02.07.2008

  • Теория образования Вселенной, гипотеза о цикличности ее состояния. Первые модели мира, описание процессов на разных этапах космологического расширения. Пересмотр теории ранней Вселенной. Строение Галактик и их виды. Движение звезд и туманностей.

    реферат [31,3 K], добавлен 01.12.2010

  • Исследование современных представлений о процессах и особенностях развития Вселенной как всего окружающего нас материального мира. Облик, эволюция и механика Вселенной. Действие законов сохранения и структурное многообразие будущего строения Вселенной.

    реферат [14,9 K], добавлен 15.09.2011

  • Сущность и содержание теории о структуре времени как хаотически движущихся в Пространстве абсолютно упругих частиц разных величин. Взаимосвязь пространства и движения объектов. Закономерности существования протонов и электронов внутри Пространства.

    статья [16,2 K], добавлен 04.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.