Черные дыры
Свойства черных дыр, грандиозных источников энергии во Вселенной. Теория гравитационного радиуса. Методы поиска нейтронных звезд. Сенсационное открытие С. Хоукинга о существовании квантового процесса рождения частиц в гравитационном поле черной дыры.
Рубрика | Астрономия и космонавтика |
Вид | реферат |
Язык | русский |
Дата добавления | 17.05.2011 |
Размер файла | 80,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ВВЕДЕНИЕ
Дело в том, что черные дыры -- объекты совершенно фантастические по своим свойствам. "Из всех измышлений человеческого ума, от единорогов и химер до водородной бомбы, наверное, самое фантастическое -- это образ черный дыры, отделенной от остального пространства определенной границей, которую ничто не может пересечь; дыры, обладающей настолько сильным гравитационным полем, что даже свет задерживается его мертвой хваткой; дыры, искривляющей пространство и тормозящей время. Подобно единорогам и химерам, черная дыра кажется более уместной в фантастических романах или в мифах древности, чем в реальной Вселенной. И, тем не менее, законы современной физики фактически требуют, чтобы черные дыры существовали. Возможно, только наша Галактика содержит миллионы их" -- так сказал о черных дырах американский физик К. Торн.
К этому следует добавить, что внутри черной дыры удивительным образом меняются свойства пространства и времени, закручивающихся в своеобразную воронку, а в глубине находится граница, за которой время и пространство распадаются на кванты... Внутри черной дыры, за краем этой своеобразной гравитационной бездны, откуда нет выхода, текут удивительные физические процессы, проявляются новые законы природы.
Черные дыры являются самыми грандиозными источниками энергии во Вселенной. Мы, вероятно, наблюдаем их в далеких квазарах, во взрывающихся ядрах галактик.
Они возникают также после смерти больших звезд. Возможно, черные дыры в будущем станут источниками энергии для человечества.
В этом явлении, казалось, содержится столько необъяснимого, почти мистического, что даже Альберт Эйнштейн, чьи теории, по сути дела, породили представление о черных дырах, сам просто не верил в их существование. Сегодня астрофизики все больше убеждаются, что черные дыры - это реальность.
Математические расчеты показывают - невидимые гиганты есть. Четыре года назад группа американских и японских астрономов направила свой телескоп на созвездие Гончих Псов, на находящуюся там спиральную туманность М106. Эта галактика удалена от нас на 20 миллионов световых лет, но ее можно увидеть даже с помощью любительского телескопа. Многие считали, что она такая же, как и тысячи других галактик. При внимательном изучении оказалось, что у туманности М106 есть одна редкая особенность - в ее центральной части существует природный квантовый генератор - мазер. Это газовые облака, в которых молекулы благодаря внешней "накачке" излучают радиоволны в микроволновой области. Мазер помогает точно определить свое местоположение и скорость облака, а в итоге - и других небесных тел.
Японский астроном Макото Мионис и его коллеги во время наблюдений туманности М106 обнаружили странное поведение ее космического мазера. Оказалось, что облака вращаются вокруг какого-то центра, удаленного от них на 0,5 светового года. Особенно заинтриговала астрономов особенность этого вращения: периферийные слои облаков перемещались на четыре миллиона километров в час! Это говорит о том, что в центре сосредоточена гигантская масса. По расчетам она равна 36 миллионам солнечных масс.
М106 - не единственная галактика, где подозревается черная дыра. В туманности Андромеды, скорее всего, тоже есть и примерно такая же по массе - 37 миллионов Солнц. Предполагается, что и в галактике М87 - чрезвычайно интенсивном источнике радиоизлучения - обнаружена черная дыра, в которой сосредоточено 2 миллиарда масс Солнца.
Советский физик Яков Зельдович и его американский коллега Эдвин Солпитер сообщили о разработанной ими модели. Модель показала: черная дыра притягивает газ из окружающего пространства, и вначале он собирается в диск возле нее. От столкновений частиц газ разогревается, теряет энергию, скорость и начинает по спирали приближаться к черной дыре. Газ, нагретый до нескольких миллионов градусов, образует вихрь, имеющий форму воронки. Его частицы мчатся со скоростью 100 тысяч километров в секунду. В конце концов, вихрь газа доходит до "горизонта событий" и навечно исчезает в черной дыре. Последние компьютерные модели показали, что газовое облако, находящееся в центре нарождающейся галактики, может породить огромную черную дыру. Но возможен и другой путь развития: скопление газа вначале распадается на множество более мелких облаков, которые дадут жизнь большому числу звезд. Однако и в том, и в другом случае часть космического газа под действием собственной гравитации в конце концов закончит свою эволюцию в виде черной дыры. Некоторые учёные рассматривают образование чёрной дыры как маленькую модель того, что, согласно предсказаниям общей теории относительности, в конечном счёте может случиться с Вселенной. Общепризнано, что мы живём в неизменно расширяющейся Вселенной, и один из наиболее важных и насущных вопросов науки касается природы Вселенной, её прошлого и будущего. Без сомнения, все современные результаты наблюдений указывают на расширение Вселенной. однако на сегодня один из самых каверзных вопросов таков: замедляется ли скорость этого расширения, и если да, то не сожмётся ли Вселенная через десятки миллиардов лет, образуя сингулярность. По-видимому, когда-нибудь мы сможем выяснить, по какому пути следует Вселенная, но, быть может, много раньше, изучая информацию, которая просачивается при рождении чёрных дыр, и те физические законы, которые управляют их судьбой, мы сможем предсказать окончательную судьбу Вселенной.
ЧЕРНЫЕ ДЫРЫ. ЧТО ЭТО ТАКОЕ? НЕВИДИМЫЕ МИРУ ЗВЕЗДЫ
Черная дыра является порождением тяготения. Поэтому предысторию открытия черных дыр можно начать со времен И. Ньютона, открывшего закон всемирного тяготения -- закон, управляющий силой, действию которой подвержено абсолютно все. Ни во времена И. Ньютона, ни сегодня, спустя века, не обнаружена иная столь универсальная сила. Все другие виды физического взаимодействия связаны с конкретными свойствами материи. Например, электрическое поле действует только на заряженные тела, а тела нейтральные совершенно к нему безразличны. И только тяготение абсолютно царствует в природе. Поле тяготения действует на все: на легкие частицы и тяжелые (причем при одинаковых начальных условиях совершенно одинаково), даже на свет. То, что свет притягивается массивными телами, предполагал еще И. Ньютон С этого факта, с понимания того, что свет также подчинен силам тяготения, и начинается предыстория черных дыр, история предсказаний их поразительных свойств.
Одним из первых это сделал знаменитый французский математик и астроном П. Лаплас. Имя П. Лапласа хорошо известно в истории науки. Прежде всего он является автором огромного пятитомного труда "Трактат о небесной механике". В этой работе, публиковавшейся с 1798 по 1825 год, им была представлена классическая теория движения тел Солнечной системы, основанная только на законе всемирного тяготения Ньютона. До этой работы некоторые наблюдаемые особенности движения планет, Луны, других тел Солнечной системы не были полностью объяснены. Казалось даже, что они противоречат закону Ньютона. П. Лаплас тонким математическим анализом показал, что все эти особенности объясняются взаимным притяжением небесных тел, влиянием тяготения планет друг на друга. Только одна сила царит в небесах, провозглашал он, -- это сила тяготения. "Астрономия, рассматриваемая с наиболее общей точки зрения, есть великая проблема механики", -- писал П. Лаплас в предисловии к своему "Трактату". Кстати, сам термин "небесная механика", так прочно вошедший в науку, был впервые употреблен им.
Главная идея гипотезы Лапласа о конденсации Солнца и планет из газовой туманности и до сих пор служит основой современных теорий происхождения Солнечной системы...
А вот о чем до последнего времени было мало известно, -- это о предсказании им возможности существования невидимых звезд.
Предсказание было сделано в его книге "Изложение систем мира", вышедшей в 1795 году. В этой книге, которую мы бы сегодня назвали популярной, знаменитый математик ни разу не прибегнул к формулам и чертежам. Глубокое убеждение П. Лапласа в том, что тяготение действует на свет точно так же, как и на другие тела, позволило ему написать следующие знаменательные слова:
"Светящаяся звезда с плотностью, равной плотности Земли и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми".
Лаплас рассчитал, пользуясь теорией тяготения Ньютона, величину, которую мы теперь называем второй космической скоростью, на поверхности звезды. Это та скорость, которую надо придать любому телу, чтобы оно, поборов тяготение, навсегда улетело от звезды или планеты в космическое пространство. Если начальная скорость тела меньше второй космической, то силы тяготения затормозят и остановят движение тела и заставят его снова падать к тяготеющему центру. В наше время космических полетов каждый знает, что вторая космическая скорость на поверхности Земли равна 11 километрам в секунду. Вторая космическая скорость на поверхности небесного тела тем больше, чем больше масса и чем меньше радиус этого тела. Это понятно: ведь с ростом массы тяготение увеличивается, а с ростом расстояния от центра оно ослабевает.
На поверхности Луны вторая космическая скорость равна 2,4 километра в секунду, на поверхности Юпитера 61, на Солнце -- 620, а на поверхности так называемых нейтронных звезд, которые по массе примерно такие же, как Солнце, но имеют радиус всего в десять километров, эта скорость достигает половины скорости света -- 150 тысяч километров в секунду.
Представим себе, рассуждал П. Лаплас, что мы возьмем небесное тело, на поверхности которого вторая космическая скорость уже превышает скорость света. Тогда свет от такой звезды не сможет улететь в космос из-за действия тяготения, не сможет достичь далекого наблюдателя и мы не увидим звезду, несмотря на то, что она излучает свет!
Если увеличивать массу небесного тела, добавляя к нему вещество с той же самой средней плотностью, то вторая космическая скорость увеличивается во столько же раз, во сколько возрастает радиус или диаметр.
Теперь понятен вывод, сделанный П. Лапласом: чтобы тяготение задержало свет, надо взять звезду с веществом той же плотности, что и Земля, а диаметром в 250 раз больше солнечного, то есть в 27 тысяч раз больше земного. Действительно, вторая космическая скорость на поверхности такой звезды будет тоже в 27 тысяч раз больше, чем на поверхности Земли, и. примерно сравняется со скоростью света: звезда перестанет быть видимой.
Это было блестящим предвидением одного из свойств черной дыры -- не выпускать свет, быть невидимой. Справедливости ради надо отметить, что П. Лаплас был не единственным ученым и формально даже не самым первым, кто сделал подобное предсказание. Сравнительно недавно выяснилось, что в 1783 году с аналогичным утверждением выступал английский священник и геолог, один из основателей научной сейсмологии, Дж. Мичелл. Его аргументация была очень похожа на аргументацию П. Лапласа.
Дело в том, что во времена П. Лапласа еще не было известно, что быстрее света в природе ничто не может двигаться. Обогнать свет в пустоте нельзя! Это было установлено. А. Эйнштейном в специальной теории относительности уже в нашем веке. Поэтому для П. Лапласа рассматриваемая им звезда была только черной (несветящейся), и он не мог знать, что такая звезда теряет способность вообще как-либо "общаться" с внешним миром, что-либо "сообщать" далеким мирам о происходящих на ней событиях. Иными словами, он еще не знал, что это не только "черная", но и "дыра", в которую можно упасть, но невозможно выбраться. Теперь мы знаем, что если из какой-то области пространства не может выйти свет, то, значит, и вообще ничто не может выйти, и такой объект мы называем черной дырой.
Для понимания невероятных свойств черных дыр необходимо сказать кратко о некоторых следствиях общей теории относительности Эйнштейна.
ГРАВИТАЦИОННЫЙ РАДИУС
Чем же отличается теория тяготения Эйнштейна от теории Ньютона? Начнем с простейшего случая. Предположим, что мы находимся на поверхности сферической невращающейся планеты и измеряем силу притяжения этой планетой какого-либо тела с помощью пружинных весов. Мы знаем, что согласно закону Ньютона эта сила пропорциональна произведению массы планеты на массу тела и обратно пропорциональна квадрату радиуса планеты. Радиус планеты: можно определить, например, измеряя длину ее экватора и деля на 2.
А что говорит о силе притяжения теория Эйнштейна? Согласно ей сила будет чуточку больше, чем вычисленная по формуле Ньютона.
Представим себе теперь, что мы можем постепенно уменьшать радиус планеты, сжимая ее и сохраняя при этом ее полную массу. Сила тяготения будет нарастать (ведь радиус уменьшается). По Ньютону, при сжатии вдвое сила возрастает вчетверо. По Эйнштейну, возрастание силы опять же будет происходить чуточку быстрее. Чем меньше радиус планеты, тем больше это отличие.
Если мы сожмем планету настолько, что поле тяготения станет сверхсильным, то различие между величиной силы, рассчитываемой по теории Ньютона, и истинным ее значением, даваемым теорией Эйнштейна, нарастает чрезвычайно. По Ньютону, сила тяготения стремится к бесконечности, когда мы сжимаем тело в точку (радиус близок к нулю). По Эйнштейну, вывод совсем другой: сила стремится к бесконечности, когда радиус тела становится равным так называемому гравитационному радиусу. Этот гравитационный радиус определяется массой небесного тела. Он тем меньше, чем меньше масса. Но даже для гигантских масс он очень мал. Так, для Земли он равен всего одному сантиметру! Даже для Солнца гравитационный радиус равен только 3 километрам. Размеры небесных тел обычно много больше их гравитационных радиусов. Например, средний радиус Земли составляет 6400 километров, радиус Солнца 700 тысяч километров. Если же истинные радиусы тел много больше их гравитационных, то отличие сил, рассчитанных по теории Эйнштейна и теории Ньютона, крайне мало. Так, на поверхности Земли это отличие составляет одну миллиардную часть от величины самой силы.
Только когда радиус тела при его сжатии приближается к гравитационному радиусу, в столь сильном поле тяготения различия нарастают заметно, и, как уже говорилось, при радиусе тела, равном гравитационному, истинное значение силы поля тяготения становится бесконечным.
Согласно теории Эйнштейна время в сильном поле тяготения течет медленней, чем время, измеряемое вдали от тяготеющих масс (где гравитация слаба). О том, что время может течь по-разному, современный человек, конечно, слышал. И все же к этому факту трудно привыкнуть. Как может время течь по-разному? Ведь согласно нашим интуитивным представлениям время -- это длительность, то общее, что присуще всем процессам. Оно подобно реке, текущей неизменно. Отдельные процессы могут течь и быстрее и медленнее, мы можем на них влиять, помещая в разные условия. Например, можно нагреванием ускорить течение химической реакции или замораживанием замедлить жизнедеятельность организма, но движение электронов в атомах при этом будет протекать в прежнем темпе. Все процессы, как нам представляется, погружены в реку абсолютного времени, на течение которой, казалось бы, ничто влиять не может. Можно, по нашим представлениям, убрать из этой реки вообще все процессы, и все равно время будет течь как пустая длительность.
Так считалось в науке и во времена Аристотеля, и во времена И. Ньютона, и позже -- вплоть до А. Эйнштейна. Вот что пишет Аристотель в своей книге "Физика": "Время, протекающее в двух подобных и одновременных движениях, одно и то же. Если бы оба промежутка времени не протекали одновременно, они все-таки были бы одинаковы... Следовательно, движения могут быть разные и независимые друг от друга. И в том и в другом случае время абсолютно одно и то же".
Еще выразительнее писал И. Ньютон, считая, что говорит об очевидном: "Абсолютное, истинное, математическое время, взятое само по себе, без отношения к какому-нибудь телу, протекает единообразно, соответственно своей собственной природе".
Догадки о том, что представления об абсолютном времени отнюдь не столь очевидны, иногда высказывались и в давние времена. Так, Лукреции Кар в I веке до нашей эры писал в поэме "О природе вещей": "Время существует не само по себе... Нельзя понимать время само по себе, независимо от состояния покоя и движения тел"
Но только А. Эйнштейн доказал, что никакого абсолютного времени нет. Течение времени зависит от движения и, что сейчас для нас особенно важно, от поля тяготения. В сильном поле тяготения все процессы, абсолютно все, будучи самой разной природы, замедляются для стороннего наблюдателя. Это и значит, что время - то есть то общее, что присуще всем процессам, - замедляется.
Замедление это обычно невелико. Так, на поверхности Земли время протекает медленнее, чем в далеком космосе, всего на ту же одну миллиардную часть, как и в случае с вычислением силы тяготения.
Хочется особенно подчеркнуть, что такое ничтожное замедление времени в поле тяготения Земли непосредственно измерено. Измерено замедление времени и в поле тяготения звезд, хотя обычно там оно тоже крайне мало. В очень сильном поле тяготения замедление заметно больше и становится бесконечно большим, когда радиус тела сравнивается с гравитационным.
Второй важный вывод теории Эйнштейна состоит в том, что в сильном поле тяготения меняются геометрические свойства пространства Эвклидова геометрия, столь нам привычная, оказывается уже несправедливой. Это означает, например, что сумма углов в треугольнике не равна двум прямым углам, а длина окружности не равна расстоянию ее от центра, умноженному на 2пи. Свойства обычных геометрических фигур становятся такими же, как будто они начерчены не на плоскости, а на искривленной поверхности. Поэтому и говорят, что пространство "искривляется" в гравитационном поле. Разумеется, это искривление заметно только в сильном поле тяготения, если размер тела приближается к его гравитационному радиусу.
Конечно, представление об искривлении самого пространства так же несовместимо с нашими укоренившимися интуитивными представлениями, как и представление о разном течении времени.
Если оставаться неподвижным, например, относительно Земли, то силу ее тяготения не уничтожить. Но действие этой силы можно полностью устранить, начав свободно падать! Тогда наступает невесомость. В кабине космического корабля с выключенными двигателями, летящего по орбите вокруг Земли, нет силы тяжести, вещи и сами космонавты плавают в кабине, не ощущая никакой тяжести. Мы все много раз видели это на экранах телевизоров в репортажах с орбиты. Заметим, что никакое другое поле, кроме поля тяготения, не допускает подобного простого "уничтожения". Электромагнитное поле, например, так убрать нельзя.
Со свойством "устранимости" тяготения связана сложнейшая проблема теории - проблема энергии поля тяготения. Она, по мнению некоторых физиков, не решена и до сих пор. Формулы теории позволяют вычислить для какой-либо массы полную энергию ее гравитационного поля во всем пространстве. Но нельзя указать, где конкретно находится эта энергия, сколько ее в том или ином месте пространства. Как говорят физики, нет понятия плотности гравитационной энергии в точках пространства.
А теперь продолжим разговор о второй космической скорости. Какую скорость согласно уравнениям Эйнштейна надо придать ракете, стартующей с поверхности планеты, чтобы она, поборов силы тяготения, улетела в космос?
Ответ оказался чрезвычайно прост. Здесь справедлива та же формула, что и в теории Ньютона. Значит, вывод П. Лапласа о невозможности для света уйти от компактной тяготеющей массы подтвердился теорией тяготения Эйнштейна, согласно которой вторая космическая скорость должна быть равна скорости света как раз на гравитационном радиусе.
Сфера с радиусом, равным гравитационному, получила название сферы Шварцшильда.
ВОКРУГ ЧЕРНОЙ ДЫРЫ. ДЫРА ВО ВРЕМЕНИ
Как уже говорилось, теория тяготения предсказывает, что время течет тем медленней, чем ближе часы находятся к гравитационному радиусу. Это означает, что, какие бы процессы ни протекали в сильном поле тяготения, далекий от черной дыры наблюдатель увидит их в замедленном темпе.
Так, для него колебания в атомах, излучающих свет в сильном поле тяготения, происходят замедленно, и фотоны от этих атомов приходят к нему "покрасневшими", с уменьшенной частотой. Это явление носит название гравитационного красного смещения (оно послужило основой для одной из проверок правильности теории Эйнштейна). Для нас сейчас важен тот факт, что замедление времени и покраснение света тем больше, чем ближе область излучения располагается к границе черной дыры "(к сфере Шварцшильда). Там время замедляет свой бег, и на самой границе черной дыры оно как бы замирает для далекого наблюдателя. Этот наблюдатель, следя, например, за камнем, падающим к черной дыре, видит, как у самой сферы Шварцшильда он постепенно "тормозится" и приблизится к границе черной дыры лишь за бесконечно долгое время.
Аналогичную картину увидит далекий наблюдатель при самом процессе образования черной дыры -- когда под действием тяготения само вещество звезды падает, устремляется к ее центру. Для него поверхность звезды лишь за бесконечно долгое время приближается к сфере Шварцшильда, как бы застывая на гравитационном радиусе. Поэтому раньше черные дыры называли еще застывшими звездами.
Но это застывание вовсе не значит, что наблюдатель будет вечно созерцать застывшую поверхность звезды на гравитационном радиусе. Вспомним о замедлении времени, о покраснении света, выходящего из сильного гравитационного поля. С приближением поверхности звезды к гравитационному радиусу наблюдатель видит все более и более покрасневший свет звезды, несмотря на то, что на самой звезде продолжают рождаться обычные фотоны. Менее энергичные ("покрасневшие") фотоны к тому же приходят к наблюдателю все реже и реже. Интенсивность света падает.
К факту покраснения света из-за замедления времени, обусловленного сильным полем тяготения, прибавляется еще покраснение света из-за Доплер-эффекта. Действительно, ведь поверхность сжимающейся звезды неуклонно удаляется от наблюдателя. А известно, что свет от удаляющегося источника воспринимается также покрасневшим
Итак, совместное действие Доплер-эффекта и замедления времени в сильном поле тяготения ведет к тому, что с приближением поверхности звезды к сфере Шварцшильда далекий наблюдатель видит свет все более покрасневшим и все меньшей интенсивности - звезда становится невидимой. Ее яркость стремится к нулю, и ни в какие телескопы ее нельзя уже обнаружить. При этом потухание происходит для далекого наблюдателя практически мгновенно. Так, звезда с массой Солнца после того, как она, сожмется до размеров удвоенного гравитационного радиуса, потухнет для внешнего наблюдателя за стотысячную долю секунды.
Нельзя обнаружить поверхность застывшей у гравитационного радиуса звезды и радиолокационным методом. Радиосигналы будут бесконечно долго двигаться к гравитационному радиусу и никогда не вернутся к пославшему их наблюдателю. Звезда для внешнего наблюдателя полностью "исчезает", и остается только ее гравитационное поле. Внешний наблюдатель никогда не увидит то, что произойдет со звездой после ее сжатия до размеров меньше гравитационного радиуса.
Вот тут-то и проявляется одна из самых удивительных и важных истин, открытых теорией относительности, - относительность временных промежутков, зависимость их от состояния движения наблюдателя. Вспомним, что уже в специальной теории относительности, где роль гравитационных полей не учитывается, один и тот же процесс с точки зрения разных наблюдателей имеет различную длительность: часы на быстро летящей ракете идут с точки зрения наземного наблюдателя медленнее, чем его собственные. Это явление проверено непосредственным физическим экспериментом. В случае же падения к черной дыре относительность длительности процесса проявляется в совершенно удивительном виде. Рассмотрим такое явление подробнее.
Представим себе ряд наблюдателей, расположенных вдоль линии, продолжающей радиус черной дыры, и неподвижных по отношению к ней. Например, они могут находиться на ракетах, двигатели которых работают, не давая наблюдателям падать на черную дыру. Далее, представим себе еще одного наблюдателя на ракете с выключенным двигателем, который свободно падает к черной дыре. По мере падения он проносится мимо неподвижных наблюдателей с всевозрастающей скоростью. При падении к черной дыре с большого расстояния эта скорость равняется второй космической скорости. Скорость падения стремится к световой, когда падающее тело приближается к гравитационному радиусу. Ясно, что темп течения времени на свободно падающей ракете с ростом скорости уменьшается. Это уменьшение настолько значительное, что с точки зрения наблюдателя с любой неподвижной ракеты для того, чтобы падающий успел достичь сферы Шварцшильда, проходит бесконечный промежуток времени, а по часам падающего наблюдателя это время соответствует конечному промежутку. Таким образом, бесконечное время одного наблюдателя на неподвижной ракете равно конечному промежутку времени другого (на падающей ракете), причем промежутку очень малому, -- так, мы видели, для массы Солнца это всего стотысячная доля секунды. Что может быть более наглядным примером относительности временной протяженности?
Итак, по часам, расположенным на сжимающейся звезде, она за конечное время сжимается до размеров гравитационного радиуса и будет продолжать сжиматься дальше, к еще меньшим размерам. Но далекий внешний наблюдатель, этих последних этапов эволюции, как мы помним, никогда не увидит. А что будет видеть наблюдатель на сжимающейся звезде после своего ухода под сферу Шварцшильда? Что будет со звездой?
Отложим на некоторое время эти вопросы, а сейчас вернемся к внешнему полю черной дыры и посмотрим, как в этом сверхсильном поле движутся тела и распространяются лучи света.
НЕБЕСНАЯ МЕХАНИКА ЧЕРНЫХ ДЫР
Согласно теории тяготения Ньютона любое тело в гравитационном поле звезды движется либо по разомкнутым кривым - гиперболе или параболе, - либо по замкнутой кривой - эллипсу (в зависимости от того, велика или мала начальная скорость движения). У черной дыры на больших от нее расстояниях поле тяготения слабо, и здесь все явления с большой точностью описываются теорией Ньютона, то есть законы небесной механики здесь справедливы. Однако с приближением к черной дыре они нарушаются все больше и больше.
Познакомимся с некоторыми важнейшими особенностями движения тел в поле тяготения черной дыры.
По теории Ньютона, если скорость тела меньше второй космической, то оно движется по эллипсу около центрального тела -- тяготеющего центра (ТЦ). У эллипса есть ближайшая к ТЦ точка (периастр) и наиболее удаленная (апоастр). По теории Эйнштейна, в случае движения тела со скоростью, меньшей второй космической, траектория его также имеет периастр и апоастр, но она уже не эллипс; оно движется по незамкнутой орбите, то приближаясь к черной дыре, то снова удаляясь от нее. Траектория вся целиком лежит в одной плоскости, но вблизи черной дыры она может выглядеть весьма причудливо. Если же она лежит достаточно далеко, то вид ее представляет собой медленно поворачивающийся в пространстве эллипс. Такой медленный поворот эллиптической орбиты Меркурия на 43 угловых секунды в столетие послужил первым подтверждением правильности теории тяготения Эйнштейна.
Очень интересно рассмотреть простейшее периодическое движение тела в поле черной дыры по круговой орбите. По теории Ньютона, движение по кругу возможно на любом расстоянии от ТЦ. Из теории Эйнштейна следует, что это не так. Чем ближе к ТЦ, тем больше скорость движущегося по окружности тела. На окружности, удаленной на полтора гравитационных радиуса, скорость обращающегося тела достигает световой. На еще более близкой к черной дыре окружности движение его вообще невозможно, ибо для этого ему потребовалась бы скорость больше скорости света.
Но, оказывается, в реальной ситуации движение по окружности вокруг черной дыры невозможно и на больших расстояниях, начиная с трех гравитационных радиусов, когда скорость движения составляет всего половину скорости света. В чем же причина?
Дело в том, что на расстояниях меньше трех гравитационных радиусов движение по окружности неустойчиво. Малейшее возмущение, сколько угодно малый толчок заставят вращающееся тело уйти с орбиты и либо упасть в черную дыру, либо улететь в пространство (ничего похожего не предусматривает "Небесная механика" Ньютона). Но, пожалуй, самое интересное и необычное в новой небесной механике -- это возможность гравитационного захвата черной дырой тел, прилетающих из космоса.
Напомним, что в механике Ньютона всякое тело, прилетающее к тяготеющей массе из космоса, описывает вокруг нее параболу или гиперболу и (если не "стукнется" о поверхность тяготеющей массы) снова улетает в космос -- гравитационный захват невозможен. Иначе обстоит дело в поле тяготения черной дыры. Конечно, если прилетающее тело движется на большом расстоянии от черной дыры (на расстоянии десятков гравитационных радиусов и больше), там, где поле тяготения слабо и справедливы законы механики Ньютона, то оно движется почти точно по параболе или гиперболе. Но если оно пролетает достаточно близко от дыры, то его орбита совсем не похожа на гиперболу или параболу. В случае, если оно вдали от черной дыры имеет скорость много меньше световой и его орбита подходит близко к окружности с радиусом, равным двум гравитационным радиусам, то оно обернется вокруг черной дыры несколько раз, прежде чем снова улетит в космос.
Наконец, если вращающееся тело подойдет вплотную к указанной окружности двух гравитационных радиусов, то его орбита будет на эту окружность навиваться; тело окажется гравитационно захваченным черной дырой и никогда снова не улетит в космос. Если тело подойдет еще ближе к черной дыре, оно упадет в черную дыру и также окажется гравитационно захваченным.
Прежде чем перейти к другим физическим явлениям в поле тяготения черной дыры, сделаем еще одно замечание, касающееся второй космической скорости. Мы уже говорили раньше, что для второй космической скорости справедлива формула теории Ньютона и тело, обладающее такой и большей скоростью, навсегда улетает от черной дыры в космос. Однако мы должны сделать оговорку.
Очевидно, что если тело движется к черной дыре непосредственно вдоль радиуса, то, какую бы скорость оно ни имело, оно врежется в черную дыру и не улетит в космос.
Более того, нам теперь известно, что если тело будет двигаться хоть и не прямо по радиусу к черной дыре, но орбита его пройдет на достаточно близком расстоянии от черной дыры, то оно будет гравитационно захвачено. Следовательно, чтобы вырваться из окрестностей черной дыры, мало иметь скорость больше второй космической, надо еще, чтобы направление этой скорости составляло с направлением на черную дыру угол больше некоторого критического значения. Если угол будет меньше, тело будет захвачено, если больше (и скорость равна второй космической), то улетит в космос. Значение этого критического угла зависит от расстояния до черной дыры. Чем дальше от нее, тем меньше критический угол. На расстоянии нескольких гравитационных радиусов надо уже точно "прицелиться" в черную дыру, чтобы быть ею захваченной.
Наконец, скажем несколько слов еще об одном важном процессе, возникающем при движении тел в поле черной дыры. Речь идет об излучении гравитационных волн. Теория тяготения Эйнштейна предсказывает их существование.
Что же представляют собой эти волны, носящие столь экзотическое название. Они подобны электромагнитным, которые являются быстро меняющимся электромагнитным полем, "оторвавшимся" от своего источника и распространяющимся в пространстве с предельно большой скоростью - скоростью света. Точно так же гравитационные волны являются изменяющимся гравитационным полем, "оторвавшимся" от своего источника и летящим в пространстве со скоростью света.
Известно, чтобы обнаружить электромагнитную волну, достаточно в принципе взять электрически заряженный шарик и наблюдать за ним; когда на него станет падать электромагнитная волна, шарик придет в колебательное движение. Но чтобы обнаружить гравитационную волну, одним шариком не обойтись. Потребуется минимум два, помещенных на некотором расстоянии друг от друга (заряжать их электричеством, конечно, не нужно). При падении на них гравитационной волны шарики будут то несколько сближаться, то удаляться. Измеряя изменение расстояния между ними, можно обнаружить волны тяготения. А почему нельзя обойтись одним шариком? Дело заключается в следующем. Если на шарик не действуют никакие посторонние силы, то он находится в поле гравитационной волны в состоянии невесомости. На шарике не ощущается никаких сил тяготения, и поэтому невозможно обнаружить проходящую гравитационную волну. Ситуация точно такая же, как у космонавтов в кабине космического корабля на орбите. Находясь в невесомости, они не могут обнаружить и тем более измерить гравитационное поле. Два шарика, находясь на некотором отдалении, подвергаются воздействию поля чуть-чуть по-разному, и между ними возникает относительное движение. Вот это относительное движение и можно измерить.
В случае электромагнитных волн для их обнаружения не обязательно брать даже шарик - существуют разные типы электромагнитных антенн. В случае же гравитационных волн придуманы тоже разные конструкции гравитационных антенн.
Но все выглядит относительно просто только теоретически. На самом деле в сколь-нибудь привычных для нас условиях возникающие гравитационные волны крайне слабы: они должны излучаться при ускоренных движениях массивных тел. Но даже при движении небесных тел излучение гравитационных волн ничтожно. Так, при движении планет в Солнечной системе излучается гравитационная энергия, равная мощности всего лишь сотни электрических лампочек. Хотя это число и может показаться большим по нашим земным меркам, оно ничтожно по сравнению, скажем, с мощностью светового излучения Солнца, которое в сто тысяч миллиардов миллиардов раз больше (число записывается единицей с двадцатью тремя нулями). Попытки же создать лабораторные излучатели гравитационных волн пока и вовсе обречены на неудачу.
Скажем, можно сделать излучатель гравитационных волн в виде быстро вращающегося стержня. Если взять стальную болванку длиной 20 метров, массой 500 тонн и раскрутить ее до предела на разрыв центробежными силами (частота вращения при этом около 30 герц), то она будет излучать всего одну десятитысячную миллиардной миллиардной доли эрга в секунду.
Хотя, как уже сказано, с помощью антенн на Земле пока гравитационные волны не обнаружены, однако некоторые астрономические наблюдения прямо показывают, что гравитационные волны излучаются при движении небесных тел. Что же это за наблюдения?
Дело заключается в следующем. Как мы уже знаем, при движении планет или, например, движении звезд в двойных звездных системах излучаются гравитационные волны, уносящие энергию. Эти потери энергии обычно очень малы. Но чем больше масса движущихся небесных тел и меньше расстояние между ними, тем интенсивнее излучение. Потери энергии в системе двойной звезды приводят к постепенному сближению звезд и уменьшению периода их обращения вокруг центра масс. Конечно, это происходит крайне медленно, и тем не менее с помощью специальных способов наблюдения такое уменьшение периода в одном случае удалось зафиксировать, причем в точном согласии с предсказаниями теории Эйнштейна. Мы не будем здесь рассказывать об астрономических наблюдениях подробнее, так как это увело бы нас далеко в сторону.
Вернемся к движению тела вокруг черной дыры по круговой орбите. При этом будет происходить излучение гравитационных волн и постепенное уменьшение радиуса орбиты. Так будет продолжаться до тех пор, пока радиус не примет критического значения трех гравитационных радиусов. На меньших расстояниях, как мы знаем, движение уже неустойчиво. Следовательно, тело, достигнув критической орбиты, сделав еще несколько оборотов и излучив некоторое количество энергии, "свалится" с этого расстояния в черную дыру.
Какое общее количество энергии излучит тело в виде гравитационных волн за все время, пока оно двигалось вокруг черной дыры по окружности с медленно уменьшающимся радиусом? Излучение происходит, как мы видели, крайне малоинтенсивно, но сам процесс этот длится долго! Таким образом, полное количество излученной энергии будет велико. Чтобы показать ее, приведем такое сравнение. Известно, что при ядерных превращениях, например, водорода в гелий или в еще более тяжелые элементы, определенная доля массы превращается в энергию. Максимально во всех видах реакций эта доля может составить около одного процента. В случае же излучения гравитационных волн при движении вокруг черной дыры излучается энергия в шесть раз больше!
Мы видим, что в принципе даже таким простейшим способом можно было бы использовать черные дыры как источник энергии. Конечно, практически такая машина почти бесполезна. Дело в том, что гравитационные волны крайне слабо взаимодействуют с веществом. Поэтому выделяющуюся в виде гравитационных волн энергию было бы очень трудно уловить и использовать для практических нужд: гравитационные волны рассеивались бы в космическом пространстве. В дальнейшем мы увидим, что существуют другие способы использования гигантской гравитационной энергии черных дыр.
ЧЕРНЫЕ ДЫРЫ И СВЕТ
Мы уже знаем, что поле тяготения влияет на свет. Оно заставляет фотоны менять свою частоту и искривляет траекторию лучей. Чем ближе к черной дыре, тем сильнее искривление траектории. Мы видим, что существует критическая окружность с радиусом в полтора гравитационных радиуса. (О ней мы уже упоминали в предыдущем разделе.) По этой окружности фотон, удерживаемый на окружности мощным тяготением черной дыры, вполне может двигаться. Однако это движение неустойчиво. Малейшее возмущение -- и он либо упадет на черную дыру, либо улетит в космос.
Наличие критической окружности для фотонов ведет к тому, что свет, проходящий достаточно близко к черной дыре, будет ею гравитационно захвачен. Луч, подходящий вплотную к окружности размером в полтора гравитационных радиуса, неограниченно навивается на нее, а подходящий еще ближе упирается в черную дыру.
При движении около черной дыры меняется и частота колебаний световых волн. Чем ближе фотоны к черной дыре, тем сильнее возрастает частота колебаний. При удалении от черной дыры частота колебаний световых волн уменьшается. На значительном расстоянии от черной дыры эти изменения невелики и значительны только вблизи сферы Шварцшильда.
"ЧЕРНЫЕ ДЫРЫ НЕ ИМЕЮТ ВОЛОС"
До сих пор мы говорили только о черных дырах, возникающих при сжатии сферических тел и обладающих, поэтому сферически симметричным полем тяготения. А какая черная дыра возникает при сжатии не сферического, например сплюснутого, тела? Мы пока будем говорить только о невращающихся телах, оставив вопрос о вращении до следующего раздела.
Итак, до сжатия тело имело не сферическое гравитационное поле. Означает ли это, что возникнет сплюснутая черная дыра со сплюснутым полем тяготения? Долгое время ответ на этот вопрос был неизвестен, и эту задачу решили лишь сравнительно недавно. На самом деле никаких сплюснутых или других несимметричных черных дыр существовать не может. Дело в том, что в ходе сжатия, когда размеры тела приближаются к гравитационному радиусу, происходит интенсивное излучение гравитационных волн. Оказывается, что при этом все отличия поля тяготения от строгой сферичности уменьшаются и "излучаются" в виде гравитационных волн.
В первый момент после возникновения черная дыра имеет действительно искаженную, сплюснутую форму. Но эта дыра не может сохраняться постоянно во времени. Подобно тому, как пленка мыльного пузыря, если бы мы его растянули, а потом отпустили, быстро принимает сферическую форму, точно так же граница "искаженной" черной дыры быстро принимает гладкую сферическую форму. Все "лишнее" излучается в виде гравитационных волн. В результате возникает совершенно сферически симметричная черная дыра с совершенно сферически симметричным внешним полем тяготения Шварцшильда, которое характеризуется только одной величиной -- массой тяготеющего центра.
Таким образом, черные дыры могут быть и большие (массивные) и маленькие, но во всем остальном они совершенно подобны друг другу. Возникает тогда вопрос, а что будет, если сжимающееся тело обладало электрическим зарядом, то есть имело вокруг себя, помимо гравитационного, еще электрическое, или магнитное, или, наконец, какое-либо еще поле? Будет ли возникшая из этого тела черная дыра также обладать этими полями?
Исследование вопроса привело к крайне интересному выводу. Оказалось, что все виды физических полей в ходе релятивистского коллапса будут излучены или погребены в самой черной дыре. Исключение составляет только поле электрического заряда. При сжатии оно, так же как и сферическое гравитационное поле, вовсе не меняется и остается вокруг возникшей черной дыры.
Итак, при релятивистском коллапсе сколь угодно сложного невращающегося тела, окруженного электрическим, магнитным и другими полями, возникает черная дыра со свойствами, полностью характеризуемыми всего двумя параметрами -- массой, от которой зависит сила внешнего гравитационного поля, и электрическим зарядом, характеризующим электрическое поле. Все другие отличительные особенности материи, которая образовала черную дыру, как бы исчезают. Никакие измерения или опыты над черной дырой не помогут ответить на вопрос, возникла ли она, например, из вещества или антивещества, обладало ли вещество магнитным полем и т. д. И это свойство "забывания" всех признаков определяется опять же тем, что никакие сигналы из черной дыры во внешнее пространство не выходят.
Если мы оставим в стороне явление электрического заряда, которое несущественно для небесных тел, то в качестве характеристики, определяющей свойства черной дыры, остается только ее масса. Все черные дыры одинаковой массы являются точными копиями друг друга. Такая безликость черных дыр послужила поводом уже знакомому нам американскому физику-теоретику Д. Уилеру сказать, что "черные дыры не имеют волос".
Установление факта безликости было трудной задачей. Здесь тоже была и своя предыстория и история, как и при теоретическом предсказании черных дыр.
Упомянем лишь о двух работах, выполненных в середине 60-х годов. Первая работа была сделана советским физиком академиком В. Гинзбургом. Он рассматривал вопрос о том, каково будет магнитное поле звезды, если ее сжимать до все меньших размеров. Оказалось, что если звезду сжать почти до гравитационного радиуса и на этом остановиться, то вблизи самой поверхности звезды магнитное поле необычно возрастет. При дальнейшем сжатии точно к гравитационному радиусу напряженность магнитного поля у поверхности стремилась бы к бесконечности! Но это абсурд. Значение работы было огромно. Ведь если предположение о наличии магнитного поля у черной дыры ведет к абсурду (а так получилось!), значит, никакого магнитного поля у черной дыры не может быть вовсе! Все магнитное поле должно быть излучено или погребено внутри дыры!
Это был очень неожиданный вывод, с которым специалисты не сразу освоились.
Вторая работа касалась возможности возникновения сплюснутой черной дыры.Вскоре обнаружилось, что, если бы возникла сплюснутая, как репа, или, наоборот, вытянутая, как огурец, черная дыра, то сплюснутость или вытянутость ее должны были бы быть бесконечными! Это означает, например, что в случае сплюснутости длина экватора черной дыры была бы бесконечной. Но это, конечно, абсурд! Отсюда мы сделали вывод, что никаких сплюснутых или вытянутых дыр быть не может. Все отклонения от сферичности должны, излучаясь в виде гравитационных волн, исчезать.
Обе упомянутые работы отличает одна общая черта: поля должны излучаться в ходе возникновения черной дыры. Такой вывод покажется чрезмерно смелым. Вывод о результате процесса излучения был абсолютно надежен потому, что иной вел бы к абсурду. Это интересный пример того, как можно делать надежные заключения о последствиях явления, рассчитать которое не было возможности. Только шесть лет спустя американский теоретик Р. Прайс, а затем и многие другие провели расчеты самого процесса излучения полей. Они, естественно, полностью подтвердили правильность заключений.
Следствием расчетов Р. Прайса и других авторов было установление любопытного факта: все поля, которые в принципе могут быть излучены, излучаются действительно в ходе возникновения черной дыры. Только два вида их никогда не излучаются -- это сферическое поле тяготения и сферическое поле электрического заряда (если таковой есть). Именно они остаются у возникшей черной дыры. Еще об одном исключении сказано в следующем разделе.
Среди физиков известны "законы Чизхолма". Они в шуточной форме отражают далеко не шуточные трудности, возникающие при проведении физических экспериментов и при работе со сложными физическими приборами. Первый из "законов Чизхолма" читается так: "Все, что может испортиться, - портится". По аналогии с этим, Р. Прайс сформулировал свой вывод так: "Все, что может излучиться, - излучается".
В начале этого раздела мы специально оговаривали, что рассматриваем черные дыры, возникающие только из невращающихся тел. Эта оговорка не случайна. Дело в том, что вращающееся тело при коллапсе приводит к вращающейся черной дыре. Как мы увидим в следующем разделе, вращение приводит к определенным изменениям в поле тяготения и поэтому служит третьим (и последним) параметром (помимо массы и электрического заряда), который характеризует черную дыру.
ГРАВИТАЦИОННЫЙ ВИХРЬ ВОКРУГ ЧЕРНОЙ ДЫРЫ
По теории Ньютона, гравитационное поле никак не зависит от движения вещества. Так, поля тяготения неподвижного шара и вращающегося совершенно одинаковы, если только одинаковы их массы. По теории Эйнштейна, это не так: поля тяготения рассматриваемых шаров будут несколько отличаться. В чем же оно заключается?
Наиболее наглядно (но несколько упрощенно) можно себе представить это отличие, как если бы вокруг вращающегося тела возникало добавочное вихревое гравитационное поле, увлекающее за собой все тела в круговое движение. Дело происходит таким образом, как будто слои пространства медленно вращаются вокруг такого тела, причем угловая скорость их вращения зависит от расстояния: она мала вдали и нарастает с приближением к вращающемуся телу. Для обычных небесных тел эти эффекты ничтожно малы. Проще всего их обнаружить, помещая вблизи вращающегося тела гироскоп. Если тело не вращается, то гироскоп будет указывать неизменное направление в пространстве по отношению к далеким звездам. (Широко известно использование гироскопов, например, для ориентации космических кораблей.) Однако вблизи вращающегося тела гироскоп медленно поворачивается.
Так, вблизи поверхности вращающейся Земли гироскоп поворачивается примерно на десятую долю угловой секунды в год. Конечно, такая ничтожная скорость поворота гироскопа не может помешать ориентации космических кораблей. Более того, экспериментально этот эффект пока и не обнаружен.
У поверхности нейтронных звезд, о которых мы уже говорили в главе 1, угловая скорость вращения гироскопа может быть весьма большой, всего лишь в несколько раз меньше скорости вращения самой нейтронной звезды. А сами нейтронные звезды могут вращаться со скоростью в несколько десятков и более оборотов в секунду. Таким образом, гироскоп вблизи такой быстро вращающейся звезды может совершать много оборотов в секунду! Что будет происходить с этой вихревой компонентой поля тяготения при релятивистском коллапсе звезды?
Оказывается, она не будет изменяться так же, как не меняется и сферическое поле тяготения.
Вихревое поле тяготения звезды полностью определяется величиной, которую физики называют моментом импульса тела. Для обычной звезды эта величина примерно равна произведению скорости вращения на экваторе, массы звезды и ее радиуса.
Таким образом, при коллапсе вращающегося тела возникает вращающаяся черная дыра. Что означает вращение черной дыры? Оно означает наличие вокруг черной дыры вихревого поля тяготения, оставшегося после коллапса, или, как его иногда называют, гравитационного вихря. Чем ближе к черной дыре, тем сильнее вихревое поле.
К чему это приводит?
Прежде всего вращение несколько сплющивает черную дыру у полюсов, подобно тому как вращение сплющивает Землю и звезды. Напомним, что без вращения форма дыры была бы точно сферической. Но не это главное. Без вращения гравитационная сила обращалась в бесконечность на сфере Шварцшильда. Эта сфера и была границей черной дыры, или, как говорят физики, горизонтом, из-под которого ничто вылетать не может. При наличии вращения это не так. Тяготение обращается в бесконечность вне горизонта, на поверхности, получившей название границы эргосферы. Она отстоит тем дальше от границы черной дыры, чем быстрее вращение, но далеко от нее отойти не может. На границе эргосферы и под ней уже никакая сила не может удержать проникшее туда постороннее тело в покое. Оно будет увлекаться вихревым полем в движение относительно черной дыры. Однако в отличие от тел, находящихся под сферой Шварцшильда (в отсутствие вращения), где они неудержимо падали к центру, здесь, под границей эргосферы, все тела вовлекаются во вращательное движение вокруг черной дыры. При этом они вовсе не обязательно двигаются к центру: могут и приближаться к черной дыре, и удаляться от нее, могут пересекать границу эргосферы, двигаясь и внутрь и наружу.
Как же гравитационная сила действует на них под границей эргосферы, если уже на границе величина ее равна бесконечности?
Здесь мы должны напомнить то, что уже говорили при обсуждении силы тяготения, действующей на поверхности Шварншильда.
Сила тяготения бесконечна на границе только для неподвижного тела, а если тело движется ускоренно, то сила будет иная. При круговом движении вокруг черной дыры в том же направлении, что и направление вращения черной дыры, сила и на границе эргосферы, и внутри ее оказывается конечной. Поэтому тело может внутри границы эргосферы двигаться по окружности, не падая на центр. Таким образом, при наличии вращения предел статичности (то есть граница области, где возможен покой тела по отношению к черной дыре) резко отличается от сферы Шварцшильда в случае отсутствия вращения.
Мы видим, что граница эргосферы вовсе не является границей черной дыры, раз из-под этой поверхности можно выйти наружу. Посмотрим, что же будет при дальнейшем приближении к черной дыре.
Подобные документы
Определение и теоретическая концепция "черных дыр": условия их появления, свойства, действие гравитационного поля на близкие к ним объекты, способы поиска в галактиках. Теория струн как гипотетическая возможность рождения микроскопических "черных дыр".
творческая работа [1018,6 K], добавлен 26.04.2009Образование черных дыр. Расчет идеализированного сферического коллапса. Современная теория звездной эволюции. Пространство и время. Свойства черной дыры. Общая теория относительности Эйнштейна. Поиск черных дыр. Горизонт событий и сингулярность.
презентация [4,4 M], добавлен 12.05.2016Черные дыры - самый таинственный объект во всей науке. Формирование и особенности черных дыр. Загадки и расширение Вселенной. Демография Черных дыр. Теория Стивена Хоккинга, который объединил теорию относительности и квантовую механику в единую теорию.
презентация [771,6 K], добавлен 20.10.2016Анализ основных представлений о черных дырах. Заряженные и нейтральные черные дыры. Математическое описание модели черной дыры Райсснера-Нордстрема. Черные дыры с электрическим зарядом Райсснера-Нордстрема. Решения уравнений Эйнштейна для чёрных дыр.
курсовая работа [4,4 M], добавлен 28.09.2015Черные дыры как уникальные по своим свойствам продукты эволюции звезд, анализ сценариев их образования. Знакомство с особенностями нейтронных звезд. Характеристика методов радиоинтерферометрии со сверхдлинной базой. Рассмотрение квантовых черных дыр.
реферат [42,1 K], добавлен 06.05.2014Черные дыры как области пространства, настолько плотные, что даже свет не может преодолеть их гравитационного притяжения, основное назначение. Общая характеристика теоремы Биркгофа. Сущность понятия "кротовая нора", знакомство с ключевыми особенностями.
презентация [2,0 M], добавлен 08.01.2014Ознакомление с историей открытия, особенностями формирования, свойствами (массивность, компактность, невидимость), видами (сверхмассивные, первичные, квантовые), эффектом испарения, процессом гравитационного коллапса и направлениями поиска черных дыр.
реферат [57,3 K], добавлен 08.05.2010Возникновение, развитие и гибель Вселенной. Создание модели Вселенной. Идея "большого взрыва". Открытие момента, когда Вселенная стала создавать свои первые атомы. Притяжение черной дыры и скорость убегания. Принципы и основы формирования черных дыр.
презентация [30,3 M], добавлен 16.02.2012Черная дыра - порождение тяготения. История предсказаний поразительных свойств черных дыр. Важнейшие выводы теории Эйнштейна. Процесс релятивистского гравитационного коллапса. Небесная механика черных дыр. Поиски и наблюдения. Рентгеновское излучение.
реферат [29,3 K], добавлен 05.10.2011Свойства "черной дыры" - пространства, в которой гравитационное притяжение настолько сильно, что ни вещество, ни излучение не могут эту область покинуть. Косвенные признаки нахождения "черной дыры", искажение нормальных характеристик ближайших объектов.
статья [21,8 K], добавлен 08.02.2010