Солнце и его влияние на Землю

Изучение строения Солнца, процессов, происходящих на нем, и их влияния на жизнь Земли. История наблюдений Солнца. Виды излучений, посылаемых Солнцем на Землю, оценка их роли. Солнечная радиация, корпускулярное излучение. Особенности солнечных пятен.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 26.04.2011
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

  • 1. Вступление
  • 2. История наблюдений Солнца
  • 3. Движение Солнца на небе
  • 4. Общая характеристика
  • 5. Строение Солнца
  • 6. Энергия Солнца
  • 7. Солнечная активность
  • 8. Солнечно-земные связи
  • Заключение
  • Литература

1. Вступление

"О Солнце!

Без тебя не стало б в мире жизни,

Не стало б мира самого!"

Эдмонд Ростан

Земля это планета Солнечной системы. Центральным и главным её телом является наша звезда - Солнце. Если сравнивать её с другими звездами, та это обыкновенная рядовая звезда средних размеров, средней температуры, средней светимости, находящаяся примерно в средней части своей эволюции. Но для жизни нашей системы Солнце - главное тело. Огромно значение Солнца в жизни Земли. Жизнь на нашей планете, весь её органический мир обязан Солнцу. Солнце - не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра). Издавна жители Земли строили свою жизнь, ориентируясь на движение Солнца по небу, на процессы, происходящие на Солнце. Солнце - ближайшая к нам звезда, поэтому это хорошо изученная звезда. Зная о процессах и явлениях, происходящих на Солнце, мы узнаем о том, что происходит на других звездах. Поэтому очень важно знать как можно больше о Солнце. Это объясняет выбор темы реферата.

Цель реферата: изучение строения Солнца, процессов, происходящих на Солнце, изучение влияния этих процессов на жизнь Земли.

Задачи реферата: собрать сведения из различных литературных источников по теме,

проанализировать их и на основе этого описать строение Солнца, процессы, происходящие на Солнце,

изучить все виды излучений, посылаемых Солнцем на Землю и оценить их роль в жизни нашей планеты.

2. История наблюдений Солнца

Еще задолго до наступления нашего научно-технического века люди наблюдали Солнце. Они знали его животворную силу, почитали и поклонялись ему как богу. Кроме того, люди использовали дневное светило для исчисления времени. Культовые сооружения в древние времена строились большей частью так, чтобы по ним можно было определить точки восхода и захода Солнца в начале весны или лета.

Греки в старину полагали, что бог солнца Гелиос каждый день проезжает по небу на солнечной колеснице, запряженной огненными конями. Американские племена майя, инков и ацтеков, жившие вдали от Европы и Азии, также почитали солнечных богов и даже приносили им в жертву людей. В Древнем Египте бог солнца Ра занимал особое положение. А фараон Эхнатон со своей супругой Нефертити даже считали солнечный диск самим богом. Недалеко от Египта, на острове Родос, около 300 г. До н.э. было воздвигнуто тридцатиметровое каменное изваяние бога Солнца. Эта статуя возвышалась у входа в гавань. Она носила имя Колосса Родосского и являлась одним из семи чудес света. В Римской империи богом Солнца и войны одновременно был Митрас. Культ Митраса возник в Персии, развился в Римской империи и затем распространился на север, вплоть до Германии.

В астрологии Солнце всегда считалось знаком силы, красоты и жизненной энергии. "Солнце наряду с Луной является основным источником жизни, воплощением мужского начала, - говорится в "Астрологии" Й.В. Пфаффа (1816). - Оно олицетворяет королевскую власть, высокие звания и почести, славу, победу, жадность к золоту, закон, конституцию, отцов, сыновей, братьев", - все то, что в человеческом начале так или иначе связано с мужским началом. Характерно, что римский культ Митраса, упоминавшийся выше, совершенно исключал участие женщин. Кстати, только в языках северных стран Солнце - женского рода, а Луна - мужского, в большинстве языков все как раз наоборот.

В далекие от нас времена солнечные затмения вызывали у людей суеверный ужас. Не зная причин затмений, невежественные люди дорисовывали наблюдаемую картину своим воображением. Одни полагали, что солнечные затмения представляют собой особые знамения, другие видели в этом явлении нападение на Солнце огромного чудовища-дракона, пытающегося сожрать небесное светило. Малодушные в панике разбегались, стремясь укрыться от солнечного затмения и гнева богов, а более храбрые, стремясь спасти Солнце от дракона, быстро вооружались подручными средствами-бубнами, барабанами, кастрюлями, сковородками, луками со стрелами, копьями и камнями, словом, всем тем, что сразу попадалось под руку, и, подняв невообразимый шум, метали стрелы, копья и камни в чудовище. И к радости своей скоро обнаруживали, как из-за черной круглой заслонки на небе снова появляется узкий солнечный ceрп, исчезают звезды и лучистое сияние, быстро светлеет и наконец Солнце снова принимает свой обычный вид. С радостью люди расходились по своим делам, довольные тем, что спасли Солнце от несчастья. И если через много лет опять повторялось солнечное затмение, то, имея уже опыт в "спасении" Солнца, снова прибегали к тем же действиям.

В древних крупных централизованных государствах, при их правителях, были придворные жрецы-астрологи, которые были обязаны вести наблюдения за небом и по расположению светил предсказывать наступление небесных, явлений, благоприятствующих или препятствующих жизни государства и действиям правителей. С астрологами обязательно советовались перед принятием важных государственных решений, и горе было тому астрологу, который неверно предсказывал исход предполагаемых действий. Вполне понятно, что хорошо изученные периодические явления астрологи предсказывали правильно и заслуживали похвалы своих повелителей, но остальные их предсказания и советы были всегда туманны и неопределенны.

солнце земля излучение пятно

В старинной классической китайской книге "Шуцзин" ("Книга истории") рассказывается о том, что согласно древним летописям "В первый день последнего месяца осени Солнце и Луна неожиданно встретились в Тереме". Терем-это древнекитайское созвездие, включавшее в себя некоторые звезды теперешнего созвездия Скорпиона и некоторые слабые звезды созвездий Змееносца и Весов. Неожиданная же встреча Солнца с Луной означала солнечное затмение, не предсказанное астрономами. Государственные же астрономы Хи и Хо не сумели предсказать этого затмения и не выполнили полагавшихся в подобных случаях действий. Среди сановников и населения от неожиданности поднялась паника, приведшая к беспорядкам, за что оба астронома, обвиненные в пьянстве и пренебрежении служебными обязанностями, были казнены. Но именно это солнечное затмение в Древнем Китае в царствование Чунг-Канга было первым солнечным затмением, упоминавшимся в древних китайских летописях.

Со временем, к началу VI в. до н.э., древние астрономы сумели установить причину солнечных затмений. Они обратили внимание на покрытия звезд Луной при ее движении по небу и на исчезновение Луны во время солнечных затмений, а отсюда пришли к выводу, что Луна встречается с Солнцем и заслоняет его. Геродот описывает знаменитый Саламинский морской бой между греческим и персидским флотом, который произошел в Сароническом заливе у южного побережья Греции. Бой этот знаменит тем, что персидский флот из 800 судов потерпел полное поражение от греческого флота, состоявшего из 350 кораблей. В этот день на южном побережье Греции произошло полное затмение Солнца и по нему была вычислена дата боя - 2 октября 480 г. до н.э. При виде солнечных затмений ужас охватывал только несведущих и суеверных людей, которых в древние времена, естественно, было подавляющее большинство. Но знающие причину затмений не испытывали перед ними никакого страха и использовали свои знания в определенных целях. В начале Пелопонесской войны между древнегреческими городами-государствами Афинами и Спартой солнечное затмение чуть было не привело к срыву военно-морской экспедиции афинян, которой командовал Перикл (около 490-429 г. до н.э.) - выдающийся стратег афинского государства в период его расцвета. Перикл был учеником известного философа Анаксагора (около 500-428 г. до н.э.) и поэтому хорошо знал причину солнечных затмений, Когда афинский флот был готов к отплытию, началось затмение Солнца. Наступившая темнота повергла моряков и солдат в ужас и была воспринята ими, как дурное предзнаменование. Видя, что лоцман корабля пришел в сильное смятение и совершенно не в состоянии вести корабль, Перикл взял свой плащ, закрыл им лоцману глаза и спросил его, видит ли он в этом плаще что-либо ужасное или какое-то плохое предзнаменование. Получив от лоцмана отрицательный ответ, Перикл сказал ему: "Так в чем же тогда различие между этим плащом и тем телом, которое закрыло Солнце, разве только в том, что оно больше моего плаща!" Действия и слова Перикла успокоили не только лоцмана, но и солдат, наблюдавших эту сцену, после чего флот в правильном строю вышел из гавани. Согласно вычислениям это солнечное затмение не было полным (Солнце было закрыто Луной на 80%) и произошло в Греции 3 августа 431 г. до н.э., что помогло уточнить дату начала и продолжительность Пелопонесской войны (431-404 г. до н.э.).

Можно привести много примеров, когда вычисление обстоятельств и дат солнечных затмений позволило установить или уточнить не только даты исторических событий, но и системы древних летосчислений.

Даже в XX веке, люди порой не понимают явлений, связанных с Солнцем, иногда испытывают даже священный ужас. Например, в 1973 году во время полного солнечного затмения в Африке многие люди покончили жизнь самоубийством: совершенно безобидное явление природы они приняли за конец света. В 1980 году индийские полицейские стреляли из пистолетов и ружей в Луну, которая закрыла Солнце. Уже несколько тысячелетий Солнце играет огромную роль в астрологии - учении о связи между расположением светил и историческими событиями, судьбами людей и народов. Наше Солнце светит уже много миллиардов лет.

История телескопических наблюдений Солнца начинается с наблюдений, выполненных Г. Галлилеем в 1611 году; были открыты солнечные пятна, определён период вращения Солнца вокруг своей оси. В 1843 году немецкий астроном

Г. Швабе обнаружил цикличность солнечной активности. Развитие методов спектрального анализа позволило изучить физические условия на Солнце. В 1814 году Й. Фраунгофер обнаружил тёмные линии поглощения в спектре Солнца - это положило начало изучению химического состава Солнца. С 1836 года регулярно ведутся наблюдения затмений Солнца, что привело к обнаружению короны и хромосферы Солнца, а также солнечных протуберанцев. В 1913 году американский астроном Дж. Хейл наблюдал зеемановское расщепление фраунгоферовых линий спектра солнечных пятен и этим доказал существование на Солнце магнитных полей. К 1942 году шведский астроном Б. Эдлен и другие отождествили несколько линий спектра солнечной короны с линиями высокоионизированных элементов, доказав этим высокую температуру в солнечной короне. В 1931 году Б. Лио изобрёл солнечный коронограф, позволивший наблюдать корону и хромосферу вне затмений. В начале 40-х годов XX века было открыто радиоизлучение Солнца. Существенным толчком для развития физики Солнца во второй половине XX века послужило развитие магнитной гидродинамики и физики плазмы. После начала космической эры изучение ультрафиолетового и рентгеновского излучения Солнца ведётся методами внеатмосферной астрономии с помощью ракет, автоматических орбитальных обсерваторий на спутниках Земли, космических лабораторий с людьми на борту.

Каждому наверняка известно, что нельзя смотреть на Солнце невооружённым глазом, а тем более в телескоп без специальных, очень тёмных светофильтров или других устройств, ослабляющих свет. Пренебрегая этим запретом, наблюдатель рискует получить сильнейший ожог глаз. Самый простой способ рассматривать Солнце - это спроецировать его изображение на белый экран. При помощи даже маленького любительского телескопа можно получить увеличенное изображение солнечного диска. Что же видно на этом изображении? Прежде всего, обращает на себя внимание резкость солнечного края. Солнце - газовый шар, не имеющий чёткой границы, плотность его убывает постепенно. Почему же в таком случае мы видим его резко очерченным? Дело в том, что практически всё видимое излучение Солнца исходит из очень тонкого слоя, который имеет специальное название - фото-сфера (греч. "сфера света"). Его толщина не превышает 300 км. Именно этот тонкий светящийся слой и создаёт у наблюдателя иллюзию того, что Солнце имеет "поверхность".

3. Движение Солнца на небе

Допустим, что можно остановить вращение Земли и наблюдать только смещение Солнца относительно звезд. Систематически наблюдая в одно и то же вечернее время за положением ярких звезд и созвездий в западной части неба, следует убедиться в том, что с каждым днем созвездия заходят все раньше и раньше, т.е. перемещаются навстречу Солнцу. Таким образом, исчезают для наблюдений те созвездия, в которые входит Солнце, и наоборот, утром становятся видимыми те, с которых сходит Солнце. Эти созвездия все раньше восходят в восточной части неба. Но Солнце перемещается не только в плоскости небесного экватора (изменяется прямое восхождение - alfa), но и в перпендикулярном направлении (изменяется склонение - delta). В этом можно убедиться, пронаблюдав высоту Солнца в полдень в разное время года. Звезды, имеющие постоянное склонение, кульминируют всегда на одной и той же высоте, Солнце же в летнее время в полдень поднимается высоко над горизонтом, а зимой проходит низко, что отражается и на продолжительности дня и на количестве получаемой теплоты. Следовательно, Солнце летом отклоняется от плоскости небесного экватора в одну сторону, к северному полюсу, а летом - в другую, к южному полюсу. Точно в плоскости экватора Солнце находится в дни осеннего и весеннего равноденствий, когда продолжительность дня равна продолжительности ночи. Измерениями простейшими угломерными приспособлениями или по тени от гномона (вертикального шеста) можно определить высоту Солнца в полдень летом - hs, а также зимой - hw. Из связи астрономических системы координат с широтой местности известно, что высота светила в верхней кульминации h равна:

h = 90 - fi + delta,

где: fi - широта данного места, delta - склонение, угловое расстояние светила от небесного экватора.

Поскольку широта местности не меняется, из изменений высоты Солнца следует, что меняется его склонение. Широту местности приближенно для данного населенного пункта можно определить по географической карте, тогда по измерениям высоты h можно найти, что летом максимальное удаление от небесного экватора составляет +23. 5°, а в зимнее время равно - 23. 5°. Также можно установить, что на небесном экваторе Солнце находится 21 марта и 23 сентября, в эти дни склонение Солнца равно 0°. Это и есть точки равноденствий: весеннего и осеннего.

Таким образом, на звездной карте можно прочертить годичный путь Солнца относительно звезд, который представляет собой большой круг, наклоненный к экватору под углом в 23. 5¦, называемый эклиптикой. Созвездия, по которым проходит эклиптика, называются зодиакальными. В настоящее время выделено 12 таких созвездий (Рыбы, Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог, Водолей) и считается, что в течение месяца Солнце находится в каждом таком созвездии, примерно в 20-х числах переходя из одного созвездия в другое. Отсюда следует, что зодиакальное созвездие, в котором в данное время находится Солнце, не может быть наблюдаемо, так как оно выходит и заходит вместе с ярким диском Солнца, но зато в полночь хорошо наблюдаются противоположные созвездия, в которых Солнце находилось 6 месяцев назад. Различают хорошо наблюдаемые зимние зодиакальные созвездия такие, как Телец, Близнецы, Рак, Лев и летние - Весы, Скорпион, Стрелец, Козерог. Следует помнить, что годичное перемещение Солнца относительно звезд является в действительности результатом движения Земли вокруг

4. Общая характеристика

Сегодня известно, что возникло Солнце вместе с планетами своей системы из большого холодного облака газа и пыли. Сначала образовалось сферическое облако, которое, сжимаясь, вращалось все быстрее. Под действием центробежных сил оно превратилось в диск. Почти все вещество облака сгустилось в центре этого диска в большой шар. Именно так, по-видимому, возникло Солнце. По краям диска сформировались меньшие небесные тела, планеты и луны. Только что родившееся Солнце сначала было холодным, но оно все время сжималось, становясь при этом горячее и горячее, пока температура внутри него не достигла многих миллионов градусов. Вот тогда-то и создались необходимые условия для жизни звезды на протяжении миллиардов лет: молодое Солнце начало вырабатывать в своем горячем ядре ядерную энергию. Так родилась новая звезда. Она окружена планетами. Есть среди них одна особенная. Благодаря Солнцу на ней зародилась жизнь во всем великолепном разнообразии ее форм. Это наша Земля.

Солнце - обычная звезда класса G2, одна из более чем 100 миллиардов звезд нашей Галактики.

Солнце - самый большой объект Солнечной системы, содержащий 99. 8% массы всей Солнечной системы (большая часть остальной массы приходится на Юпитер).

На сегодняшний день 75% массы Солнца составляет водород и 25% - гелий (по числу атомов - 92. 1% водорода и 7. 8% гелия), остальные элементы составляют только 0. 1%. Это соотношение медленно изменяется благодаря тому, что в ядре происходит превращение водорода в гелий.

Внешние слои Солнца вращаются: в районе экватора они совершают оборот за 25. 4 дня; вблизи полюса - за 36 дней. Это неравномерное вращение обусловлено тем, что Солнце не является твердым телом, подобно Земле. Подобные эффекты замечены и у газовых планет. Дифференциальное вращение простирается глубоко во внутренние слои Солнца, но ядро вращается как твердое тело.

Условия в ядре Солнца (приблизительно 25% радиуса) критические: температура составляет 15. 6 миллионов К, давление - 250 миллиардов атмосфер. Газ ядра спрессован до плотности, в 150 раз превышающей плотность воды.

Испускаемая Солнцем энергия в 386 миллиард миллиардов мегаватт, производится текущими в нем реакциями ядерного синтеза. Каждую секунду приблизительно

700 000 000 тонн водорода превращается в 695 000 000 тонн гелия и 5 000 000 тонн энергии в форме гамма лучей. Поскольку эта энергия распространяется от ядра к поверхности, она непрерывно поглощается и заново испускается при все более и более низких температурах, так что к тому времени, когда она достигает поверхности, то испускается, прежде всего, как видимый свет. Последние 20% пути к поверхности энергия переносится слоями газа или при помощи конвекции.

Можно представить такой паспорт Солнца:

ПАСПОРТ

Возраст 4,7. 109 лет

Продолжительность жизни 10. 109 лет

Масса 1,989. 1030кг

Радиус 696 000 км

Полная светимость 3,9. 1026 Вт

Мощность, достигающая Земли 1,368 кВт/м2

Спектральный класс G2V0С

Температура фотосферы 55000С

Абсолютная видимая величина +4,83m

Расстояние от Земли 149 600 000 км

Расстояние от центра Галактики 28 000 св. лет

Скорость в Галактике 220 км/с

Химический состав

(атомов на атом водорода)

Водород 1

Гелий 0,1

Кислород 0,0007

Углерод 0,00033

Железо 0,00011

Неон 0,0001

Азот 0,0001

Солнце, центральное тело солнечной системы, представляет собой раскалённый плазменный шар. Вращение Солнца вокруг оси происходит в том же направлении, что и вращение Земли. Скорость вращения определяется по видимому движению различных деталей в атмосфере Солнца и по сдвигу спектральных линий в спектре края диска Солнца. Именно таким образом было обнаружено, что период вращения Солнца неодинаков на разных широтах. Солнце как звезда является типичным жёлтым карликом и располагается в средней части главной последовательности звёзд на диаграмме Герцшпрунга-Рессела.

5. Строение Солнца

Солнце имеет атмосферу.

Нижний слой солнечной атмосферы называется фотосферой. Температура фотосферы составляет примерно 5800 К. Солнечные пятна - "холодные" области с температурой 3800 К. Они выглядят темными только потому, что их окружают области с гораздо более высокой температурой. Солнечные пятна могут быть очень большими - более чем 50 000 км в диаметре. Они обусловлены сложными и пока не очень хорошо понятыми взаимодействиями Солнечного магнитного поля.

Над фотосферой находится небольшая область, называемая хромосферой.

Cильно разреженная область выше хромосферы, называемая короной, простирается на миллионы километров в космос, и видима только во время затмений. Температура короны более чем 1000000K.

Магнитное поле Солнца очень мощное (по земным стандартам) и очень сложное. Это магнитосфера, или гелиосфера, простирающаяся за орбиту Плутона.

Внутреннее строение Солнца.

В центре Солнца расположена зона ядерных реакций. Здесь выделяется вся энергия Солнца. Выделение энергии определяется ядерными реакциями, при которых водород превращается в гелий. На Солнце возможны две группы термоядерных реакций: так называемый протон-протонный (водородный) цикл и углеродный цикл (цикл Бете). Наиболее вероятно, что на Солнце преобладает протон-протонный цикл, состоящий из трёх реакций, в первой из которых из ядер водорода образуются ядра дейтерия (тяжёлый изотоп водорода, атомная масса равна 2; во второй из ядер водорода образуются ядра изотопа гелия с атомной массой 3 и, наконец, в третьей из них образуются ядра устойчивого изотопа гелия с атомной массой 4. Перенос энергии из внутренних слоёв Солнца в основном происходит путём поглощения электромагнитного излучения, приходящего снизу, и последующего переизлучения. В результате понижения температуры при удалении от Солнца постепенно увеличивается длина волны излучения, переносящего большую часть энергии в верхние слои. Такой перенос энергии происходит в лучистой зоне Солнца. Перенос энергии движением горячего вещества из внутренних слоёв, а охлаждённого внутрь (конвекция) играет существенную роль в сравнительно более высоких слоях. Этот перенос энергии осуществляется в конвективной зоне. В более высоких слоях (в атмосфере Солнца) перенос энергии опять осуществляется излучением. В верхних слоях атмосферы Солнца (в хромосфере и короне) часть энергии доставляется механическими и магнитогидродинамическими волнами, которые генерируются в конвективной зоне, но поглощаются только в этих слоях. Плотность в верхней атмосфере очень мала, и необходимый отвод энергии за счёт излучения и теплопроводности возможен только, если кинетическая энергия этих слоёв достаточно велика. Наконец, в верхней части солнечной короны большую часть энергии уносят потоки вещества, движущиеся от Солнца, так называемый солнечный ветер. Температура в каждом слое устанавливается на таком уровне, что автоматически осуществляется баланс энергии: количество приносимой энергии за счёт поглощения всех видов излучения, теплопроводностью или движением вещества равно сумме всех энергетических потерь слоя. Мощность энергии Солнца составляет 1400. 4рR2 Вт. Яркость диска Солнца уменьшается от центра к краю, причём это уменьшение зависит от длины волны, так что яркость на краю диска Солнца для света с длиной волна 3600А составляет 0,2 яркости его центра, а для 5000А - около 0,3 яркости центра диска Солнца. На самом краю диска Солнца яркость падает в 100 раз на протяжении менее одной секунды дуги, поэтому граница диска Солнца выглядит очень резкой. Спектральный состав света, излучаемого Солнцем, то есть распределение энергии в центре Солнца (после учёта влияния поглощения в земной атмосфере и влияния фраунгоферовых линий), в общих чертах соответствует распределению энергии в излучении абсолютно чёрного тела с температурой около 6000 К. Однако в отдельных участках спектра имеются заметные отклонения. Максимум энергии в спектре Солнца соответствует длине волны 4600 А. Спектр Солнца - это непрерывный спектр, на который наложено более 20 тысяч линий поглощения (фраунгоферовых линий). Более 60% из них отождествлено со спектральными линиями известных химических элементов путём сравнения длин волн и относительной интенсивности линии поглощения в солнечном спектре с лабораторными спектрами. Изучение фраунгоферовых линий даёт сведения не только о химическом составе атмосферы Солнца, но и о физических условиях в тех слоях, в которых образуются те или иные поглощения. Преобладающим элементом на Солнце является водород. Количество атомов гелия в 4-5 раз меньше, чем водорода. Число атомов всех других элементов вместе взятых, по крайней мере, в 1000 раз меньше числа атомов водорода. Среди них наиболее обильны кислород, углерод, азот, магний, железо и другие. В спектре Солнца можно отождествить также линии, принадлежащие некоторым молекулам и свободным радикалам: OH, NH, CH, CO и другим.

6. Энергия Солнца

Благодаря сочетанию сверхвысоких давлений и температур в центральной области Солнца происходят ядерные реакции, при которых выделяется огромное количество энергии. Среднее количество вырабатываемой при ядерных реакциях энергии в расчете на грамм вещества в секунду составляет 1,92 эрг. Часть этой энергии идет на поддержание в центральной области сверхвысоких температур, необходимых для ядерных реакций, а остальная излучается Солнцем в межпланетное пространство. Мощность общего излучения Солнца 3,831026 Вт, из которых на Землю попадает около 2,1017 Вт, т.е. приблизительно одна двухмиллиардная часть. С 1 см2 поверхности Солнца в 1 сек. излучается энергии 6000 Вт. Излучаемый Солнцем поток энергии уносит ежегодно 1,41013 т вещества. И хотя эта величина, по нашим понятиям, огромна, по сравнению с массой светила она ничтожна: потребуется невероятно огромное время, чтобы Солнце израсходовало на излучение энергии все свое вещество и, таким образом, перестало бы существовать. Но до такого состояния Солнце далеко - приблизительно 10 млрд. лет.

А.Б. Северный дает такое интересное сопоставление огромной мощности излучаемой Солнцем энергии с эффектом ее использования: "Ежесекундно теряемой Солнцем лучистой энергии достаточно, чтобы в течение часа растопить и довести до кипения 2,5 биллиона км3 льда, т.е. растопить слой льда вокруг Земли толщиной более 1000 км." Исходящее из центральной области Солнца излучение, по мере движения к внешним сферам, перестраивается из коротковолнового в длинноволновое. Если в центре присутствуют обычные Х-лучи, гамма-излучение и рентгеновское, то в средних слоях солнечного шара преобладают ультрафиолетовые лучи, а в излучающей поверхности Солнца (в фотосфере) они оказываются трансформированными уже в волны светового диапазона излучения. В соответствии с диапазоном длин излучаемых поверхностью Солнца (фотосферой) ее температура принимается равной 5600 К.

Солнце генерирует и отпускает в космическое пространство два основных потока энергии - электромагнитное излучение, или солнечную радиацию, и корпускулярное излучение, или солнечный ветер. Энергетические потоки обладают высокой мощностью в пределах близко расположенных от светила космических тел.

И, наоборот, до далеких от Солнца тел потоки энергии доходят сильно ослабленными, а потому их значение в энергетическом балансе планет становится меньшим. Тем не менее, тепловое поле поверхности всех планет Солнечной системы создается почти исключительно солнечной радиацией, так как приход эндогенной энергии планет к поверхности крайне незначителен и многими природоведами применительно к Земле игнорируется. Вот почему для планет внутренней группы - Меркурия, Венеры и Марса - значение солнечной энергии особенно велико.

Что представляет собой солнечная радиация.

Согласно современной квантовой теории, излучение электромагнитной энергии Солнца, в том числе и света, происходит не непрерывно, а порциями - квантами. Каждый квант несет определенную энергию. Она измеряется обычно электрон-вольтами (эВ). Электрон-вольт - это количество энергии, которое приобретает свободный электрон, ускоренный электрическим полем с разностью потенциалов в 1 вольт (В). Электрон-вольт равен 1, 6. 10 - 19 Дж. Солнечные кванты могут иметь самую различную энергию - от миллионов электрон-вольт до миллионных долей электрон-вольта. Иначе говоря, кванты электромагнитного излучения могут различаться по энергии в миллиарды раз! Электромагнитное излучение имеет волновой характер. Каждому кванту с определенной энергией свойственна волна излучения определенной длины. Электромагнитное излучение можно характеризовать не только в квантах разной мощности, но и в соответствующих им длинах волн. Они измеряются в разных единицах длины: короткие волны квантов большой энергии - ангстремами (А), что составляет 1/100 млн. часть сантиметра (10-8 см). Например, кванту с энергией в 1эВ соответствует длина волны ??л = 12400 А. Более длинные волны измеряются последовательно - миллиметрами, сантиметрами, дециметрами, метрами и километрами. Имеются и промежуточные единицы - микрометры (мкм) = 104 А.

Совокупность всех видов квантов, расположенных последовательно с возрастанием их энергии, называется спектром электромагнитного излучения Солнца. Соответственно спектр солнечной радиации можно выразить через волны различной длины. Непрерывный спектр электромагнитного излучения условно разделен по длине волн на диапазоны: гамма-излучение, рентгеновское, ультрафиолетовое; все это ультракоротковолновая радиация, характеризующаяся высокими значениями энергии и не восприятием ее человеческим глазом. Далее следует оптический, или световой, диапазон. За ним опять идут два невидимых диапазона электромагнитных волн - инфракрасные и радиоволны.

Распределение энергии по спектру неравномерное. На всю коротковолновую часть спектра - от длин волн менее одного ангстрема до приблизительно 4000 А, т.е. на гамма - лучи, рентгеновские и ультрафиолетовые лучи, - приходится только 7% энергии солнечной радиации. На оптический диапазон спектра - электромагнитные волны в интервале длин 4000 - 7600 А - приходится 48% энергии. Именно к оптическому диапазону приурочен максимум излучения, соответствующий сине-зеленому интервалу световой гаммы излучения. Остальные 45% энергии солнечной радиации содержатся в основном в инфракрасном излучении - в волнах длиннее 7600 А; из этого количества энергии лишь незначительная часть приходится на радиоизлучение. Волны электромагнитного излучения в зависимости от своей длины и соответственно энергии обладают многими индивидуальными свойствами, что имеет большое значение для формирования природных условий на планетах.

Наибольшей проницаемостью обладают самые длинные волны - радиоволны. Ни одна даже самая плотная атмосфера не является для них непреодолимым препятствием, в то время как волны всех других диапазонов на разных высотных уровнях могут полностью поглощаться атмосферами. Поскольку радиоволны свободно проникают через газовые среды, с их помощью можно изучать поверхность многих небесных тел, куда лучи светового диапазона из-за атмосферы проникнуть не могут. Необыкновенно плотная атмосфера Венеры не позволяет пользоваться оптическими средствами для знакомства с ее поверхностью. Используя радиоволны (применяя радиолокации), ученые изучают рельеф поверхности планеты.

Что представляет собой корпускулярное излучение.

Это поток плазмы - раскаленного ионизированного газа солнечной короны, температура которого оценивается в 1 млн. градусов. Термин "корпускулярное излучение" означает, что унос от Солнца вещества - ионизированного газа - осуществляется не как непрерывный процесс, а происходит некоторыми порциями, или частицами, - корпускулами. Основу плазменного потока составляют ядра водорода, в меньшей степени - гелия, других элементов, а также электроны. Поток энергии в межпланетной среде можно представить себе как распространение газа от места его генерации и концентрации (солнечная корона) к вакууму. При этом сила притяжения Солнца с увеличением расстояния ослабевает. Именно благодаря указанным причинам поток плазмы в процессе движения увеличивает свою скорость от десятков километров в секунду вблизи солнечной короны до 500 км/сек на расстоянии земной орбиты. Энергия потока на этом расстоянии определена в 4104 эрг/см2 сек.

Ионизированный газ корпускулярного излучения, непрерывно испускаемый солнечной короной, постепенно ослабевая в своей мощности по мере движения к периферии Солнечной системы, заполняет все межпланетное пространство. Более того, в сильно ослабленном расстоянием потоке он проникает и в межзвездное пространство. Одной из характерных особенностей солнечного ветра является присущее ему магнитное поле. Те планеты, которые не имеют своего магнитного поля (Луна, Венера), позволяют солнечному ветру беспрепятственно проникать через атмосферу (где она имеется) до их поверхности и на атомарном уровне взаимодействовать с ее веществом. Иначе происходит, если у планеты есть сильное магнитное поле. Ярким примером сказанного может служить Земля, где процесс взаимодействия магнитных полей хорошо изучен. Сильное магнитное поле планеты препятствует проникновению потока плазмы к ее поверхности.

7. Солнечная активность

Солнечная активность - совокупность явлений, периодически возникающих в солнечной атмосфере. Проявления солнечной активности тесно связаны с магнитными свойствами солнечной плазмы. Возникновение активной области начинается с постепенного увеличения магнитного потока в некоторой области фотосферы. В соответствующих местах хромосферы после этого наблюдается увеличение яркости в линиях водорода и кальция. Такие области называют флоккулами Примерно в тех же участках на Солнце в фотосфере (т.е. несколько глубже) при этом также наблюдается увеличение яркости в белом (видимом) свете - факелы. Увеличение энергии, выделяющейся в области факела и флоккула, является следствием увеличившихся до нескольких десятков эрстред напряженности магнитного поля. Затем в солнечной активности наблюдаются солнечные пятна, возникающие через 1-2 дня после появления флоккула в виде маленьких чёрных точек - пор. Многие из них вскоре исчезают, и лишь отдельные поры за 2-3 дня превращаются в крупные тёмные образования. Типичное солнечное пятно имеет размеры в несколько десятков тысяч километров и состоит из тёмной центральной части - тени и волокнистой полутени.

Важнейшая особенность пятен - наличие в них сильных магнитных полей, достигающих в области тени наибольшей напряжённости в несколько тысяч эрстред. В целом пятно представляет собой выходящую в фотосферу трубку силовых линий магнитного поля. Верхняя часть трубки расширяется, и силовые линии в ней расходятся, как колосья в снопе. Поэтому вокруг тени магнитные силовые линии принимают направление, близкое к горизонтальному. Полное, суммарное давление в пятне включает в себя давление магнитного поля и уравновешивается давлением окружающей фотосферы, поэтому газовое давление в пятне оказывается меньшим, чем в фотосфере Магнитное поле как бы расширяет пятно изнутри. Кроме того, магнитное поле подавляет конвективные движения газа, переносящие энергию из глубины вверх. Вследствие этого в области пятна температура оказывается меньше примерно на 1000К. Пятно как бы охлаждённая и скованная магнитным полем яма в солнечной фотосфере. Большей частью пятна возникают целыми группами, в которых, однако, выделяются два больших пятна. Одно, наибольшее, - на западе, а другое, чуть поменьше, - на востоке. Вокруг и между ними часто бывает множество мелких пятен. Такая группа пятен называется биполярной, потому что у обоих больших пятен всегда противоположная полярность магнитного поля. Они как бы связаны с одной и той же трубкой силовых линий магнитного поля, которая в виде гигантской петли вынырнула из-под фотосферы, оставив концы где-то в ненаблюдаемых, глубоких слоях. То пятно, которое соответствует выходу магнитного поля из фотосферы, имеет северную полярность, а то, в области которого силовые линии входят обратно под фотосферу, - южную.

Самое мощное проявление фотосферы - это вспышки. Они происходят в сравнительно небольших областях хромосферы и короны, расположенных над группами солнечных пятен. По своей сути вспышка - это взрыв, вызванный внезапным сжатием солнечной плазмы. Сжатие происходит под давлением магнитного поля и приводит к образованию длинного плазменного жгута или ленты. Длина такого образования составляет десятки и даже сотни тысяч километров. Продолжается вспышка обычно около часа. Хотя детально физические процессы, приводящие к возникновению вспышек, ещё не изучены, ясно, что они имеют электромагнитную природу.

Наиболее грандиозными образованиями в солнечной атмосфере являются протуберанцы - сравнительно плотные облака газов, возникающие в солнечной короне или выбрасываемые в неё из хромосферы. Типичный протуберанец имеет вид гигантской светящейся арки, опирающейся на хромосферу и образованной струями и потоками более плотного и холодного, чем окружающая корона, вещества. Иногда это вещество удерживается прогнувшимися под его тяжестью силовыми линиями магнитного поля, а иногда медленно стекает вдоль магнитных силовых линий. Имеется множество различных типов протуберанцев. Некоторые из них связаны со взрывоподобными выбросами вещества из хромосферы в корону. Общая активность Солнца, характеризуемая количеством и силой проявления центров солнечной активности, периодически изменяется. Существует множество различных удобных способов оценивать уровень солнечной активности. Обычно пользуются наиболее простым и введённым раньше всех способом - числами Вольфа. Числа Вольфа пропорциональны сумме полного числа пятен, наблюдаемых в данный момент на Солнце, и удесятерённого числа групп, которые они образуют. Период времени, когда количество центров активности наибольшее называют максимумом солнечной активности, а когда их совсем нет или почти совсем нет - минимумом. Максимумы и минимумы чередуются в среднем с периодом 11 лет. Это составляет так называемый 11-ти летний цикл солнечной активности.

Солнечная активность непостоянна. Существовал период очень низкой активности Солнечных пятен во второй половине 17 века, который совпал по времени с аномально холодным периодом в северной Европе, иногда называемым малым ледниковым периодом. Со времени формирования Солнечной системы излучение Солнца увеличилось примерно на 40%.

Возраст Солнца - приблизительно 4. 5 миллиарда лет. Процессы, происходящие в нем начиная с рождения, исчерпали приблизительно половину водорода, содержавшегося в ядре. Оно продолжит излучать "мирно" еще около 5 миллиардов лет. Но, в конечном счете, водородное топливо будет исчерпано. Это приведет к радикальным переменам, в результате которых, как это ни банально по звездным стандартам

8. Солнечно-земные связи

Изучение истории Земли показывает, что наша планета в течение миллиардов лет получала от Солнца столько же тепла и света, сколько получает и теперь. Это значит, что за это время количество тепла и света, излучаемого Солнцем, существенно не менялось. Но все изменения, которые происходят в поверхностных слоях Солнца, отражаются на явлениях, происходящих на Земле.

Солнце - источник жизни на Земле. Если спросить любого человека, какое из небесных светил имеет наибольшее значение для нас на Земле, то, наверно, услышим, что Солнце. Не будь Солнца, не было бы на Земле зеленых лугов, тенистых лесов и рек, цветущих садов, хлебных полей, не могли бы существовать ни человек, ни животные, ни растения.

Значение Солнца для жизни на Земле человек чувствовал уже в далекие времена. Но первобытным людям Солнце представлялось каким-то сверхъестественным существом. Оно обожествлялось почти всеми народами древности.

Наши предки славяне поклонялись богу солнечных лучей - Яриле. У древних римлян был бог Солнца - Аполлон. Цари и князья, чтобы возвеличить свою власть, старались внушить людям представление о своем происхождении от бога Солнца.

Различные религиозные верования и обряды, связанные с этими древними представлениями о Солнце, сохранились и до наших дней, например в праздновании пасхи, которое всегда связано с наступлением весны и обновлением всей природы от живительных солнечных лучей.

Всякое движение на Земле происходит главным образом за счет энергии, которая поступает к нам в солнечных лучах. Солнце - источник жизни на Земле.

Великий русский ученый К.А. Тимирязев в своей замечательной книге "Жизнь растения" писал: "Когда-то где-то на Землю упал луч Солнца, но он упал не на бесплодную почву, он упал на зеленую былинку пшеничного ростка, или, лучше сказать, на хлорофилловое зерно. Ударяясь о него, он потух, перестал быть светом, но не исчез… В той или другой форме он вошел в состав хлеба, который послужил нам пищей. Он преобразился в наши мускулы, в наши нервы… Пища служит источником силы в нашем организме потому только, что она - не что иное, как консерв солнечных лучей…

Солнце является центром планетной системы. Ось вращения Земли отклонена от оси орбиты (т.е. прямой, перпендикулярной плоскости орбиты) на угол, равный примерно 23,5°. Если бы не было этого наклона, не существовало бы смены времен года. Регулярная смена времен года - следствие движения Земли вокруг Солнца и наклона оси вращения Земли к плоскости орбиты.

В северном полушарии Земли наступает лето, когда северный полюс Земли освещается Солнцем, а южный полюс планеты располагается в ее тени. При этом в южном полушарии наступает зима. Когда в северном полушарии весна, то в южном - осень. Времена года в южном и северном полушариях всегда противоположны.

Примерно 21 марта и 23 сентября во всем мире день и ночь продолжаются 12 часов. Эти дни называются днями весеннего и осеннего равноденствия. Летом продолжительность светлого времени суток больше, чем зимой, следовательно, северное полушарие Земли в течение весны и лета с 21 марта по 23 сентября получает гораздо больше тепла, чем осенью и зимой с 23 сентября по 21 марта.

Поток энергии от Солнца, падающий на Землю, изменяется обратно пропорционально квадрату расстояния. Поэтому зимы в северном полушарии менее суровые, чем в южном, а лето в северном полушарии более прохладное.

Не только тепло и свет получает Земля от Солнца. Различные виды солнечного излучения и потоки частиц оказывают постоянное влияние на её жизнь.

Солнце посылает на Землю электромагнитные волны всех областей спектра - от многокилометровых радиоволн до гамма-лучей. Окрестностей Земли достигают также заряженные частицы разных энергий - как высоких (солнечные космические лучи), так и низких и средних (потоки солнечного ветра, выбросы от вспышек). Наконец, Солнце испускает мощный поток элементарных частиц - нейтрино. Однако воздействие последних на земные процессы пренебрежимо мало: для этих частиц земной шар прозрачен, и они свободно сквозь него пролетают.

Электромагнитное излучение подвергается строгому отбору в земной атмосфере. Она прозрачна только для видимого света и ближних ультрафиолетового и инфракрасного излучений, а также для радиоволн в сравнительно узком диапазоне (от сантиметровых до метровых). Всё остальное излучение либо отражается, либо поглощается атмосферой, нагревая и ионизуя её верхние слои.

Поглощение рентгеновских и жёстких ультрафиолетовых лучей начинается на высотах 300-350 км; на этих же высотах отражаются наиболее длинные радиоволны, приходящие из космоса. При сильных всплесках солнечного рентгеновского излучения от хромосферных вспышек рентгеновские кванты проникают до высот 80 - 100 км от поверхности Земли, ионизуют атмосферу и вызывают нарушение связи на коротких волнах.

Мягкое (длинноволновое) ультрафиолетовое излучение способно проникать ещё глубже, оно поглощается на высоте 30-35 км. Здесь ультрафиолетовые кванты разбивают на атомы (диссоциируют) молекулы кислорода (02) с последующим образованием озона (О3). Тем самым создаётся не прозрачный для ультрафиолета "озонный экран", предохраняющий жизнь на Земле от гибельных лучей. Не поглотившаяся часть наиболее длинноволнового ультрафиолетового излучения доходит до земной поверхности. Именно эти лучи вызывают у людей загар и даже ожоги кожи при длительном пребывании на солнце

В излучении Солнца довольно много ультрафиолетовых лучей, значительно больше, чем это наблюдается с Земли, поскольку их поглощает земная атмосфера. Запуски беспилотных шаров-зондов, поднимавших на высоту 30 и более километров измерительные приборы и радиопередатчики, показали, что выше 25 - 28 километров температура воздуха растет, достигая максимума на уровне 30 - 35 километров. Еще выше температура снова падает, а интенсивность уф-лучей увеличивается. Ученые сделали вывод, что на высоте 30 - 35 километров происходит интенсивное поглощение солнечного ультрафиолетового излучения с образованием озона. Озон очень сильно поглощает лучи с длинами волн короче

0,3 мкм, спасая нас от их опасного воздействия на кожу и органы зрения. Вот почему тревогу вызывает существование озоновых дыр - через эти разрывы в озоновом слое солнечные уф-лучи достигают земной поверхности. Одной из причин разрушения озонового "щита" служат выбросы в атмосферу фторуглеродных соединений, широко используемых в холодильниках.

Но не только на образование озона расходуется энергия солнечных уф-лучей.

Радиоволны, как и все электромагнитные волны, должны распространяться прямолинейно. Значит, поскольку Земля - шар, радиосвязь между Европой и Америкой невозможна? Итальянский радиотехник Гульельмо Маркони осуществил в 1901 году прямую радиосвязь между Англией и США, раз и навсегда доказав, что радио волны могут огибать земной шар. Для этого им надо отразиться от какого-то "зеркала", висящего над земной поверхностью на высоте 150 - 300 километров. Таким "зеркалом" служит ионизованные слои атмосферы, а источником ионизации - ультрафиолетовое излучение Солнца. Таким образом, уф-лучи властно вторгаются в земные дела. Интенсивность уф-излучения Солнца была измерена, когда создание баллистических ракет позволило исследователям вынести аппаратуру за пределы земной атмосферы, на высоту более 100 километров. И первые же запуски увенчались успехом. С развитием спутниковой астрономии исследование ультрафиолетового излучения Солнца стало ее обязательным компонентом. Это необходимо потому, что уф-излучение контролирует состояние ионизованных слоев атмосферы, а следовательно, и условия радиосвязи на Земле, особенно в полярных районах. Эта не слишком приятная зависимость от капризов Солнца стало ослабевать лишь в последние десятилетия, с развитием спутниковой связи.

Излучение в видимом диапазоне поглощается слабо. Однако оно рассеивается атмосферой даже в отсутствие облаков, и часть его возвращается в межпланетное пространство. Облака, состоящие из капелек воды и твёрдых частиц, значительно усиливают отражение солнечного излучения. В результате до поверхности планеты доходит в среднем около половины падающего на границу земной атмосферы света.

Количество солнечной энергии, приходящейся на поверхность площадью 1 м2, развёрнутую перпендикулярно солнечным лучам на границе земной атмосферы, называется солнечной постоянной. Измерять её с Земли очень трудно, и потому значения, найденные до начала космических исследований, были весьма приблизительными. Небольшие колебания (если они реально существовали) заведомо "тонули" в неточности измерений. Лишь выполнение специальной космической программы по определению солнечной постоянной позволило найти её надёжное значение. По последним данным, оно составляет 1370 Вт/м2 с точностью до 0,5%.

На Земле излучение поглощается сушей и океаном. Нагретая земная поверхность в свою очередь излучает в длинноволновой инфракрасной области. Для такого излучения азот и кислород атмосферы прозрачны. Зато оно жадно поглощается водяным паром и углекислым газом. Благодаря этим малым составляющим воздушная оболочка удерживает тепло. В этом и заключается парниковый эффект атмосферы. Между приходом солнечной энергии на Землю и её потерями на планете в общем существует равновесие: сколько поступает, столько и расходуется. В противном случае температура земной поверхности вместе с атмосферой либо постоянно повышалась бы, либо падала.

Только очень малая часть заряженных частиц из межпланетного пространства попадает в атмосферу Земли (остальные отклоняет или задерживает геомагнитное поле). Но их энергии достаточно для того, чтобы вызвать полярные сияния и возмущения магнитного поля нашей планеты. Это свечение в верхних слоях атмосферы, имеющее либо размытые (диффузные) формы, либо вид корон или занавесей (драпри), состоящих из многочисленных отдельных лучей. Сияния обычно бывают красного или зелёного цвета: именно так светятся основные составляющие атмосферы - кислород и азот - при облучении их энергичными частицами. Зрелище бесшумно возникающих красных и зелёных полос и лучей, беззвучная игра цветов, медленное или почти мгновенное угасание колеблющихся "занавесей" оставляют незабываемое впечатление. Подобные явления лучше всего видны вдоль овала полярных сияний, расположенного между 10° и 20° широты от магнитных полюсов. В период максимумов солнечной активности в Северном полушарии овал смещается к югу, и сияния можно наблюдать в более низких широтах.


Подобные документы

  • Общая характеристика и особенности структуры Солнца, его значение в солнечной системе. Атмосфера Солнца, причины появления и характер пятен на его поверхности. Условия возникновения солнечных затмений. Циклы солнечной активности и их влияние на Землю.

    презентация [676,9 K], добавлен 29.06.2010

  • Светило нашей планетной системы. Солнце - предмет поклонения. Солнце как небесное тело. Приборы наблюдения за Солнцем. Солнечное излучение и его влияние на Землю. Роль Солнца в жизни Земли. Практическое использование солнечной энергии.

    реферат [22,9 K], добавлен 30.11.2006

  • Солнце, как небесное тело. Приборы наблюдения за Солнцем. Солнечное излучение и влияние его на Землю. Исключительная роль в жизни Земли. Поразительные особенности. Спокойное Солнце. О чем говорят нам солнечные затмения?

    реферат [24,5 K], добавлен 20.05.2007

  • Солнце - источник жизни на земле. Солнечная атмосфера, состав Солнца. Современная наука о Солнце, источники его энергии. Происхождение Солнечных и Лунных затмений. Солнечно-земные связи. Солнечная активность и магнитные бури. Радиационные пояса Земли.

    курсовая работа [474,5 K], добавлен 04.06.2009

  • Природа Солнца и его значение для нашей жизни – неисчерпаемая тема. О его воздействии на Землю люди догадывались еще в глубокой древности, в результате чего рождались легенды и мифы, в которых Солнце играло главную роль.

    реферат [15,4 K], добавлен 28.03.2004

  • Расположение и место во Вселенной планеты Солнца, ее происхождение и основные этапы развития. Природа солнечного света и его влияние на другие планеты и звезды Солнечной системы. Природа солнечных пятен. Особенности протекания и причины затмений Солнца.

    реферат [18,7 K], добавлен 16.01.2010

  • Строение Солнечной системы. Солнце. Солнечный спектр. Положение Солнца в нашей Галактике. Внутреннее строение Солнца. Термоядерные реакции на Солнце. Фотосфера Солнца. Хромосфера Солнца. Солнечная корона. Солнечные пятна.

    реферат [53,6 K], добавлен 10.09.2007

  • История открытия явления дисперсии и его значение для развития физики как науки. Методика спектрального анализа, разновидности спектров. Эффекты Доплера и Зеемана. История телескопических наблюдений Солнца и современные знания о его влиянии на Землю.

    научная работа [56,5 K], добавлен 03.07.2009

  • Жизненный цикл Солнца, солнечный спектр, текущий возраст. Внутреннее строение Солнца: солнечное ядро; зона лучистого переноса. Конвективная зона Солнца. Атмосфера, фотосфера Солнца. Хромосфера и ее плотность. Корона как последняя внешняя оболочка Солнца.

    реферат [26,5 K], добавлен 11.03.2011

  • Данные об исторических наблюдениях за затмением солнца. Применение спектрального анализа для исследований. Ведущая роль русских астрономов в изучении внешних оболочек Солнца, строения солнечной короны и её связи с другими явлениями, происходящими на нем.

    реферат [296,1 K], добавлен 22.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.