Основные характеристики и эволюция звёзд

Основные характеристики звезд: масса, количество энергии, излучаемой звездой в единицу времени, радиус и температура поверхностных слоев. Теоретические аспекты свойств межзвездной среды. Особенности жизненного цикла звезд и факторы, влияющие на него.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 29.03.2011
Размер файла 24,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

В результате огромной работы, проделанной астрономами ряда стран в течение последних десятилетий, мы многое узнали о различных характеристиках звезд, природе их излучения и даже эволюции. Как это ни покажется парадоксальным, сейчас мы гораздо лучше представляем образование и эволюцию многих типов звезд, чем собственной планетной системы. В какой-то степени это понятно: астрономы наблюдают огромное множество звезд, находящихся на различных стадиях эволюции, в то время как непосредственно наблюдать другие планетные системы мы пока не можем.

Мы упомянули о «характеристиках» звезд. Под этим понимаются такие их основные свойства, как масса, полное количество энергии, излучаемой звездой в единицу времени (эта величина называется «светимостью» и обычно обозначается буквой L), радиус и температура поверхностных слоев. Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхностных слоев звезды 3-4 тыс. К, то ее цвет красноватый, 6-7 тыс. К - желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К имеют белый и голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым «показателем цвета», равным разности фотографической и визуальной звездной величины. Каждому значению показателя цвета соответствует определенный тип спектра. У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, CN, СН, Н2О и др.). По мере увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, появляются линии ионизованных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К - линии ионизованного кальция, расположенные на границе видимой и ультрафиолетовой частей спектра. Заметим, что такой вид имеет спектр нашего Солнца. Последовательность спектров звезд, получающихся при непрерывном изменении температуры их поверхностных слоев, обозначается следующими буквами: О, В, A, F, G, К, М, от самых горячих к очень холодным. Каждая такая буква описывает спектральный класс. Спектры звезд настолько чувствительны к изменению температуры их поверхностных слоев, что оказалось целесообразным ввести в пределах каждого класса 10 подклассов. Например, если говорят, что звезда имеет спектр В9, то это означает, что он ближе к спектру А2, чем, например, к спектру В1.

Светимость звезды L часто выражается в единицах светимости Солнца. Последняя равна 3,8*1026 Вт. По своей светимости звезды различаются в очень широких пределах. Есть звезды (их, правда, сравнительно немного), светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Огромное большинство звезд составляют «карлики», светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая абсолютная величина звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой - от расстояния до нее. Если отнести какую-либо звезду на условное стандартное расстояние 10пс, то ее величина будет называться «абсолютной». Поясним это примером. Если видимая (относительная) звездная величина Солнца (определяемая потоком излучения от него) равна - 26.8, то на расстоянии 10пс (которое приблизительно в 2 млн. раз больше истинного расстояния от Земли до Солнца) его звездная величина будет около +5. На таком расстоянии наше дневное светило казалось бы звездочкой, едва видимой невооруженным глазом (напомним, что самые слабые звезды, видимые невооруженным глазом, имеют величину +6). Звезды высокой светимости имеют отрицательные абсолютные величины, например - 7, - 5. Звезды низкой светимости характеризуются большими положительными значениями абсолютных величин, например +10, +12 и т.д.

Важной характеристикой звезды является ее масса. В отличие от светимости массы звезд меняются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. Масса Солнца равна 1,989*1030 кг, что превышает массу Земли в 330 тыс. раз.

Еще одна существенная характеристика звезды - ее радиус. Радиусы звезд меняются в очень широких пределах. Есть звезды, по своим размерам не превышающие земной шар (так называемые «Белые карлики»), есть огромные «пузыри», внутри которых могла бы свободно поместиться орбита Марса. Мы не случайно назвали такие гигантские звезды «пузырями». Из того факта, что по своим массам звезды отличаются сравнительно незначительно, следует, что при очень большом радиусе средняя плотность вещества должна быть ничтожно малой. Если средняя плотность солнечного вещества равна 1410 кг/м3, то у таких «пузырей» он может быть в миллионы раз меньше, чем у воздуха. В то же время белые карлики имеют огромную среднюю плотность, достигающую десятков и даже сотен миллионов килограммов на кубический метр.

Большое значение имеет исследование химического состава звезд путем тщательного анализа их спектров. При этом необходимо учитывать температуру и давление в поверхностных слоях звезд, которые также получают из спектров. Вообще спектрографические наблюдения дают наиболее полную информацию об условиях, господствующих в звездных атмосферах.

По химическому составу звезды, как правило, представляют собой водородные и гелиевые плазмы. Остальные элементы присутствуют в виде сравнительно незначительных «загрязнений». Средний химический состав наружных слоев звезды выглядит примерно следующим образом. На 10 тыс. атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, один атом углерода, 0.3 атома железа. Относительное содержание других элементов еще меньше. Хотя по числу атомов так называемые «тяжелые элементы» (т.е. элементы с атомной массой, большей, чем у гелия) занимают во Вселенной весьма скромное место, их роль очень велика. Прежде всего они в значительной степени определяют характер эволюции звезд, так как непрозрачность звездных недр для излучения существенно зависит от содержания тяжелых элементов. В то же время светимость звезды, как оказывается, тоже зависит от ее непрозрачности.

Всегда ли во Вселенной были тяжелые элементы? Оказывается, что в далеком прошлом во Все ценной тяжелых элементов было значительно меньше, чем сейчас. Может быть, их совсем не было. Поэтому крупнейшей научной проблемой является происхождение тяжелых элементов. Эта проблема столь же важна, как проблемы происхождения звезд, планет и даже жизни.

Спектроскопические исследования показали, что имеются удивительные различия в химическом составе звезд. Так, например, горячие массивные звезды, концентрирующиеся к галактической плоскости, сравнительно богаты тяжелыми элементами, между тем как у звезд, входящих в состав шаровых скоплений, относительное содержание тяжелых элементов в десятки раз меньше. Этот важный факт находит обоснование в современных теориях эволюции звезд и звездных систем.

Наконец, стоит сказать несколько слов о магнетизме звезд. Тем же спектроскопическим методом было обнаружено наличие мощных магнитных полей в атмосферах некоторых звезд. Напряженность этих полей в отдельных случаях доходит до 10 тыс. Э (эрстед), т. е. в 20 тыс. раз больше, чем магнитное поле Земли. Заметим, что в солнечных пятнах напряженность магнитных полей доходит до 3-4 тыс. Э. Вообще магнитные явления, как выяснилось в последние годы, играют значительную роль в физических процессах, происходящих в солнечной атмосфере. Имеются все основания полагать, что то же самое справедливо и для звездных атмосфер.

Важная характеристика звезды - ее яркость или видимый блеск. Астрономы оценивают блеск звезды ее звездной величиной m (magnitudo - величина). Звезда Вега из созвездия Лиры имеет звездную величину m = 0. Звезда, которая блестит в 2.512 раза слабее, чем Вега, имеет 1 звездную величину.

Невооруженным глазом можно увидеть звезды в 100 раз менее яркие, чем Вега. Их звездная величина =5m.

Чтобы увидеть звезды со звездной величиной большей 5m, нужно использовать бинокль или телескоп (чем больше звездная величина звезды, тем слабее она блестит).

Разницу в блеске двух звезд с разными звездными величинами можно определить по таблице.

звезда жизненный цикл

Звездная величина m

Во сколько раз отличается блеск от 0m

Так например

1

2.512

Звезда 15m блестит слабее 14m в 2.15 раза. Звезда 15m блестит слабее 10m в 100 раз. Звезда 10m блестит слабее 0m в 10 000 раз.

2

6.31

3

15.82

4

39.81

5

100

6

251.19

7

630.95

8

1 584.89

9

3 981.07

10

10 000.00

11

25 000.86

12

63 095.73

13

158 489.31

14

389 107.17

15

1 000 000.17

16

2 511 886.43

Моделирование образования планет в протопланетных дисках сталкивается с серьезной проблемой: никак не удается удовлетворительным образом добиться формирования планет гигантов. Планеты попросту падают на звезду. Британские астрономы попробовали обойти эту проблему, смоделировав движение сразу множества формирующихся планет.

Согласно современным представлениям, картина образования планетных систем выглядит примерно так. Сначала пылевые частицы слипаются, образуя планетезимали диаметром порядка километра. Затем, продолжая расти и сливаться, планетезимали формируют зародыши планет диаметром 100-1000 км. Среди них выделяются наиболее крупные тела, которые продолжают расти по «олигархическому» механизму, поглощая более мелкие. В итоге формируется несколько относительно небольших объектов вблизи звезды, которые становятся планетами земного типа, и несколько более крупных на расстоянии свыше 3 астрономических единиц, которым предстоит стать газовыми планетами-гигантами.

Эта теория выглядит довольно красиво, но сталкивается с одной серьезной проблемой при попытке численно смоделировать образование планетной системы. Когда на периферии сформировались массивные объекты-олигархи, им еще предстоит достаточно долго набирать вес путем аккреции окружающего газа. Однако едва только их масса становится достаточно большой, гравитационное взаимодействие с газовым диском начинает быстро уменьшать радиусы их орбит. Проходит всего 100 тысяч лет, и все массивные объекты проваливаются во внутренние области системы, где с высокой вероятностью падают на центральную звезду. Двигаясь по кругу, протопланета, подобно мотоциклу на ледяном треке, выбрасывает на более высокие орбиты потоки пыли и газа. На это, конечно, расходуется энергия орбитального движения самой протопланеты, и, пока диск остается достаточно плотным, она довольно быстро теряет высоту.

Чтобы спастись, «олигархам» надо продержаться внутри диска хотя бы миллион-другой лет. Этого времени им хватит, чтобы сконцентрировать в себе большую часть вещества диска. Однако результаты моделирования неумолимы, как суд над Ходорковским: отдельный массивный объект, обращающийся внутри газопылевого диска, непременно гибнет.

Астрономы Пол Крессвел (Paul Cresswell) и Ричард Нельсон (Richard Nelson) из Школы математических наук при Университете королевы Марии в Лондоне решили проверить, не могут ли «олигархи» выжить, если объединятся в группу. Выражаясь точнее, они решили смоделировать совместную эволюцию группы протопланет внутри диска в надежде на то, что взаимодействие между ними позволит избежать проваливания в центр системы хотя бы некоторым крупным протопланетам.

Увы, результаты моделирования оказались не слишком обнадеживающими. После многократных прогонов модели выяснилось, что лишь в редких случаях (около 2%) взаимодействие между массивными протопланетами приводит к тому, что одна из них выбрасывается на достаточно большую орбиту, что позволяет продлить ей жизнь. Однако в остальных случаях все протопланеты начинают совместно двигаться вниз, к звезде, где их ждет бесславный конец.

Интересно отметить, что в этом движении протопланеты в каком-то смысле даже помогают друг другу. В результате серии взаимодействий они попарно попадают в резонанс друг с другом, когда периоды обращения соотносятся как небольшие целые числа. Соединенные такими резонансными связями протопланеты как бы тянут друг друга за собой - уменьшение периода обращения одной планеты побуждает к уменьшению периода связанную с ней, а та, в свою очередь, вызывает сокращение периода у следующей связанной с ней протопланеты. И так, строем, все они отправляются в пекло.

Правда, примерно в 20% случаев наблюдалось одно исключение из этой печальной картины - когда протопланеты входили в резонанс с отношением периодов 1:1, то есть, грубо говоря, обращались по общей орбите (это не совсем точно, поскольку орбиты могли заметно различаться, совпадали - да и то в среднем за несколько оборотов - только периоды обращения). Такие пары коорбитальных протопланет в ряде случаев могли продержаться внутри диска достаточно длительное время. На этом основании авторы работы предсказывают, что с развитием средств наблюдения у других звезд должны найтись пары планет, обращающихся по общей орбите примерно так же, как в Солнечной системе по орбите Юпитера обращаются группы астероидов Греки и Троянцы.

Несмотря на это интересное предсказание, в целом результат новой работы оказался негативным. Показано, что учет взаимодействия протопланет не позволяет предотвратить их проваливание в центр формирующейся системы. Так что на сегодня существование планет-гигантов в Солнечной системе по-прежнему остается необъясненным.

Конечно, астрономы продолжают искать объяснения. Согласно одной из гипотез, образование крупных протопланет во внешних областях диска может повторяться несколько раз. Первые поколения гибнут, а последнее уже не встречает большого сопротивления со стороны диска, потерявшего значительную часть массы. Другая идея состоит в том, чтобы учесть турбулентность внутри протопланетного диска - до сих пор все модели учитывали только ламинарное вращение. Все эти гипотезы еще предстоит проверять.

Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания (см. Закон Кулона) и вступить в реакцию термоядерного синтеза (см. Ядерный распад и синтез).

В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц. В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия (см. Теория относительности). Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности - и наружу. Одновременно давление в центре звезды начинает расти (см. Уравнение состояния идеального газа). Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие. О звездах на стадии активного сжигания водорода говорят, что они находятся на «основной фазе» своего жизненного цикла или эволюции (см. Диаграмма Герцшпрунга-Рассела). Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом или нуклеосинтезом.

В частности, Солнце находится на активной стадии сжигания водорода в процессе активного нуклеосинтеза уже около 5 миллиардов лет, и запасов водорода в ядре для его продолжения нашему светилу должно хватить еще на 5,5 миллиарда лет. Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды. Таким образом, чем массивнее звезда, тем короче время ее жизни, определяемое исчерпанием запасов водорода, и самые крупные звезды в буквальном смысле сгорают за «какие-то» десятки миллионов лет. Самые мелкие звезды, с другой стороны, «безбедно» живут сотни миллиардов лет. Так что по этой шкале наше Солнце относится к «крепким середнякам».

Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что дальше? Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчиваю свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх - и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий - своего рода «пепел» затухающей первичной реакции нуклеосинтеза - вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, - один из ключевых моментов жизненного цикла звезд.

При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно бо_льшую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.

Для звезд класса Солнца после истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса - на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитационного притяжения не будут уравновешены следующим силовым барьером. В его роли выступает давление вырожденного электронного газа (см. Предел Чандрасекара). Электроны, до этой стадии игравшие роль безработных статистов в эволюции звезды, не участвуя в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными «жизненного пространства» и начинают «сопротивляться» дальнейшему гравитационному сжатию звезды. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.

Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза - углерода, затем кремния, магния - и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо - это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени - некоторые теоретики полагают, что на это уходят считанные секунды, - свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра - и звезда буквально взрывается в ослепительной вспышке сверхновой звезды. За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.

После вспышки сверхновой и разлета оболочки у звезд массой порядка 10-30 солнечных масс продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов - иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется черная дыра.

Размещено на Allbest.ru


Подобные документы

  • Из чего состоят звезды? Основные звездные характеристики. Светимость и расстояние до звезд. Спектры звезд. Температура и масса звезд. Откуда берется тепловая энергия звезды? Эволюция звезд. Химический состав звезд. Прогноз эволюции Солнца.

    контрольная работа [29,4 K], добавлен 23.04.2007

  • Понятие эволюции звезд. Изменение характеристик, внутреннего строения и химического состава звезд со временем. Выделение гравитационной энергии. Образование звезд, стадия гравитационного сжатия. Эволюция на основе ядерных реакций. Взрывы сверхновых.

    контрольная работа [156,0 K], добавлен 09.02.2009

  • Источники энергии звезд. Гравитационное сжатие и термоядерный синтез. Ранние и поздние стадии эволюции звезд. Выход звезд из главной последовательности. Гравитационный коллапс и поздние стадии эволюции звезд. Особенности эволюции тесных двойных систем.

    курсовая работа [62,2 K], добавлен 24.06.2008

  • Исследование основ спектральной классификации звезд. Изучение спектра распределения энергии излучения по частоте и по длинам волн. Определение основных свойств излучающего объекта. Температура и давление на поверхности звезд разных спектральных классов.

    реферат [147,1 K], добавлен 02.01.2017

  • Эволюция взглядов о рождении звёзд. Из чего образуются звёзды? Жизнь черного облака. Облако становится звёздой. сновные звездные характеристики. Светимость и расстояние до звёзд. Спектры звёзд и их химический состав. Температура и масса.

    курсовая работа [41,5 K], добавлен 05.12.2002

  • Изучение основных параметров планет Солнечной Системы (Венера, Нептун, Уран, Плутон, Сатурн, Солнце): радиус, масса планеты, средняя температура, среднее расстояние от Солнца, структура атмосферы, нналичие спутников. Особенности строения известных звезд.

    презентация [1,4 M], добавлен 15.06.2010

  • Основные этапы возникновения и развития звезд, их структура и элементы. Причины и гипотезы насчет взрывов звезд и образования сверхновых. Степень зависимости финальной стадии эволюции звезды от ее массы, предпосылки возникновения явления "черной дыры".

    реферат [17,2 K], добавлен 21.12.2009

  • Происхождение звезд, их движение, светимость, цвет, температура и состав. Скопление звезд, звезды-гиганты, белые и нейтронные карлики. Расстояние от нас до звезд, их возраст, способы определения астрономических расстояний, фазы и этапы эволюции звезды.

    реферат [28,1 K], добавлен 08.06.2010

  • Пути, ведущие к появлению ярких звезд на нашем ночном небосводе. Химический состав звезд. Гарвардская спектральная классификация. Особенности звездных спектров. Источники звёздной энергии. Рождение и срок жизни звезд. Гипотезы о причине взрывов звезд.

    реферат [25,4 K], добавлен 27.12.2010

  • События в области астрономии с древнейших времён и до наших дней. Классификация звёзд, их основные характеристики: масса, светимость, размер, химический состав. Зависимость между звёздными параметрами, диаграмма Герцшпрунга-Ресселла, эволюция звезды.

    курсовая работа [399,5 K], добавлен 12.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.