Первичная туманность солнца и гигантские газовые планеты

Развитие гипотезы солнечной туманности как первоосновы происхождения Солнечной системы. Попытка определения связи космических мазеров с протопланетами. Характеристика и спектральные исследования планет-гигантов: Юпитера и Сатурна, Урана и Нептуна.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 03.01.2011
Размер файла 47,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ростовская государственная консерватория

(Академия) им. С. Рахманинова

Реферат

ПО ТЕМЕ: "Первичная туманность солнца и гигантские газовые планеты"

г. Ростов-на-Дону

2007г.

Содержание

Введение

1. Первичная туманность солнца

2. Планеты-гиганты

2.1 Юпитер

2.2 Сатурн

2.3 Уран

2.4 Нептун

Заключение

Список используемой литературы

Введение

Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занималась, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX, XX и XXI столетий. Ей отдал дань наш замечательный соотечественник, человек разносторонне талантливый, О.Ю.Шмидт. И все мы ещё очень далеки от её решения. Какие только тайны не были "вырваны" за эти два столетия. За последних четыре десятилетия существенно прояснился вопрос о путях эволюции звезд. И хотя детали удивительного процесса рождения звезды из газопылевой туманности ещё далеко не ясны, мы теперь четко представляем, что с ней происходит на протяжении миллиардов лет дальнейшей эволюции. Увы, вопрос о происхождении и эволюции солнечной системы, окружающей наше Солнце, далеко не так ясен. На первый взгляд кажется странным и даже парадоксальным, что астрономы смогли узнать о космических объектах, весьма удаленных и наблюдаемых с большими трудностями, гораздо больше, чем о планетах и Солнце, которые находятся у нас "под боком". Однако в этом нет ничего удивительного. Дело в том, что астрономы наблюдают огромное количество звезд, находящихся на разных стадиях эволюции. Изучая звезды в скоплениях, они могут чисто эмпирически установить, как зависит темп эволюции звезд от начальных условий, например от массы. Если бы не было этого обширного эмпирического материала, вопрос об эволюции звезд был бы предметом более и менее бесплодных спекуляций, как это и было примерно до 1950г.

1. Первичная туманность Солнца

В последнее время появился дополнительный, очень важный аргумент в пользу гипотезы солнечной туманности как первоосновы происхождения Солнечной системы. Накопившийся большой наблюдательный материал по "гидроксильным" и, особенно, "водяным" мазерам, позволил недавно построить их модель. Оказалось, что лучше всего данные наблюдений объясняются моделью массивного газового диска, в общих чертах напоминающего камероновскую солнечную туманность. Это направление радиоастрономии сейчас быстро развивается и можно ожидать, что в самом близком будущем начальные стадии эволюции планетных систем будут поняты и уточнены. Первая попытка связать космические мазеры с протопланетами была сделана советскими учеными В.С. Стрельницким и Р.А. Сюняевым. Естественно считать, что короткопериодические системы образовались из одного газового сгустка, который в процессе образования диска распадается на две конденсации с примерно одинаковыми массами. Между тем долгопериодические системы с самого начала конденсировались в двух центрах, гравитационное взаимодействие которых было незначительным. При этом вращательный момент сжимающегося облака оказался сосредоточенным в орбитальном движении этих сгустков. Таким образом, развитие современной наблюдательной астрономии естественно приводит к выводу о множественности планетных систем во Вселенной.

Давайте перенесемся в далекое прошлое, примерно на 7 миллиардов лет назад. Современная наука, как говорят ученые, с достаточной степенью вероятности позволяет нам представить происходившие тогда события. Одним словом мы "висим" в космосе и наблюдаем за жизнью одной из газово-пылевых, водородно-гелиевых (с примесью тяжелых элементов) туманностей. Той, которая в будущем даст начало нашей Солнечной системе, Солнцу, Земле и нам. Туманность темна и непрозрачна, как дым. Зловещей невидимкой медленно ползет она на фоне чёрной бездны, и о её рваных, размытых очертаниях можно только догадываться по тому, как постепенно тускнеют и гаснут за ней далекие звезды. Через некоторое время мы обнаруживаем, что туманность медленно поворачивается вокруг своего центра, еле заметно вращается. Она постепенно съеживается, сжимается, очевидно уплотняясь при этом.

Действует тяготение, собирая к центру частицы туманности. Борьба двух сил, тяготения и центробежной, начинается в туманности при ускорении её вращения. Тяготение сжимает туманность, а центробежная сила стремится раздуть её, разорвать. Но тяготение тянет частицы к центру со всех сторон одинаково. А центробежная сила отсутствует на "полюсах" туманности и сильнее всего проявляется на её "экваторе". Поэтому именно на "экваторе" она оказывается сильнее тяготения и раздувает туманность в стороны. Туманность, продолжая вращаться все быстрее, сплющивается, из шара превращается в плоскую "лепешку", похожую на спортивный диск. Наступает момент, когда на наружных краях "диска" центробежная сила уравновешивает, а потом и пересиливает тяготение. Клочья туманности здесь начинают отделяться. Центральная часть её продолжает сжиматься, все ускоряя свое вращение, и от внешнего края продолжают отходить все новые и новые клочья, отдельные газопылевые облака. И вот туманность приобрела совсем другой вид. В середине величаво вращается огромное темное, чуть сплющенное облако, а вокруг него на разных расстояниях плывут по круговым орбитам, расположенным примерно в одной плоскости, оторвавшиеся от него небольшие "облака-спутники". Последим за центральным облаком. Оно продолжает уплотняться. Но теперь с силой тяготения начинает бороться новая сила - сила газового давления. Ведь в середине облака накапливается все больше частиц вещества. Там возникает "страшная теснота" и "невероятная толчея" частиц. Они мечутся, все сильнее ударяя друг друга. На языке физиков - в центре повышаются температура и давление. Сначала там становится тепло, потом жарко. Снаружи мы этого не замечаем: облако огромно и непрозрачно. Тепло наружу не выходит. Но вот что-то внутри произошло! Облако перестало сжиматься. Могучая сила возросшего от нагрева газового давления остановила работу тяготения. Резко пахнуло нестерпимым жаром, как из жерла внезапно открывшейся печи! В глубине черной тучи стали слабо просвечивать рвущиеся наружу клубы тусклого красного пламени. Они всё ближе и ярче. Шар величаво кипит, перемешивая вырвавшийся огонь ядра с черным туманом своих окраин. Испепеляющий жар заставляет нас отпрянуть еще дальне назад. Однако, вырвавшись наружу, горячий газ ослабил противодействие тяготению. Облако снова стало сжиматься. Температура в его центре опять начала расти. Она дошла уже до сотен тысяч градусов! В этих условиях вещество не может быть даже газообразным. Атомы разваливаются на свои части. Вещество переходит в состояние плазмы. Но и плазма - бешеная толчея атомных ядер и электронов - не может выносить нагрев до бесконечности. Когда её температура поднимется выше десяти миллионов градусов, она как бы "воспламеняется". Удары частиц друг о друга становятся так сильны, что ядра атомов водорода уже не отскакивают друг от друга, как мячики, а врезаются, вдавливаются друг в друга и сливаются друг с другом. Начинается "ядерная реакция". Из каждых четырех ядер атомов водорода образуется одно ядро гелия. При этом выделяется огромная энергия. Этот "пожар" теперь уже не остановить. "Плазма" разбушевалась. Газовое давление в центре заработало с удесятеренной силой. Плазма рвется наружу, как пар из котла. С чудовищной силой она давит изнутри на внешние слои шара и приостанавливает их падение к центру.

Установилось равновесие. Плазме не удается разорвать шар, разбросать его обрывки в стороны. А тяготению не удается сломить давление плазмы и продолжить сжимание шара. Ослепительно светящийся бело-желтым светом шар перешел в устойчивую стадию. Он стал звездой. Стал нашим Солнцем! Теперь оно будет миллиардами лет, не меняя размера, не охлаждаясь и не перегреваясь, светить одинаково ярким бело-желтым светом. Пока внутри не выгорит весь водород. А когда он весь превратится в гелий, исчезнет "подпорка" внутри Солнца, оно сожмется. От этого температура в его недрах снова повысится. Теперь уже до сотен миллионов градусов. Но тогда "воспламенится" гелий, превращаясь в более тяжелые элементы. И сжатие снова прекратится. Есть в запасе у звезд еще несколько ядерных реакций, требующих для своего начала все более высоких давлений и температур. В них "варятся" ядра все более сложных и тяжелых элементов. В конце концов, все возможные реакции будут исчерпаны. Звезда сожмется, станет крохотным "белым карликом". Потом постепенно остынет, потускнеет. Наконец, погаснет совсем. Молчаливой невидимкой будет плыть в космосе "чёрный карлик" - холодная "головешка", оставшаяся от некогда бушевавшего мощного костра. Как видим из исходного материала - водорода - в недрах звезд, в ядерных реакциях синтеза "варятся" ядра атомов всех элементов. Можно сказать, что именно там, в недрах звезд, закладывается начало жизни. Ведь именно там возникают ядра "атома жизни" углерода. А за ними ядра атомов всех других необходимых для жизни элементов таблицы Менделеева. Не обязательно это ценное "варево" оказывается потом похороненным в остывших "чёрных карликах". Во многих звездах, образовавшихся из более крупных сгустков туманностей, ядерное горение проходит слишком бурно. Газовое давление оказывается намного сильнее тяготения. Оно раздувает звезду, рвет её в клочья, разбрасывая во все стороны. Эти грандиозные взрывы в звездном мире иногда наблюдаются с Земли и называются вспышками "сверхновых звезд". В результате взрыва звезда рассеивается в межзвездном пространстве, обогащая его тяжелыми элементами.

Наше уникальное дневное светило - Солнце - стало одной из звезд небосклона, его тепло и свет оказались той же природы, что и едва заметный свет звезд, а их источник - ядерные реакции - воспроизведен в земных условиях. Планеты, проявляя в своем движении законы механики, стали двигаться по орбитам вокруг центрального тела - Солнца - в соответствии с законом всемирного тяготения. Одной из проблем, в связи с которыми все это долгое время не было понято, явились космические масштабы. Если представить себе Солнце в виде шара диаметром 7 см, то ближайшая к нему планета (Меркурий) будет находиться на расстоянии 2,8 м, наша Земля - в виде шарика диаметром 0,5 мм будет на расстоянии 7,6 м, а самая дальняя планета Плутон - в 300 м от Солнца. Самая же близкая из других звезд - Проксима Центавра - расположится в 2000 км, что соответствует расстоянию от С-Петербурга до Сухуми. Неудивительно, что одинаковая природа Солнца и других звезд долгое время не была осознана. Временные масштабы, характерные для Вселенной, тоже не отстали. Если начать отсчет времени с так называемого Большого Взрыва - гипотетической ситуации, когда все вещество Вселенной находилось в одной единственной бесконечно малой точке, а потом начало разлетаться - и сопоставить ему 0 ч. 0 мин. первого января, а всю последующую историю развития Вселенной до настоящего времени уложить в один год, то Солнце образовалось только 9 сентября, Земля 14 сентября, бактерии появились 9 октября, первые клетки с ядром 15 ноября, динозавры 24 декабря, а первые люди только в 22 ч. 30 мин. 31 декабря. А ведь человек существует уже несколько миллионов лет. Само же время существования Вселенной оценивается примерно в 25 миллиардов лет.

2. Планеты - гиганты

Две пары планет-гигантов, Юпитер и Сатурн, Уран и Нептун, довольно сильно различаются между собой. Юпитер и Сатурн больше по размерам и менее плотные. Полеты космических аппаратов к планетам-гигантам очень трудны. Солнечной энергии на таких больших расстояниях уже недостаточно для питания их систем, приходиться использовать радиоизотопные генераторы. Надежность всех систем и приборов должна быть исключительно высокой, так как полеты длятся многие годы. В 1972г. к Юпитеру был запущен американский космический аппарат "Пионер-10", а в 1973г. к Сатурну "Пионер-11". В1977г. к планетам-гигантам были запущены два американских космических аппарата - "Вояджер-1" и "Ваяджер-2". Взаимное расположение Земли, Юпитера, Сатурна, Урана, Нептуна позволяло при запуске в это время совершить пролет вблизи всех четырех планет-гигантов, что и было сделано "Вояджером-2". Такая выгодная конфигурация планет повторится только в XXII в.

2.1 Юпитер

солнечный туманность космический спектральный планета

Юпитер - пятая по расстоянию от Солнца и самая большая планета Солнечной системы - отстоит от Солнца в 5,2 раза дальше, чем Земля, и затрачивает на один оборот по орбите почти 12 лет. Экваториальный диаметр Юпитера 142600 км (в 11 раз больше диаметра Земли). Период вращения Юпитера - самый короткий из всех планет - 9ч. 50мин. 30с. на экваторе и 9ч. 55мин. 40с. в средних широтах. Таким образом, Юпитер, подобно солнцу, вращается не как твёрдое тело - скорость вращения неодинакова в разных широтах. Из-за быстрого вращения эта планета имеет сильное сжатие у полюсов. Масса Юпитера равна 318 массам Земли. Средняя плотность 1,33 г/см3, что близко к плотности Солнца. Ось вращения Юпитера почти перпендикулярна к плоскости его орбиты. Даже в небольшой телескоп видно полярное сжатие Юпитера и полосы на его поверхности, параллельные экватору планеты. Видимая поверхность Юпитера представляет собой верхний уровень облаков, окружающих планету. Благодаря этому все детали на поверхности Юпитера постоянно меняют свой вид. Из устойчивых деталей известно Большое Красное пятно, наблюдающееся уже более 300 лет. Это - громадное овальное образование, размерами около 35000км по долготе и 14000 по широте между Южной тропической и Южной умеренной полосами. Цвет его красноватый, но подвержен изменениям. Оно не связано с глубокими слоями планеты. В нем наблюдается подъем вещества из верхних областей и растекание его от центра. Этим-то и объясняется низкая температура пятна и антициклоническое вращение в нем, т.е. против часовой стрелки в южном полушарии.

Спектральные исследования Юпитера показали, что атмосфера его состоит из молекулярного водорода и его соединений: метана и аммиака. В небольших количествах присутствуют также этан, ацетилен, фосфен и водяной пар. Облака Юпитера состоят из кристалликов и капелек аммиака. В декабре 1973г. с помощью американского космического аппарата "Пионер-10" удалось обнаружить наличие гелия в атмосфере Юпитера и измерить его содержание. Можно считать, что атмосфера Юпитера на 74% состоит из водорода и на 26% из гелия. На долю метана приходится не более 0,1% состава атмосферы планеты (по массе). Атмосферный слой имеет толщину около 1000 км. Ниже чисто газового слоя в атмосфере лежит слой облаков, которые мы и видим в телескоп. Слой жидкого молекулярного водорода имеет толщину 24000 км. На этой глубине давление достигает 300 ГПа, а температура 11000 К, здесь водород переходит в жидкое металлическое состояние, т.е. становится подобным жидкому металлу. Слой жидкого металлического водорода имеет толщину около 42000 км. Внутри него располагается небольшое железно-селикатное твёрдое ядро радиусом 4000 км. На границе ядра температура достигает 30000 К. В 1956 г. было обнаружено радиоизлучение Юпитера на волне 3 см., соответствующее тепловому излучению с температурой 145 К. По измерениям в инфракрасном диапазоне температура самых наружных облаков Юпитера 130 К. Полёты американских космических аппаратов "Пионер-10" и "Пионер-11" позволили уточнить строение магнитосферы Юпитера, а изменение температуры облачного слоя в основном подтвердило известный из наземных наблюдений результат: количество тепла, которое Юпитер испускает, более чем вдвое превышает тепловую энергию, которую планета получает от Солнца. Возможно, что идущее из недр планеты тепло выделяется в процессе медленного сжатия гигантской планеты (1мм. в год). Магнитное поле планеты оказалось сложным и состоит как бы из двух полей: дипольного (как поле Земли), которое простирается до 1,5 млн. км от Юпитера, и недипольного, занимающего остальную часть магнитосферы. Напряженность магнитного поля у поверхности в 20 раз больше, чем на Земле. Кроме теплового и дециметрового радиоизлучения Юпитер является источником радиовсплесков (резких усилений мощности излучения) на волнах длиной от 4 до 85 м, продолжительностью от долей секунды до нескольких минут или даже часов. Однако длительные возмущения - это не отдельные всплески, а серии всплесков - своеобразные шумовые бури и грозы. Согласно современным гипотезам, эти всплески объясняются плазменными колебаниями в ионосфере планеты. В микроволновом диапазоне температура Юпитера близка к ожидаемому из инфракрасных наблюдений значению -143оС, но с увеличением длины волны вычисленная эффективная температура становиться гораздо выше и указывает на то, что Юпитер, подобно Земле, имеет магнитное поле и радиационный пояс, в котором непрерывно генерируется очень высококачественное радиоизлучение. Напряженность магнитного поля на порядок больше , чем геомагнитного поля, а магнитная ось наклонена на угол около 10о относительно оси вращения.

Юпитер имеет 13 спутников. Первые 4 спутника открыты ещё Галилеем (Ио, Европа, Ганимед, Каллисто). Они, а также внутренний, самый близкий спутник Амальтея движутся почти в плоскости экватора планеты. Ио и Европа почти сравнимы с Луной, а Ганимед и Каллисто даже больше Меркурия, хотя по массе значительно уступают ему. По сравнению с другими спутниками галилеевские исследованы более детально. "Вояджер-1" открыл на Ио восемь действующих вулканов. Вулканические "плюмажи" поднимаются на 70-280 км над поверхностью, что требует скорости 1 км/с. Образование вулканов связано с расплавлением силикатных масс в недрах Ио, содержащих небольшое железное ядро. Поверхность Европы имеет поразительный вид, это уникальная поверхность в Солнечной системе. Она покрыта лабиринтом запутанных тонких линий и полос. Она напоминает оранжевый кристаллический шар. Ганимед почти наполовину состоит из воды и льда. Самым примечательным свойством Ганимеда являются пучки длинных параллельных желобов. Поверхность Каллисто на невидимой с Юпитера стороне до предела насыщена кратерами. Внешние спутники обращаются вокруг планеты по сильно вытянутым орбитам с большими углами наклона к экватору (до 30о). Это маленькие тела - от 10 до 120км, по-видимому, неправильной формы. Самые внешние 4 спутника Юпитера вращаются вокруг планеты в обратном направлении. По данным, полученным с американских космических аппаратов "Вояжер", Юпитер окружен в экваториальной области системой колец. Кольцо расположено на расстоянии 50000 км от поверхности планеты, его ширина около 1000 км. Существование кольца Юпитера было предсказано в 1960 г. астрономом С. К. Всехсвятским на основании наблюдений. В 1975 году был обнаружен объект, который, по-видимому, является 14-м спутником Юпитера. Орбита его неизвестна.

2.2 Сатурн

Сатурн - вторая по величине среди планет Солнечной системы. Его экваториальный диаметр лишь немного меньше, чем у Юпитера, но по массе Сатурн уступает Юпитеру более чем втрое и имеет очень низкую среднюю плотность - около 0,7 г/см3. Низкая плотность объясняется тем, что планеты-гиганты состоят главным образом из водорода и гелия. При этом в недрах Сатурна давление не достигает столь высоких значений, как на Юпитере, поэтому плотность вещества там меньше. Спектроскопические исследования обнаружили в атмосфере Сатурна некоторые молекулы. Температура поверхности облаков на Сатурне близка к температуре плавления метана (-184Со), из твёрдых частичек которого скорее всего и состоит облачный слой планеты. В телескоп видны вытянутые вдоль экватора тёмные полосы, называемые также поясами, и светлые зоны, но эти детали менее контрастны, чем на Юпитере, и отдельные пятна в них наблюдаются гораздо реже.

Сатурн окружен кольцами, которые хорошо видны в телескоп в виде "ушек" по обе стороны диска планеты. Сатурн обладает самой мощной системой колец в Солнечной системе. Края кольцевой системы находятся на расстоянии 6,6 тыс. и 121 тыс. км от экватора планеты. Они были замечены ещё Галилеем в 1610 году. Кольца Сатурна - одно из самых удивительных и интересных образований в Солнечной системе. Плоская система колец опоясывает планету вокруг экватора и нигде не соприкасается с поверхностью. В кольцах разделяются три основные концентрические зоны, разграниченные узкими щелями: внешнее кольцо А, среднее В (наиболее яркое), внутреннее кольцо С, довольно прозрачное, "креповое", внутренний край его не резкий. Наиболее близкие к планете слаборазличимые части внутреннего кольца обозначаются символом D. Обнаружено также существование практически прозрачного самого внешнего кольца D'. Сквозь все кольца Сатурна просвечивают звёзды. Кольца вращаются вокруг Сатурна, причём скорость движения внутренних частей больше, чем наружных. Кольца Сатурна не сплошные, а представляют собой плоскую систему из бесконечного количества мелких спутников планеты. Плоскость колец практически совпадает с плоскостью экватора Сатурна и имеет постоянный наклон к плоскости орбиты, равный приблизительно 27о. В зависимости от положений планеты на орбите мы видим кольца то с одной, то с другой стороны. Полный цикл изменения их вида завершается в течение 29,5 лет - таков период обращения Сатурна вокруг Солнца. Время от времени кольца на короткий срок перестают быть видимыми в телескопы средних размеров. Это происходит когда плоскость колец проходит точно через Солнце и боковая поверхность оказывается лишенной яркого освещения, либо когда кольца бывают обращены к наблюдателю "ребром" и выглядят как чрезвычайно тонкая полоска, видимая только в крупнейшие телескопы. Толщина колец, по современным данным, около 3,5 км. Она очень мала по сравнению с их диаметром, который по наружному краю кольца А составляет 275 тыс. км. Размеры частиц не определены окончательно. Радиоастронометрические наблюдения свидетельствуют о наличии в кольцах множества частиц размером не менее нескольких сантиметров. Не исключена возможность присутствия в кольцах Сатурна ещё более крупных частиц, так же как и пыли. Инфракрасные спектры колец Сатурна напоминают спектры водяного инея. Однако в других частях спектра позднее была обнаружена особенность, не характерная для чистого льда. Кроме колец, у Сатурна известно 10 спутников. Это Мимас, Энцелад, Тефия, Диона, Рея, Титан, Гиперион, Япет, Феба, Янус. Последний - самый близкий к Сатурну, движется настолько близко к поверхности планеты, что обнаружить его удалось только при затмений колец Сатурна, создающих вместе с планетой яркий ореол в поле зрения телескопа. Самый большой спутник Сатурна - Титан - один из величайших спутников Солнечной системе по размеру и массе. Его диаметр приблизительно такой же как диаметр Ганимеда. Титан окружен атмосферой, состоящей из метана и водорода. В ней движутся непрозрачные облака. Ученые предполагают, что условия на этой планете схожи с теми, которые существовали на нашей планете 4 миллиарда лет назад, когда на Земле только зарождалась жизнь. Все спутники Сатурна, кроме Фебы, обращаются в прямом направлении. Феба движется по орбите с довольно большим эксцентриситетом в обратном направлении. C эволюционной точки зрения наибольший интерес представляет наличие внутренних источников энергии. Сатурн излучает в 2,5 раза больше энергии, чем получает от Солнца. Как в случае Юпитера, это избыточное тепло превышает количество энергии, ожидаемое от радиоактивного распада. Не до конца понятным на сегодняшний день остается такой атмосферный феномен Сатурна, как "Гигантский гексагон". Он представляет собой устойчивое образование в виде правильного шестиугольника с поперечником 25 тыс. километров, которое окружает северный полюс Сатурна.

2.3 Уран

Уран - седьмая по порядку от Солнца планета Солнечной системы. По диаметру он почти вчетверо больше Земли. Очень далёк от Солнца и освещён сравнительно слабо. Уран достаточно ярок, так что при хороших условиях наблюдения его можно увидеть невооруженным глазом. С Земли даже в самый большой телескоп он кажется зеленоватым диском, почти лишенным деталей. Уран был открыт английским учёным В. Гершелем в 1781 г. Какие-либо детали на поверхности Урана различить не удаётся из-за малых угловых размеров планеты в поле зрения телескопа. Это затрудняет его исследования, в том числе и изучение закономерностей вращения. По-видимому, Уран (в отличие от всех других планет) вращается вокруг своей оси как бы лёжа на боку. Такой наклон экватора создаёт необычные условия освещения: на полюсах в определённый сезон солнечные лучи падают почти отвесно, а полярный день и полярная ночь охватывают (попеременно) всю поверхность планеты, кроме узкой полосы вдоль экватора. Так как Уран обращается по орбите вокруг Солнца за 84 года, то полярный день на полюсах продолжается 42 года, затем сменяется полярной ночью такой же продолжительности. Лишь в экваториальном поясе Урана Солнце регулярно восходит и заходит с периодичностью равномерного осевого вращения планеты. Даже в тех участках, где Солнце расположено в зените, температура на Уране (точнее на видимой поверхности облаков) составляет около -215Со. В таких условиях некоторые газы замерзают. Уран - единственная планета-гигант Солнечной системы, которая не имеет мощного внутреннего источника тепла и излучает практически столько же, сколько получает от Солнца. Причина этого пока не известна. В составе атмосферы Урана по спектроскопическим наблюдениям найдены водород и небольшая примесь метана. В относительно большом количестве есть, по косвенным признакам, гелий. Как и другие планеты-гиганты, Уран имеет такой состав, вероятно, почти до самого центра. Однако средняя плотность Урана (1,58г/см3) несколько больше, чем плотность Сатурна и Юпитера, хотя вещество в недрах этих гигантов сжато гораздо сильнее, чем на Уране. Такую плотность Урана можно объяснит предположением о повышенном содержании гелия или существованием в недрах Урана ядра из тяжелых элементов. Одной необычной особенностью Урана является открытая в 1977г. система опоясывающих колец. Они состоят из множества отдельных непрозрачных и, по-видимому, очень тёмных частиц. В отличие от колец Сатурна кольца Урана - узкие, как бы "ниточные" образования. Они не видны в отраженном свете и обнаруживаются только по сильному ослаблению блеска звёзд, оказавшихся для земного наблюдателя позади колец при орбитальном движении планеты. Удалённость колец от центра Урана составляет от 1,6 до 1,85 радиуса планеты. Камеры "Вояджера" показали, что девять основных колец погружены в мелкую пыль. Ширина их всего 1-10 км, только самое широкое внешнее кольцо имеет размер 96 км. Кольца Урана практически черные: альбедо равно 0,015. Они состоят из каменистых частиц не крупнее нескольких метров в поперечнике (от 10см до 10м). Каждое кольцо движется практически как единое целое. Проблема устойчивости колец Урана остается пока неразрешенной. В 2003г с помощью телескопа Хаббл открыты еще два кольца и их стало 13. Кольца еще молодые, максимальная высота колец 4, 5, 6 над плоскостью экватора Урана достигает 24-46 км. Кольца тесно связаны с внутренними спутниками и быстро эволюционируют. В 2007г Земля пройдет через плоскость экватора Урана и его кольца будут видны с "ребра".

Спутники Урана - Миранда, Ариэль, Умбриэль, Титания и Оберлон вращаются по орбитам, плоскости которых практически совпадают между собой. Вся система в целом отличается необычайным наклоном - её плоскость почти перпендикулярна к средней плоскости всех планетных орбит. Первые четырех спутника получили свои названия не от первооткрывателей. Имена им дал в XIX веке сын Уильяма Гершеля, Джон Гершель. В нарушение астрономической традиции, требующей брать названия для планет и спутников из мифологических сюжетов разных народов, спутники получили имена персонажей из произведений английских литераторов - Шекспира и Попа. Самый яркий среди спутников Урана - Ариэль получил имя доброго, светлого духа воздуха - персонажа, встречающегося и в пьесе Шекспира "Буря", и в поэме Попа "Похищение локона". Соседний с ним спутник - Умбриэль, вдвое темнее, был назван именем злого, темного духа из той же поэмы Попа. Два наиболее крупных из спутников Урана - Титания и Оберон получили имена королевы фей и ее супруга, короля добрых духов из пьесы Шекспира "Сон в летнюю ночь".

2.4 Нептун

Нептун - восьмая по счёту планета Солнечной системы. Нептун был открыт необычным образом. Было замечено, что Уран движется не совсем так, как ему полагается двигаться под действием притяжения Солнца и известных в то время планет. Тогда заподозрили существование ещё одной массивной планеты и попытались предвычислить её положение на небе. Эту чрезвычайно сложную задачу независимо друг от друга успешно решили английский астроном Дж. Адамс и француз У. Леверье. Получив данные Леверье, ассистент Берлинской обсерватории И. Галле 23 сентября 1846 г. обнаружил планету. Открытие Нептуна имело величайшее значение, прежде всего потому, что оно послужило блестящим подтверждение закона всемирного тяготения, положенного в основу расчётов. Средняя удалённость Нептуна от Солнца 30,1 а.е., период вращения по орбите - 164 года и 288 дней. Таким образом, с момента открытия Нептун даже не совершил полного оборота по своей орбите. Видимый угловой диаметр Нептуна составляет около 2о. При измерении столь малого диаметра угломерными приспособлениями с поверхности Земли относительная ошибка очень велика. Уточнить диаметр Нептуна удалось 7 апреля 1967 г., когда планета в своём движении на фоне звёздного неба заслонила одну из далёких звёзд. По результатам наблюдений с нескольких астрономических обсерваторий экваториальный диаметр Нептуна составляет 50200км. Новые сведения о диаметре позволили уточнить величину средней плотности Нептуна: она оказалась равной 2,30 г/см3. Такие характеристики типичны для планет- гигантов, состоящих главным образом из водорода и гелия с примесью соединений других химических элементов.

В центре Нептуна, согласно расчётам, имеется тяжёлое ядро из силикатов, металлов и других элементов, входящих в состав земной группы. Изучение характера ослабления блеска звезды при её затмении атмосферой Нептуна дало много дополнительной информации. В частности, был найден средний молекулярный вес надоблачных слоёв атмосферы Нептуна. Он соответствует молекулярному водороду с небольшой примесью метана. Детали на поверхности Нептуна различить очень трудно. Поэтому параметры суточного вращения - положение оси, направление и период вращения - определить из наземных наблюдений очень сложно. У Нептуна всего два спутника. Первый Тритон, открытый в 1846 г., через две недели после открытия самого Нептуна. По размерам и массе он больше Луны. Имеет обратное направление орбитального движения. Второй спутник - Нереида - очень небольшой, обладает сильно вытянутой орбитой. Расстояние от спутника до планеты меняется в пределах от 1,5 до 9,6 млн. км. Направление орбитального движения - прямое. До пролёта "Вояджера-2" наличие у Нептуна колец было предметом оживленной дискуссии. Некоторые наземные наблюдения позволяли предположить, что вокруг планеты расположены неправильные дуги. Снимки "Вояджера" показали, что вокруг планеты существуют пять колец: два ярких и узких и три более слабых. Некоторые сектора внешнего яркого кольца значительно ярче, чем другие, и именно они были открыты при наблюдениях с Земли. Протяжённость таких дуг составляет от 1000 до 10000 км. Три самых ярких из них получили названия Свобода, Равенство и Братство. Яркие кольца расположены на расстояниях 53 тыс. км и 63 тыс. км. Внутреннее яркое кольцо имеет ширину всего 15 км. Спутники Галатея и Деспина движутся как раз по внутреннему краю соответственно, и, возможно, участвуют в их формировании. Одно из широких колец расположено на расстоянии 42 тыс. км, другое -- между яркими кольцами, и третье, по-видимому, заполняет пространство между внутренним широким кольцом и планетой. Кольца не отражают радиоволн, что указывает на отсутствие в них частиц размером крупнее сантиметра. То, что кольца лучше видны, если Солнце подсвечивает их сзади, указывает на преобладание пылевидных частиц. Возможно, кольца состоят из метанового льда, потемневшего под действием излучения Солнца.

"Вояджер" обнаружил на Нептуне полярные сияния, хотя и гораздо более слабые, чем на Земле. Они имеют сложный характер и распространяются на больших участках планеты, не только вокруг магнитных полюсов. Полагают, что Нептун имеет ядро из расплавленных скальных пород, окружённое внешним ядром из частично расплавленной смеси аммиака, воды и метана, не разделённой на слои.

Заключение

Благодаря наблюдательности гениальных людей, на данный момент хорошо развитые исследования происхождения и эволюции нашей планетной системы. Ведь мы пока не можем непосредственно наблюдать такие системы даже около самых близких звезд. Если бы это удалось и мы имели реальное представление, как выглядят планетные системы на разных этапах своей эволюции или хотя бы как сильно отличаются одни планетные системы от других, эта волнующая проблема была бы, несомненно, решена в сравнительно короткие сроки. Но пока мы наблюдаем планетную систему, так сказать, "в единственном экземпляре". Более того, необходимо ещё доказать, что около других звезд имеются планетные системы. Значит ли это, что мы ещё решительно ничего не можем сказать о происхождении Солнечной системы, кроме тривиального утверждения, что она как-то образовалась не позже чем 5 млрд лет назад, потому что таков приблизительно возраст Солнца? Такая "пессимистическая" точка зрения так же мало обоснована, как и излишний оптимизм адептов той или иной космогонической гипотезы. Можно сказать, что кое-что о происхождении семьи планет, обращающихся вокруг Солнца, мы уже знаем. Во всяком случае, круг возможных гипотез о происхождении Солнечной системы сейчас значительно сузился

Список используемой литературы

1. И. С. Шкловский "Вселенная. Жизнь. Разум." изд. "Наука" 1987 год

2. И. С. Шкловский "Звезды: их рождение, жизнь и смерть". Изд. "Наука" 1984год

3. К. А. Ляхова "Популярная история астрономии и космонавтики". Изд "Вече" 2002 год

4. С. Л. Уипл "Семья солнца", перевод с англ. яз. Ю. И. Ефремова. Изд "Мир" 1984 год

Размещено на Allbest.ru


Подобные документы

  • Понятие газовых гигантов. Юпитер как крупнейшая планета в Солнечной системе. Особенности Сатурна как небесного тела, обладающего системой колец. Специфика планетарной атмосферы Урана. Основные параметры Нептуна. Сравнительная характеристика этих планет.

    презентация [1,2 M], добавлен 31.10.2014

  • Понятие и отличительные особенности планет-гигантов, характеристика каждой из них и оценка значения в Галактике: Юпитера, Сатурна, Урана и Нептуна. Физические характеристики данных планет: полярное сжатие, скорость вращения, объем, ускорение, площадь.

    реферат [28,7 K], добавлен 14.05.2014

  • Анализ строения Солнечной системы, гипотез ее происхождения. Монистические теории Лапласа, Канта. Момент количества движения механической системы. Гипотеза о возникновении Солнца из газовой туманности. Происхождение планет земного типа и газовых гигантов.

    курсовая работа [4,7 M], добавлен 06.01.2015

  • Жидкие озера на Титане. Самый крупный спутник Нептуна. Пересечение плоскости колец Сатурна Кассини. Пылевой хвост кометы МакНота в двух полушариях. Атмосфера на двух планетах не солнечной системы. Астрономическая характеристика планет солнечной системы.

    презентация [4,1 M], добавлен 28.06.2010

  • Строение Солнечной системы, внешние области. Происхождение естественных спутников планет. Общность газовых планет-гигантов. Характеристика поверхности, атмосферы, состава Меркурия, Сатурна, Венеры, Земли, Луна, Марса, Урана, Плутона. Пояса астероидов.

    реферат [115,6 K], добавлен 07.05.2012

  • Космогония как наука, изучающая происхождение и развитие небесных тел. Сущность гипотезы Джинса. Туманность, рождение Солнца. Основные этапы процесса превращения частиц туманности в планеты: слипание частиц; разогревание; вулканическая деятельность.

    реферат [12,5 K], добавлен 20.06.2011

  • Проблема изучения солнечной системы. Открыты не все тайны и загадки даже нашей системы. Ресурсы других планет и астероидов нашей системы. Исследование Меркурия, Венеры, Марса, Юпитера, Сатурна, Урана, Нептуна, Плутона.

    реферат [539,9 K], добавлен 22.04.2003

  • Отличительные свойства планет-гигантов. Состав планет-гигантов. Радиоизлучение Юпитера. Магнитное поле и радиационные пояса Юпитера. Строение магнитосферы. Сложная система циркуляции в атмосфере Юпитера. Система колец Урана.

    дипломная работа [233,0 K], добавлен 26.07.2007

  • Межпланетная система, состоящая из Солнца и естественных космических объектов, вращающихся вокруг него. Характеристика поверхности Меркурия, Венеры и Марса. Место расположения Земли, Юпитера, Сатурна и Урана в системе. Особенности пояса астероидов.

    презентация [1,3 M], добавлен 08.06.2011

  • Происхождение небесных тел и определение их возраста. Общие сведения о Солнечной системе и ее планетах. Особенности планет земной группы. Планеты, их спутники и пояс астероидов. Основные источники энергии в недрах планет. Характеристика планет-гигантов.

    курсовая работа [75,3 K], добавлен 24.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.