Эволюция звезд

Звезды – огромные огненные шары, светящиеся за счет идущих в их недрах ядерных реакций синтеза. Минимальная масса, необходимая для образования звезды. Химический состав межзвездного газа. Связь газово-пылевых комплексов и процессов звездообразования.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 09.12.2010
Размер файла 33,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московский институт открытого образования

Учебно-методическая лаборатория физики

Реферат

Тема: Эволюция звезд

г. Москва - 2003 г.

Введение

“Чтобы понять, что такое Вселенная, надо прежде всего знать, что такое звезды и как они эволюционируют…”

И.С.Шкловский

Физика и астрономия всегда были тесно связаны друг с другом. Астрономия неоднократно помогала физикам делать важные открытия, а физика позволяла астрономам проникать в сущность происходящих во Вселенной процессов. Но никогда еще взаимосвязь физики и астрономии не была столь неразрывной, как в настоящее время, когда обнаруживается глубочайшее единство микро- и мегамира.

Учитывая тот факт, что в школе существует интегрированный курс физики и астрономии, мой реферат посвящен подборке материала для изучения темы «Эволюция звезд». Эта тема показалась мне наиболее интересной, поскольку она продолжает развиваться и по сей день - делаются ошеломляющие открытия, открываются новые горизонты для познания.

Звезды и межзвездное пространство. Звездное облако в Стрельце

Звезды - огромные огненные шары, подобные нашему Солнцу, светящиеся за счет идущих в их недрах ядерных реакций синтеза. Звезды - яркий самосветящийся газовый шар, в горячем ядре которого в ходе процессов ядерного синтеза генерируется энергия. Минимальная масса, которая требуется для образования звезды, составляет около одной двадцатой массы Солнца. Ниже этого предела гравитационная энергия, высвобождающаяся при уплотнении массы, недостаточна, чтобы поднять температуру до уровня, при котором может начаться реакция превращения водорода в гелий. Масса наиболее массивных из известных звезд составляет до 100 солнечных масс. Именно масса представляет собой тот основной фактор, который определяет температуру и светимость звезды в течение всего периода ее существования как звезды главной последовательности (когда ядерным топливом в ее ядре является водород). В химическом составе звезд преобладает водород, а другой основной компонентой является гелий. В Солнце, которое во многих отношениях представляет собой типичную звезду, содержится 94% атомов водорода и 5,9% гелия (на долю всех других элементов приходится 0,1%). По весу водород составляет 73%; 25% - гелий, 0,8% - углерод и 0,3% - кислород, а оставшиеся 0,9% - все другие элементы.

Потребовалось тысячелетнее развитие науки, чтобы человечество осознало простой и вместе с тем величественный факт, что звезды - это объекты, более или менее похожие на Солнце, но только отстоящие от нас на несравненно большие расстояния. Ньютон был первым, кто правильно оценил расстояния до звезд. Два столетия после великого английского ученого почти всеми молчаливо принималось, что чудовищно больших размеров пространство, в котором находятся звезды, есть абсолютная пустота. Лишь отдельные астрономы время от времени поднимали вопрос о возможном поглощении света в межзвездной среде. Только в самом начале XX столетия немецкий астроном Гартман убедительно доказал, что пространство между звездами представляет собой отнюдь не мифическую пустоту. Оно заполнено газом, правда, с очень малой, но вполне определенной плотностью. Это выдающиеся открытие, так же как и многие другие, было сделано с помощью спектрального анализа. Химический состав межзвездного газа в первом приближении оказался довольно близким к химическому составу Солнца и звезд. Преобладающими элементами являются водород и гелий, между тем как остальные элементы мы можем рассматривать как "примеси".

В тридцатых годах XX века было доказано, что межзвездное пространство не совсем прозрачно. Поглощающая свет субстанция, межзвездная пыль, сосредоточена в довольно тонком слое около галактической плоскости - это твердые микроскопические частицы вещества, размерами меньше микрона. Эти пылинки имеют сложный химический состав. Установлено, что пылинки имеют довольно вытянутую форму и в какой-то степени "ориентируются", то есть направления их вытянутости имеют тенденцию "выстраиваться" в данном облаке более или менее параллельно. По этой причине проходящий через тонкую среду звездный свет становится частично поляризованным.

Характернейшей особенностью межзвездной среды является большое разнообразие имеющихся в ней физических условий. Там имеются, во-первых, зоны, кинетическая температура которых различается на два порядка. Имеются сравнительно плотные облака с концентрацией частиц газа, превышающей несколько тысяч на кубический сантиметр, и весьма разряженная среда между облаками, где концентрация не превышает 0,1 частицы на кубический сантиметр. Имеются, наконец, огромные области, где распространяются ударные волны от взрывов звезд.

Наряду с отдельными облаками как ионизированного, так и неионизированного газа в Галактике наблюдаются значительно большие по своим размерам, массе и плотности агрегаты холодного межзвездного вещества, получившие название "газово-пылевых комплексов". В таких газово-пылевых комплексах происходит интереснейший процесс конденсации звезд из диффузной межзвездной среды.

Почему должны рождаться новые звезды?

Уже давно астрономы, в значительной степени интуитивно, связывали образования конденсации в межзвездной среде с процессом образования звезд из "диффузной" сравнительно разряженной газово-пылевой среды. Какие же основания существуют для предположения о связи между газово-пылевыми комплексами и процессом звездообразования? С сороковых годов нашего столетия астрономам ясно, что звезды в Галактике должны непрерывно (то есть буквально "на наших глазах") образовываться из какой-то качественно другой субстанции. Дело в том, что к 1939 году было установлено, что источником звездной энергии является происходящий в недрах звезд термоядерный синтез. Грубо говоря, подавляющие большинство звезд излучают потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Так как масса одного протона (в атомных единицах) равна 1,0081, а масса ядра гелия (альфа-частицы) равна 4,0039, то избыток массы, равный 0,007 атомной единицы на протон, должен выделиться как энергия. Тем самым определяется запас ядерной энергии в звезде, которая постоянно тратится на излучение. В самом благоприятном случае чисто водородной звезды запаса ядерной энергии хватит не более, чем на 100 миллионов лет, в то время как в реальных условиях эволюции время жизни звезды оказывается на порядок меньше этой явно завышенной оценки. Но десяток миллионов лет - ничтожный срок для эволюции нашей Галактики, возраст которой никак не меньше чем 10 миллиардов лет. Возраст массивных звезд уже соизмерим с возрастом человечества на Земле! Значит звезды (по крайней мере, массивные с высокой светимостью) никак не могут быть в Галактике "изначально", то есть с момента ее образования. Оказывается, что ежегодно в Галактике "умирает" по меньшей мере одна звезда. Значит, для того, чтобы "звездное племя" не "выродилось", необходимо, чтобы столько же звезд в среднем образовывалось в нашей Галактике каждый год. Для того, чтобы в течении длительного времени (исчисляемыми миллиардами лет) Галактика сохраняла бы неизменными свои основные особенности необходимо, чтобы в ней автоматически поддерживалось динамическое равновесие между рождающимися и "гибнущими" звездами. В этом отношении Галактика похожа на первобытный лес, состоящий из деревьев различных видов и возрастов, причем возраст деревьев гораздо меньше возраста леса. Имеется, правда, одно важное различие между Галактикой и лесом. В Галактике время жизни звезд с массой меньше солнечной превышает ее возраст. Поэтому следует ожидать постепенного увеличения числа звезд со сравнительно небольшой массой, так как они пока еще "не успели" умереть, а рождаться продолжают. Но для более массивных звезд упомянутое выше динамическое равновесие неизбежно должно выполняться.

Рождение звезды

Откуда же берутся в нашей Галактике молодые и "сверхмолодые" звезды? С давних пор, по установившейся традиции, восходящей к гипотезе Канта и Лапласа о происхождении Солнечной системы, астрономы предполагали, что звезды образуются из рассеянной диффузной газово-пылевой среды. Было только одно строгое теоретическое основание такого убеждения - гравитационная неустойчивость первоначально однородной диффузной среды. Дело в том, что в такой среде неизбежны малые возмущения плотности, то есть отклонения от строгой однородности. В дальнейшем, однако, если массы этих конденсаций превосходят некоторый предел, под влиянием силы всемирного тяготения малые возмущения будут нарастать и первоначально однородная среда разобьется на несколько конденсаций. Под действием силы гравитации эти конденсации будут продолжать сжиматься и, как можно полагать, в конце концов превратятся в звезды.

Характерное время сжатия облака до размеров протозвезды можно оценить по простой формуле механики, описывающей свободное падение тела под влиянием некоторого ускорения. Так, к примеру, облако с массой, равной солнечной, сожмется за миллион лет.

В процессе только что описанной первой стадии конденсации газово-пылевого облака в звезду, которая называется "стадией свободного падения", освобождается определенное количество гравитационной энергии. Половина освободившейся при сжатии облака энергии должна покинуть облако в виде инфракрасного излучения, а половина пойти на нагрев вещества.

Как только сжимающееся облако станет непрозрачным для своего инфракрасного излучения, светимость его резко упадет. Оно будет продолжать сжиматься, но уже не по закону свободного падения, а гораздо медленнее. Температура его внутренних областей , после того как процесс диссоциации молекулярного водорода закончится, будет непременно повышаться, так как половина освобождающейся при сжатии гравитационной энергии будет идти на нагрев облака. Впрочем, такой объект назвать облаком уже нельзя. Это уже самая настоящая протозвезда. Протозвездой мы называем звезду в самой ранней стадии образования, когда в межзвездном облаке возникает уплотнение, но ядерные реакции внутри нее еще не начались.

Таким образом, из простых законов физики следует ожидать, что может иметь место единственный и закономерный процесс эволюции газово-пылевых комплексов сначала в протозвезды, а потом и в звезды. Однако возможность - это еще не есть действительность. Первейшей задачей наблюдательной астрономии является, во-первых, изучить реальные облака межзвездной среды и проанализировать, способны ли они сжиматься под действием собственной гравитации. Для этого надо знать их размеры, плотность и температуру. Во-вторых, очень важно получить дополнительные аргументы в пользу "генетической близости облаков и звезд (например, тонкие детали их химического и даже изотопного состава, генетическая связь звезд и облаков и прочее). В-третьих, очень важно получить из наблюдений неопровержимые свидетельства существования самых ранних этапов развития протозвезд (например, вспышки инфракрасного излучения в конце стадии свободного падения). Кроме того, здесь могут наблюдаться, и, по-видимому, наблюдаются совершенно неожиданные явления. Наконец, следует детально изучать протозвезды. Но для этого, прежде всего, надо уметь отличать их от "нормальных" звезд.

Звездные ассоциации

Эмпирическим подтверждением процесса образования звезд из облаков межзвездной среды является то давно известное обстоятельство, что массивные звезды классов О и В распределены в Галактике не однородно, а группируются в отдельные обширные скопления, которые позже получили название "ассоциации". Но такие звезды должны быть молодыми объектами. Таким образом, сама практика астрономических наблюдений подсказывала, что звезды рождаются не поодиночке, а как бы гнездами, что качественно согласуется с представлениями теории гравитационной неустойчивости. Молодые ассоциации звезд (состоящие не только из одних горячих массивных гигантов, но и из других примечательных, заведомо молодых объектов) тесно связаны с большими газово-пылевыми комплексами межзвездной среды. Естественно считать, что такая связь должна быть генетической, то есть эти звезды образуются путем конденсации облаков газово-пылевой среды.

Процесс рождения звезд, как правило, не заметен, потому что скрыт от нас пеленой поглощающей свет космической пыли. Только радиоастромония, как можно теперь с большой уверенностью считать, внесла радикальное изменение в проблему изучения рождения звезд. Во-первых, межзвездная пыль не поглощает радиоволны. Во- вторых, радиоастрономия открыла совершенно неожиданные явления в газово-пылевых комплексах межзвездной среды, которые имеют прямое отношение к процессу звездообразования.

звезда образование газ пылевой

Диаграмма Герцшпрунга-Ресселла
Прежде чем приступать к дальнейшему рассмотрению эволюции звезд, давайте ознакомимся с одним из самых важных графиков, существующих в астрономии.
В 1905- 1907 гг. датский астроном Эинар Герцшпрунг проводил фотометрические измерения ярких звёзд двух сравнительно близких звёздных скоплений - Плеяды и Гиады. Он обнаружил, что голубые звёзды в каждом скоплении имеют самую высокую яркость, а среди красных звёзд можно выделить слабые и сравнительно яркие. Иными словами, на диаграмме, где сопоставляются звёздная величина и цвет звёзд, звёзды разбиваются на отдельные группировки. Поскольку звёзды каждого скопления находятся от нас примерно на одинаковом расстоянии, видимая яркость, измеряемая в звёздных величинах, характеризует светимость звёзд. Следовательно, цвет и светимость звёзд каким-то образом соотносятся друг с другом.
Но цвет звезды зависит от её температуры (чем звезда горячее, тем она голубее), которая в свою очередь тесно связана с видом звёздного спектра, т. е. спектральным классом, определяемым непосредственно из наблюдений. В 1913 г. американский астроном Генри Ресселл сопоставил светимость различных звёзд с их спектральными классами. На диаграмму спектр - светимость он нанёс все звёзды с известными в то время расстояниями (не зная расстояния, невозможно оценить светимость звезды). С тех пор сходные по своему значению диаграммы цвет-светимость и температура - светимость называют диаграммами Герцшпрунга - Ресселла.
Если нанести положения большого количества звезд на диаграмму, у которой по оси абсцисс отложены спектральные классы звезд, а по оси ординат - светимости, оказывается, что звезды отнюдь не располагаются беспорядочно, а образуют определенные группы. Положение звезды на диаграмме зависит от ее массы, возраста и химического состава. Диаграмма Герцшпрунга-Ресселла для звезд является важным инструментом сравнения теоретических моделей звезд с наблюдениями, она обычно приводится в следующих координатах:
1. Светимость - эффективная температура 2. Абсолютная звездная величина - показатель цвета 3. Абсолютная звездная величина - спектральный класс
главную последовательность;
красные гиганты;
горизонтальная ветвь;
асимптотическую ветвь сверхгигантов;
последовательность белых карликов;
Самая густонаселённая из группировка - главная последовательность - включает в себя около 90% всех наблюдаемых звёзд (в том числе и наше Солнце). Она тянется по диагонали, от левого верхнего края диаграммы, где сосредоточены голубые горячие звёзды высокой светимости, вправо вниз - к области, занимаемой слабыми красными звёздами:
Для звезд главной последовательности существует соотношение, известное как зависимость масса-светимость. Это соотношение было выведено из наблюдательного определения масс и светимостей звезд главной последовательности, но оно также подтверждается расчетами звездных моделей для звезд главной последовательности. Светимость звезды грубо пропорциональна ее массе в степени 3.5 или 4:
Таким образом, звезда в два раза массивней Солнца имеет светимость в 11 раз большую, чем Солнце. Наиболее массивные звезды главной последовательности примерно в 60 раз массивней Солнца. Это соответствует светимости почти в миллион раз больше солнечной.
Для наиболее массивных звезд L~M. Справа над нижней частью главной последовательности располагается ветвь гигантов, объединяющая преимущественно красные звёзды большого размера, светимость которых в десятки и сотни раз превосходит Солнечную. Среди этих ярких звёзд на ветви гигантов - Арктур, Альдебаран, Дубхе (альфа Большой Медведицы). На самом верху диаграммы почти горизонтально через все спектральные классы проходит последовательность звёзд-сверхгигантов. К ней принадлежат, например, Полярная звезда, Ригель, Бетельгейзе. Красные сверхгиганты - это крупнейшие по размеру звёзды. А внизу, в области высоких температур и низких светимостей, располагаются крошечные белые карлики. Известны и другие последовательности, но они не столь многочисленны.
Как только обнаружилось существование последовательностей, делались попытки их физической интерпретации. Сначала главная последовательность рассматривалась как совокупность звёзд различного возраста, т. е. как путь на диаграмме, по которому большинство звёзд перемешается в течение своей жизни, медленно расходуя запасы энергии и уменьшая светимость и температуру. Однако всё оказалось сложнее: вдоль главной последовательности располагаются звёзды различных масс, в которых энергия излучения выделяется за счёт превращения водорода в гелий. Чем массивнее звезда, тем выше её место на главной последовательности.
На главной последовательности любая звезда проводит большую часть своей жизни, именно поэтому на ней так много звёзд. Согласно теории звёздной эволюции, когда запасы водорода в недрах звезды заканчиваются, она покидает главную последовательность, отклоняясь вправо. При этом её температура всегда падает, а размер быстро возрастает. Начинается сложное, всё более ускоряющееся движение звезды по диаграмме.

Диаграмма Герцшпрунга-Ресселла широко применяется астрономами для описания эволюционных изменений звёзд и сопоставления теорий эволюции звёзд с наблюдениями. Удобна она и для определения возрастов звёздных скоплений (на основании теории эволюции), так как с возрастом населённость различных последовательностей меняется. Так, в молодых скоплениях много звёзд высокой светимости на главной последовательности и последовательности сверхгигантов. В старых же скоплениях верхний конец главной последовательности «исчезает» (звёзды успевают сойти с неё), но зато очень многочисленна ветвь гигантов, куда попадают звёзды типа Солнца примерно через 10 млрд лет после своего рождения. Зависимость Герцшпрунга - Ресселла часто используется и для уточнения относительных расстояний до звёздных скоплений путём сопоставления положения их главных последовательностей на диаграммах спектр - звёздная величина.

Эволюция звезд с низкой и средней массой Звездами с низкой и средней массой (0.08Мsun< М *<8Мsun) можно называть звезды, которые заканчивают свою жизнь без процесса углеродного горения и горения более массивных элементов в ядре. Внутри этой группы звезд также реализуются разные сценарии эволюции в зависимости от массы. Так, звезды с массами меньше 0.08 солнечной никогда не будут иметь достаточной температуры в ядре, чтобы водород загорелся; их называют коричневыми карликами, или иногда водородными вырожденными карликами, т.к. газ в них вырожден. Медленно остывая, они превращаются в черных карликов (черными карликами называются остывшие звезды). Красные карлики с массами меньше половины солнечной достигают в ядре температур, достаточных для горения водорода, но при этом они полностью конвективны, что предотвращает загорание водорода в слоевом источнике вокруг гелиевого ядра, заставляя звезду сжиматься и нагреваться. Это приводит ее к перемещению влево на диаграмме Герцшпрунга-Ресселла, превращая звезду в вырожденный гелиевый белый карлик.

1. В звездах средних масс ~0.5Мsun <М* < ~8Мsun будут гореть как водород, так и гелий. Они заканчивают свою жизнь как углеродно-кислородные белые карлики, также состоящие из вырожденного газа. Когда у звезд средних масс кончается водород в ядре, происходит его загорание в слоевом источнике вокруг гелиевого ядра. Звезды перемещаются на диаграмме ГР в ветвь красных гигантов. Для масс ~0.5Мsun< М* < ~3Мsun гелий в ядре загорится взрывным путем, испытав так называемую гелиевую вспышку (из-за вырожденности газа в ядре). Для масс ~3Msun< М* < ~8Мsun загорание гелия в ядре произойдет спокойно, так как температура в ядре достаточно высока и газ не успевает дойти до стадии вырождения. Звезда вступает в фазу горения гелия в непрерывно растущем конвективном ядре, вокруг которого горит тонкая водородная оболочка (горение водорода вносит значительный вклад в общую светимость звезды). На диаграмме Герцшпрунга-Рессела горение гелия у звезд этих масс происходит в двух различных областях: на ветви красных гигантов и на более голубой горизонтальной ветви. Когда гелий в ядре закончится, то его горение начнется в слоевом источнике вокруг ядра. Углеродно-кислородное ядро будет сжиматься и нагреваться, в то время как водородная оболочка будет охлаждаться и расширяться и звезда на диаграмме Герцшпрунга-Рессела попадет на ветвь сверхгигантов. Температура в ядрах звезд с массами ~0.5Мsun<М*<~8Мsun недостаточно высока, чтобы поджечь углерод после выгорания гелия. В недрах звезды формируется углеродно-кислородное ядро с вырожденным газом, очень похожее на белый карлик, да оно в сущности и есть белый карлик. При этом оболочка продолжает расширяться и в конце концов звезда и оболочка разделяются. Оболочка постепенно расширяется, формируя так называемую планетарную туманность. Оставшееся ядро и есть углеродно-азотный белый карлик с вырожденным газом, расположенный на диаграмме Герцшпрунга-Ресссела в левом нижнем углу.

Эволюция звезд с высокой массой

Звезды с высокой массой ~8Мsun < М* < ~10Мsun эволюционируют так же, как и со средней до момента формирования углеродно-кислородного ядра. Это ядро сжимается и становится вырожденным до того как загорится углерод, форсируя вспышку, известную как углеродная детонация - аналог гелиевой вспышки. Хотя в принципе углеродная детонация может привести к вспышке звезды как сверхновой, некоторые звезды могут пережить эту стадию, и не взорваться. При повышении температуры в ядре вырождение газа может сняться, после чего звезда продолжает эволюционировать как очень массивная звезда.

Очень массивные звезды с М* > ~10Мsun настолько горячи, что гелий загорается в ядре до того, как звезда достигнет ветви красных гигантов, загорание происходит еще тогда, когда эти звезды являются голубыми сверхгигантами и звезда продолжает монотонно эволюционировать в сторону покраснения; пока гелий горит в конвективном ядре, водород горит в слоевом источнике, обеспечивая большую часть светимости звезды. После исчерпания гелия в ядре температура там так высока, что углерод загорается до того, как газ станет вырожденным и углеродное горение включается постепенно без взрывных процессов. Загорание происходит до того, как звезда достигнет асимптотической ветви гигантов. Во все время горения углерода в ядре происходит отток энергии из ядра за счет нейтринного охлаждения, и основным источником поверхностной светимости является горение водорода и гелия в слоевых источниках. Эти звезды продолжают вырабатывать все более и более тяжелые элементы вплоть до железа, после чего ядро коллапсирует, образуя нейтронную звезду или черную дыру (в зависимости от массы ядра), а внешние слои разлетаются, что выглядит как взрыв сверхновой второго типа. Мы не можем точно указать массу одиночной звезды, которая должна взорваться как сверхновая второго типа, так как мы не знаем скорости потери вещества массивными звездами, хотя точно знаем, что вещество они теряют на всем протяжении эволюции. Приблизительная оценка массы звезды, которая должна взорваться как сверхновая второго типа: М*=10±3Мsun.

На этой таблице собраны теоретические сведения по эволюции одиночных звезд в зависимости от массы. Следует подчеркнуть, что таблица составлена без учета потери массы звездами на поздних стадиях эволюции.

Схема эволюции одиночной звезды

малые массы 0.08Msun<M*<0.5Msun

умеренные массы 0.5Msun<M*<8Msun

массивные звезды 8Msun<M*<60-100Msun

0.5Msun<M*<3Msun

3Msun<M*<8Msun

8Msun<M*<10Msun

M*>10sun

горение водорода в ядре

гелиевые бел. карлики

вырожд. He ядро

невырожд. He ядро

гелиевая вспышка

спокойное горение гелия в ядре

СО белый карлик

вырожд. СО ядро

невырожд. СО ядро

углеродная дет.

горение углерода в ядре. СО в Fe

горение углерода в ядре. C в O, Ne, Si, Fe, Ni..

O,Ne,Mg...белый карлик или нейтронная звезда

черная дыра

Сверхновая типа II, как конечный этап эволюции массивных звезд

Сверхновые звезды - звезды, блеск которых увеличивается на десятки звездных величин за сутки. В течение малого периода времени взрывающаяся сверхновая может быть ярче, чем все звезды ее родной галактики.

Существует два типа cверхновых: Тип I и Тип II. Считается, что Тип II является конечным этапом эволюции одиночной звезды с массой М*=10+3Мsun.

Крабовидная туманность - остаток взрыва сверхновой

Взрыв сверхновой звезды происходит (упрощенно) следующим образом: когда ядро достигает размера порядка 10 км, и плотности 800 млн.тонн/cм3, давление электронного вырожденного газа становится неспособным противостоять дальнейшему сжатию, и свободные электроны соединятся с протонами образуя нейтроны и испуская нейтрино:

p+ + e-R n+ne

Нейтрино, которые испускаются прямо из ядра, способствуют дальнейшей потере им энергии и еще более быстрому коллапсу. Ядро коллапсирует столь стремительно (за время порядка секунды), что наружные слои звезды отстают от него. Когда ядро уменьшится до размера около 10 км, нейтронный газ станет вырожденным и резко остановит дальнейшее сжатие. Падающая материя оболочки испытает действие ударной волны, направленное наружу. Эта ударная волна увлечет оставшийся материал оболочки за собой, сжимая и нагревая его. Конечным результатом будет формирование нейтронной звезды или черной дыры в ядре и полный разрыв остатка звезды с высвобождением энергии порядка 1053 эрг в нейтрино и 1051 эрг в кинетической и световой энергии. (Световая энергия эквивалентна тому, что Солнце высветит за все время своей жизни на главной последовательности, т.е. за период около 1010 лет).

Кварки
В 2002 году астрономы космической обсерватории Chandra, сканировавшие небо в рентгеновском диапазоне, обнаружили звезду, состоящую из кварков. Кварки - самые мелкие на сегодня субэлементарные частицы. Именно из них строятся нейроны, протоны и другие частицы.
До сих пор считалось, что находящаяся в 400 световых годах от нас звезда RXJ1856 в созвездии Corona Australis представляет собой нейтронную звезду. Нейтронные звезды возникают они после смерти после смерти обычных, среднего размера, звезд, примерно в полтора раза больших, чем наше Солнце. Когда термоядерный реактор в сердце такой звезды затухает, звезда умирает и схлопывается до диаметра в несколько десятков или сот километров. Состоит она из одних нейтронов и чайная ложка ее вещества весит миллиард тонн - примерно столько же, сколько весят все автомобили и автобусы, катящие по Земле. Когда Chandra стала измерять рентгеновскую светимость RXJ1856 (это позволяет измерить температуру звезды и ее размер), выяснилось, что звезда слишком мала для нейтронной - по крайней мере в два раза меньше, чем того требует теория. "Такая плотность материи, - говорит профессор Джереми Дрейк из Астрономического центра в Кембридже, вместе со своими коллегами проводивший этот анализ, - может существовать только в странных кварковых звездах и нигде больше".

Вторая кварковая звезда, 3C58, обнаруженная Дэвидом Гельфандом из Колумбийского университета, находится в десяти тысячах световых лет от нас и расположена в созвездии Кассиопея. Известна точная дата превращения 3C58 в Сверхновую, то есть ее смерти. Это событие случилось (точней, известия о нем добрались до нас) в 1181-м году; его наблюдали китайские и японские звездочеты, о чем оставили сообщения. Позже выяснилось, что эта звезда в 16 раз тусклее и в два раза холоднее, чем должна быть нейтронная звезда. Но если считать, что перед нами кварковая звезда, то тогда никаких расхождений с теорией не обнаруживается. Кварковые звезды, до сих пор известные лишь теоретически - последняя и окончательная инкарнация нормальных звезд среднего размера. По мнению некоторых астрофизиков, кварковая материя, входя в соприкосновение с обычной, то есть состоящей из нейтронов, протонов и других элементарных частиц, отравляет ее и тоже превращают в кварковую. Однако превращений близлежащих звезд в кварковые пока обнаружено не было.

Заключение

Итак, мы рассмотрели начальные разработки материалов по теме «Эволюция звезд». Я считаю, что с помощью новейших сведений, входящих частично и в данную работу, удастся пробудить в учениках интерес к астрономии и звездам в частности. Ребятам всегда интереснее узнавать о еще не решенных научных проблемах, поэтому в данную работу включены описания малоизученных кварков.

В реферате большое количество иллюстраций - считаю необходимым показывать на уроках астрономии как можно больше ярких рисунков и фотографий, чтобы более наглядно проиллюстрировать этот, достаточно сложный ,материал

Лично для меня эта работа была особенно полезной потому что , что я самостоятельно начала осваивать Internet, а также гораздо лучше стала ориентироваться в программе Microsoft Word.

Список использованных материалов

1. http://gelios-2002.narod.ru/docs/var_stars/var_stars.html

2. http://www.sinews.uz/articles.pl?/8/1282

3. http://www.kommersant.ru/news/lenta.html?id=39829

4. http://www.vako.ru/news/news.phtml?id=15&div=0

5. http://www.vprojects.ru/rus/news/science/44.html

6. http://citadel.pioner-samara.ru/distance/cesevi26.htm

7. http://www.alhimik.ru/News/n-net6.html

8. http://stars-11t.narod.ru/2-2.htm

9. http://www.concept-media.ru/news.asp?nid=803&act=detail

10. И. С. Шкловский. Звезды: их рождение, жизнь и смерть

12. П. И. Бакулин. Курс общей астрономии

13. Ю. Н. Ефремов. В глубины Вселенной

Размещено на Allbest.ru


Подобные документы

  • Из чего состоят звезды? Основные звездные характеристики. Светимость и расстояние до звезд. Спектры звезд. Температура и масса звезд. Откуда берется тепловая энергия звезды? Эволюция звезд. Химический состав звезд. Прогноз эволюции Солнца.

    контрольная работа [29,4 K], добавлен 23.04.2007

  • Механизм образования и эволюции основных объектов Вселенной. Типы звезд; процессы протекающие при образования сверхновой: нейтронные звёзды, пульсары, черные дыры. Эволюция звезд. Происхождение химических элементов в недрах звезды; термоядерный синтез.

    реферат [54,6 K], добавлен 05.03.2013

  • Характеристика звезд. Звезды в космическом пространстве. Звезда – плазменный шар. Динамика звездных процессов. Солнечная система. Межзвездная среда. Понятие звездной эволюции. Процесс звездообразования. Звезда как динамическая саморегулирующаяся система.

    реферат [25,6 K], добавлен 17.10.2008

  • Карта звездного неба. Ближайшие звезды. Ярчайшие звезды. Крупнейшие звезды нашей Галактики. Спектральная классификация. Звездные ассоциации. Эволюция звезд. Диаграммы Герцшпрунга – Рессела шаровых скоплений.

    реферат [365,6 K], добавлен 31.01.2003

  • Двойные звезды. Открытие двойных звезд. Измерение параметров двойных звезд. Теплые двойные звезды. Рентгеновские двойные звезды. Характерные примеры двойных звезд Центавра. Сириус. Двойные звезды - две звезды, обращающиеся вокруг общего центра тяжести.

    реферат [39,4 K], добавлен 19.01.2006

  • О развитии Вселенной, её возрасте и "большом взрыве". Гипотезы автора о научной картине Мира, строении и происхождении Вселенной. История жизни галактик, образование звезд и ядерных реакций в их недрах. Авторская теория об "Эволюции молока Вселенной".

    статья [29,4 K], добавлен 20.09.2010

  • Происхождение звезд, их движение, светимость, цвет, температура и состав. Скопление звезд, звезды-гиганты, белые и нейтронные карлики. Расстояние от нас до звезд, их возраст, способы определения астрономических расстояний, фазы и этапы эволюции звезды.

    реферат [28,1 K], добавлен 08.06.2010

  • Звёздная эволюция — изменения звезды в течение её жизни. Термоядерный синтез и рождение звезд; планетарная туманность, протозвезды. Характеристика молодых звезд, их зрелость, поздние годы, гибель. Нейтронные звезды (пульсары), белые карлики, черные дыры.

    презентация [3,5 M], добавлен 10.05.2012

  • Понятие и виды двойных звезд, измерение их массы с помощью законов Кеплера. Возникновение вспышки в результате встречи потоков вещества, устремляющихся от звезд. Влияние сил тяготения на двойные звезды, характерные особенности рентгеновских пульсаров.

    презентация [773,3 K], добавлен 21.03.2012

  • Звезды - светящиеся небесные тела. Использование их расположения для навигации и ориентирования. Проведение астрономических исследований. "Градусники" для измерения звездных температур. Гиганты и карлики в мире звезд. Движение Земли по созвездиям зодиака.

    презентация [730,7 K], добавлен 16.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.