Планета Земля

Периодизация процесса научного исследования планеты Земля, характеристика ее параметров: форма, химический состав, строение, атмосфера. Взаимодействие Земли с другими телами. Условия жизни на Земле, проблема "парникового эффекта" и изменения климата.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 21.11.2010
Размер файла 267,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

3

Размещено на http://www.allbest.ru/

Государственное учреждение образования «Гимназия №3 г. Борисова»

Кабинет астрономии

Земля

Выполнили:

ученики 11' «А» класса

Воронович Евгений

Дёмшин Константин

Мамайко Иван

Соболевский Игорь

Проверил:

учитель астрономии

Овсяник О.В.

г. Борисов 2010

СОДЕРЖАНИЕ:

Введение

I. Общие сведения о Земле

1. История изучения

1.1 Начальный этап исследования Земли

1.2 Научный этап исследования Земли

2. Параметры Земли

2.1 Форма, размеры и движение Земли

2.2 Поверхность Земли

2.3 Химический состав

2.3 Внутреннее строение Земли

2.4 Атмосфера Земли

2.5 Поля Земли

II. Взаимодействие Земли с другими телами и условия жизни на Земле

1. Взаимодействие Земли с другими телами

1.1 Движение полюсов

1.2 Процессия

1.3 Затмение

2. Условия жизни на Земле

2.1 Изменение климата

2.2 “Парниковый эффект”

Заключение

Список использованных источников

Приложение

Введение

Земля, третья от Солнца большая планета Солнечной системы. Земля принадлежит к группе земных планет, которая включает также Меркурий, Венеру и Марс. Земля часто сравнивается именно с этой группой, а также с Луной, поскольку их происхождение, структура и эволюция одинаковы. Благодаря своим уникальным, быть может, единственным во Вселенной природным условиям (хотя это сомнительно), Земля стала местом, где возникла и получила развитие органическая жизнь.

Возможно самое любопытное, что мы ждём от исследований Земли, - это осознание наших собственных перспектив. Мы ищем ответ на такой вопрос: сумеем ли мы пережить экологический кризис? Планета Земля уникальна в своём роде. Объектом изучения выбрана Земля, потому что нас заинтересовала то, что планета Земля - единственная планета, на которой возможна жизнь. Главная цель работы - познакомить людей, читающей данную работу, с планетой Земля. Ведь очень интересно узнать больше о месте, на котором мы живём.

В данной работе изложено много интересных фактов, касающихся Земли. Всё начинается с истории. Когда образовалась Земля, из чего и почему? Почему на ней зародилась жизнь? Какова роль Земли в Солнечной Системе? Как она взаимодействует с другими её объектами? Мы надеемся, что дальнейшее изложение сумеет рассказать вам много интересного и даст почувствовать, что планета Земля очень интересна для изучения.

I. Общие сведения о Земле

Среднее расстояние от Земли до Солнца - 149,6 млн. км

Наибольшее расстояние (в афелии 1-6 июля) от Земли до Солнца - 152,1 млн. км

Наименьшее расстояние (в перигелии 1-5 января) от Земли до Солнца - 147,1 млн. км

Период обращения Земли вокруг оси (относительно Солнца - средние солнечные сутки) - 24ч3м56,555с

Период обращения Земли вокруг оси (звездные сутки=23,93часа) - 23ч56м4,091с

Период обращения Земли вокруг Солнца (тропический год, суток) - 365,24219

Период обращения Земли вокруг Солнца (сидерический год, суток) - 365,25636

Эксцентриситет - 0,0167

Длина земной орбиты - 939,1 млн.км

Средняя скорость движения Земли по орбите - 29,765 км/с

Средняя скорость движения точки экватора - 465 м/с)

Средняя скорость движения точки на широте вследствие вращения Земли - 465 м/с

Температура на поверхности - от -55 до +70 градусов Цельсия

Средний наклон эклиптики (плоскости орбиты) к экватору - 23о26'28,91"

Экваториальный радиус Земли - 6378,160 м

Полярный радиус Земли - 6356,777 м

Сжатие Земли - 1:298,25

Длина окружности экватора - 400075,696 км

Сплюснутость экватора - 1:30000

Масса Земли - 5,976. 1024 кг

Средняя плотность Земли - 5,518 г/м3

Ускорение силы тяжести - 9,80665 м/с2

Объем Земли - 1,083.1012 км3

Поверхность Земли - 510,2.106 км2

Поверхность суши - 149,1.106 км2

Поверхность воды (Мирового океана) - 361,1.106 км2

1 космическая скорость (достигнута 4.10.1957г) - 7,91 км/с,

2 космическая скорость (достигнута 2.01.1959г) - 11,19 км/с

Количество спутников - 1

Период обращения Луны вокруг Земли (сидерический месяц) 27,32166 суток

Интервал времени между двумя последовательными любой фазы Луны (синодический месяц) 29,53059 суток

Времена года. Смена времен года на Земле возникает из-за наклона экватора (под углом 23,5°) к эклиптике - плоскости орбиты Земли вокруг Солнца. Солнцестояния и равноденствия обозначены на рисунке в соответствии с временами года в северном полушарии. Смена сезонов происходит на всех планетах, у которых наклон оси вращения к плоскости эклиптики отличается от 90°. Сезонные эффекты, касающиеся, например, состояния полярных ледяных шапок, особенно заметны на Земле и Марсе.

Традиционно выделяют четыре сезона - весну, лето, осень и зиму, - но строгого деления между ними нет, а сезонные условия от года к году могут значительно меняться.

планета земля климат строение

1. История изучения

1.1 Начальный этап исследования Земли

Наиболее древние картографические изображения Земли созданы в Египте и Вавилонии в 3-1 тыс. до н. э. В 7 в. до н. э. в Месопотамии карты изготавливались на глиняных табличках. Чисто умозрительные представления об окружающем мире содержатся в источниках, оставленных народами Древнего Востока. Однако, в этот период представления о Земле в основном определялись мифами и легендами.

Ранняя античность (6-1 вв. до н. э.)

Наибольших достижений в этот период достигли ученые Древней Греции, стремившиеся дать представление о Земле в целом. Первую попытку создать карту всей Земли осуществил Анаксимандр, по мнению которого Земля представляет собой цилиндр (окруженный небесной сферой), вокруг морского бассейна располагается суша, в свою очередь, опоясанная водным кольцом. Одна из первых географических работ --«Землеописание» Гекатея Милетского сопровождалась, по-видимому, географической картой, на которой кроме Европы и Азии, были показаны известные древним грекам моря: Средиземное, Черное, Азовское, Каспийское, Красное. Гекатей впервые ввел понятие ойкумены. Между 350 и 320 до н. э. Питеас (Пифей) достиг берегов Западной Европы, открыв Британские и Ирландские острова. Ему принадлежит верное наблюдение о связи приливов и отливов в океане с движениями Луны.

Предположение о шарообразности Земли впервые, по-видимому, было сделано Пифагором. Опытные мореплаватели, древние греки, обратили внимание на то, что при приближении корабля к наблюдателю сначала видны паруса и только потом весь корабль, что свидетельствовало о сферичности планеты. В развитие этих представлений Гераклитом была высказана идея о вращении Земли вокруг своей оси. В 340 до н. э. в книге «О небе» Аристотель привел доказательства шарообразности Земли: при лунных затмениях Земля всегда отбрасывает на Луну круглую тень, а Полярная звезда в северных районах располагается выше над горизонтом, чем в южных. Оценив разницу в кажущемся положении Полярной звезды в Греции и в Египте Аристотель вычислил длину экватора, которая, однако, оказалась примерно вдвое больше реальной.

Впервые достаточно точно диаметр земного шара определил Эратосфен на основе простого опыта --по разнице высоты Солнца в городах Сиена и Александрия, лежащих на одной полуденной линии, и расстоянию между ними. Измерение выполнялось во время летнего солнцестояния, вычисленная длина диаметра отличалась от действительной только на 75 км. Геометрические принципы, которыми он пользовался, легли в основу градусных измерений Земли. Почти все труды этого ученого не сохранились, о них известно по трудам более поздних греческих авторов.

Во 2 в. до н. э. древнегреческими учеными были введены понятия географической широты и долготы, разработаны первые картографические проекции, на которых показывалась сетка параллелей и меридианов, предложены методы определения взаимного расположения точек на земной поверхности.

Античные ученые обратили внимание на изменение поверхности Земли с течением времени в результате действия воды и внутренних сил Земли, особенно вулканических процессов. Эти идеи позднее легли в основу геологических концепций нептунизма и плутонизма.

Поздняя античность (1-2 вв.)

В первые десятилетия 1в утвердилась идея о шарообразности Земли. Уровень знаний об окружающем мире этого периода характеризует выдающийся труд Плиния Старшего «Естественная история» в 37 книгах, содержащая сведения по географии, метеорологии, ботанике, минералогии, а также истории и искусству.

Своеобразным итогом географических знаний античности служит «География» Страбона в 17 книгах, где довольно подробно описаны Кавказ и Боспорское царство. Книга должна была служить практическим пособием для полководцев, мореплавателей, торговцев и поэтому содержала многочисленные бытовые и исторические сведения. Страбон высказал мнение о том, что в неизвестном океане между западной оконечностью Европы и Восточной Азией вероятно лежат несколько континентов и островов. Не исключено, что это предположение было известно Х. Колумбу.

Во 2 в. Птолемей в труде «География» дал сводку географических сведений, включающую карту мира и 16 областей Земли. Он уже высказал предположение о центральном положении Земли во Вселенной (геоцентрической системе мира). В этот период наряду с правильными представлениями, основанными на открытиях ученых, путешественников и купцов, были распространены легенды о неизвестных или исчезнувших областях и странах, например Атлантиде.

Средние века (конец 8-14 вв.)

В 8-10 вв. викинги, совершавшие завоевательные походы, открыли Гренландию и первыми из европейцев достигли Северной Америки (так называемую страну Винланд, Маркланд, Хелуланд). В 9-11 вв. исследования неизвестных для европейцев земель, выполненные арабскими учеными и путешественниками (Масуди, Мукаддаси, Якуби), стали важным источником для изучения Востока. Бируни первым на Среднем Востоке предположил, что Земля движется вокруг Солнца. Он привел много интересных для своего времени топографических и географических наблюдений, а также геологических и минералогических сведений. В 12-13 вв. путешествия Плано Карпини и Марко Поло позволили составить представление о Центральной, Восточной и Южной Азии.

Великие географические открытия (15 --середина 17 вв.)

Усовершенствование приборов, позволявших ориентироваться в океане (компас, лаг, астролябия), создание морских карт, а также потребность в новых торговых связях, способствовали Великим географическим открытиям. Результаты этих открытий окончательно прояснили вопрос о шарообразности земли, прямым доказательством которой послужило кругосветное путешествие Ф. Магеллана в начале 16 в. Плавания Х. Колумба, Васко да Гамы, А. Веспуччи и других мореплавателей в Мировом океане, путешествия русских землепроходцев в Северной Азии позволили установить контуры материков, а также описать большую часть земной поверхности, животный и растительный мир Земли. В этот же период предложенная польским ученым Н. Коперником гелиоцентрическая система мира ознаменовала начало новой эпохи в естествознании.

1.2 Научный этап исследования Земли

Первый период (17 --середина 19 вв.)

Этот этап характеризуется широким использованием физических, математических и инструментальных методов. Открытие И. Ньютоном закона всемирного тяготения во второй половине 17 в. привело к возникновению идеи о том, что Земля представляет собой не идеальный шар, а сплющенный у полюсов сфероид. Исходя из предположений о внутреннем строении Земли и основываясь на законе всемирного тяготения, Ньютон и Х. Гюйгенс дали теоретическую оценку величины сжатия земного сфероида и получили столь различные результаты, что возникли сомнения в справедливости гипотезы о земном сфероиде. Чтобы рассеять их, Парижская Академия наук в первой половине 18 в. направила экспедиции в приполярные области Земли --в Перу и Лапландию, где были выполнены градусные измерения, подтвердившие верность идеи о сфероидичности Земли и закона всемирного тяготения.

Р. Декарт и Г. Лейбниц впервые рассмотрели Землю как развивающееся космическое тело, которое первоначально было в расплавленном состоянии, а затем охлаждалось, покрываясь твердой корой. Расплавленная Земля была окутана парами, которые затем сгустились и создали Мировой океан, его воды частично ушли в подземные пустоты, создав сушу. Возникновение гор на Земле Р. Гук, Г.В. Рихман и другие связывали с землетрясениями, либо с вулканической деятельностью. М. В. Ломоносов также объяснял образование гор «подземным жаром».

Открытия, исследования и идеи 17 --первой половины 19 вв. подготовили почву для возникновения комплекса наук о Земле. К важнейшим из них относится, в частности, открытие У. Гильберта, заключающееся в том, что Земля в первом приближении является элементарным магнитом. Ломоносов предположил, что значение силы тяжести на земной поверхности определяется внутренним строением планеты. Он же одним из первых предпринял попытку измерить вариации ускорения силы тяжести, а также совместно с Г. В. Рихманом исследовал атмосферное электричество. В этот же период была развита теория маятника, на основе которой стали производиться достаточно точные определения силы тяжести, разработаны метеорологические приборы для измерения скорости ветра, количества осадков, влажности воздуха. А. Гумбольдт установил, что напряженность земного магнетизма меняется с широтой, уменьшаясь от полюса к экватору, разработал представления о закономерном распределении растительности на поверхности Земли (широтная и высотная зональность). Он одним из первых наблюдал магнитную бурю и обобщил накопившиеся к первой четверти 19 в. данные о строении Земли. Для изучения прохождения в земле сейсмических волн Малле в 1851 осуществил первое искусственное землетрясение (взрывая порох и наблюдая распространение колебаний на поверхности ртути в сосуде). В 1897 Э. Вихерт, основываясь на результатах изучения состава метеоритов и распределении плотности в недрах планеты, выделил в Земле металлическое ядро Земли и каменную оболочку. В этот период установлена возможность определения относительного возраста пород по сохранившимся в них остаткам флоры и фауны, что позволило позднее построить геохронологическую шкалу, осуществить палеореконструкции положения материков и океанов в разные геологические эпохи, изучать историю геологического развития Земли.

Второй период (середина --конец 19 в.)

В это время происходило углубление знаний о строении нашей планеты на основе развивающихся магнитного, гравиметрического, сейсмического, электрического и радиометрического методов геофизики. Среди геологов получила широкое распространение контракционная гипотеза. В 1855 английский астроном Эйри высказал предположение о равновесном состоянии земной коры (изостазии), подтвердившееся в 20 в. при изучении глубинного строения гор, когда было установлено, что более высокие горы имеют более глубокие корни.

Третий период (первая половина 20 в.)

Начало века было отмечено крупными успехами в исследовании полярных областей Земли. В 1909 Р. Пири достиг Северного полюса, в 1911 Р. Амундсен--Южного. Норвежские, бельгийские, французские и русские путешественники обследовали приполярные области, составили их описания и карты. Позднее начато планомерное изучение этих областей с помощью антарктических научных станций и дрейфующих обсерваторий «Северный полюс». В первой половине 20 в., благодаря дальнейшему усовершенствованию геофизических методов и, особенно, сейсмологии, были получены фундаментальные данные о глубинном строении Земли. В 1909 А. Мохорович выделил планетарную границу раздела, являющуюся подошвой земной коры. В 1916 сейсмолог Б.Б. Голицын зафиксировал границу верхней мантии, а в 1926 Б. Гутенберг установил в ней наличие сейсмического волновода (астеносферы). Этот же ученый определил положение и глубину границы между мантией Земли и ядром. В 1935 Ч. Рихтер ввел понятие магнитуды землетрясения, разработал совместно с Гутенбергом в 1941-45 Рихтера шкалу. Позднее на основе сейсмологических и гравиметрических данных была разработана модель внутреннего строения Земли, которая остается практически неизменной до наших дней.

Начало 20 в. ознаменовалось появлением гипотезы, которой в дальнейшем было суждено сыграть ключевую роль в науках о Земле. Ф. Тейлор (1910), а вслед за ним А. Вегенер(1912) высказали идею о горизонтальных перемещениях материков на большие расстояния (дрейфе материков), подтвердившуюся в 1960-х гг. после открытия в океанах глобальной системы срединно-океанических хребтов, опоясывающих весь земной шар и местами выходящих на сушу (см. Рифтов мировая система). Выяснилось также, что земная кора под океанами принципиально отличается от континентальной коры, а мощность осадков на дне увеличивается от гребней хребтов к их периферии. Были закартированы аномалии магнитного поля океанского ложа, которые имеют удивительную, симметричную относительно осей хребтов структуру. Все эти и другие результаты послужили основанием для возврата к идеям дрейфа континентов, но уже в новой форме --тектоники плит, которая остается ведущей теорией в науках о Земле.

Значительный объем новой информации, особенно о строении атмосферы, был получен в результате исследований глобальных геофизических процессов во время максимальной солнечной активности, проводившихся в рамках Международного геофизического года (1957-58) учеными 67 стран.

Четвертый период (вторая половина 20 в.)

Развитие методов радиометрического датирования горных пород во 2-ой половине 20 в. позволило уточнить возраст планеты. Началось интенсивное развитие спутниковой геофизики. На основе измерений с помощью спутников была изучена структура магнитосферы, а также выявлено наличие радиационных поясов вокруг Земли. В конце 1970-х гг. с помощью геодезических спутников (GEOS-3), оснащенных высокоточными радарными альтиметрами, удалось достичь существенного прогресса в изучении геоида. Наряду со спутниковой геодезией широкое развитие получили методы изучения атмосферных процессов со спутников --спутниковая метеорология, что значительно повысило точность метеорологических прогнозов.

С 1968 ведется международная программа глубоководного бурения в Мировом океане, пробурено около 2000 скважин, получено более 182 км керна. Это позволило существенно продвинуться в понимании тектонического строения, в палеоокеанографии и осадконаполнении океанских бассейнов. На континентах изучение глубинного строения Земли ведется с помощью сверхглубокого бурения, достигшего в 1984 глубины свыше 12 км (Кольская сверхглубокая скважина).

Для изучения максимальных глубин океана стали использоваться обитаемые глубоководные аппараты. В 1960 швейцарец Ж. Пиккар и американец Д. Уолш в батискафе «Триест» достигли дна Марианского желоба --самого глубокого места Мирового океана (11022 м). С 1980-90-х гг. подводные аппараты с человеком на борту широко используются для выполнения геологических, гидрологических и биологических наблюдений в глубинах океана.

С 1980-90-х гг. развивается геофизическая томография, с помощью которой построены сейсмические разрезы нижней и верхней мантии, что в совокупности с геотермическими и другими геофизическими данными позволило осуществить качественное и количественное моделирование мантийной конвекции --циркуляционного перемещения вещества мантии.

Запуски межпланетных космических аппаратов к Меркурию, Марсу, Венере, а также к более отдаленным планетам позволили также углубить знания о строении и эволюции Земли на основе сравнительного изучения планет (сравнительная планетология). Полученные данные вместе со сведениями о структуре земной коры и глубинных недр планеты послужили основой для разработки моделей развития Земли, начиная с момента ее образования из протопланетного облака.

Последние годы более серьезное внимание стали уделять возможности защиты Земли от столкновения с астероидом. Центр имени Эймса опубликовал данные за 2001 год о поиске околоземных астероидов. По состоянию на 28 января 2002 года общее число пролетающих мимо Земли астероидов составляет 1743, в том числе 587 из них имеют размеры более 1 км. В 2001 году было открыто 433 околоземные малые планеты, причем 103 из них имеют размеры более 1 км. На начало октября 2002 года открыто почти 850 астероидов размером более 1 км, относящихся к классу околоземных. Из них 436 малых планет включены в список потенциально опасных для Земли (66 астероидов включено в 2002г, а в 2001г было обнаружено 79 - рекорд!).

К 1 февраля 2003г выявлено около 2225 околоземных объектов размером от 10 м до 30 км в поперечнике. Однако данные о точных физических размерах и составе есть только для 300 объектов. Общее же число объектов размером не менее километра в поперечнике, которые могут столкнуться с Землей, по разным оценкам составляет от 900 до 1230 штук.

Открытый 23 февраля 1950 года астероид диаметром 1,1 км, может по расчеты траектории с вероятностью (1:300) через 877 лет и 11 месяцев 16 марта 2880 года столкнуться с нашей планетой. Конец света вряд ли наступит, но вот потрясет нашу планету изрядно и количество погибших будет исчисляться миллионами. Правда, у человечества еще есть время, чтобы подготовиться к этому волнующему событию.

Список опасных небесных объектов можно обнаружить на сайте Лаборатории реактивного движения (Jet Propulsion Laboratory, JPL) в Пасадене (neo.jpl.nasa .gov/risk/). По состоянию на 4 апреля 2003г в нем 37 астероидов, несущих потенциальную угрозу Земле. Наиболее опасным называется 2002 CU11, который 31 августа 2049 года пройдет близ нашей планеты на расстоянии до 6 тысяч километров (в самом неблагоприятном случае). Степень опасности оценена в “1” по Туринской шкале (кстати, это единственное небесное тело, имеющее по Туринской шкале степень опасности, отличную от нуля).

2. Параметры Земли

2.1 Форма, размеры и движение Земли

По форме Земля близка к эллипсоиду, сплюснутому у полюсов и растянутому в экваториальной зоне. Средний радиус Земли 6371,032 км.

Земля движется вокруг Солнца со средней скоростью 29,765 км/с по эллиптической, близкой к круговой орбите на среднем расстояние от Солнца 149,6 млн.км. Период одного обращения по орбите 365, 24 солнечных суток.

Неравномерность движения Солнца по эклиптике:

Апогей 1-5 января, перемещение среди звезд 61'/сутки.

Перигей начало июля, перемещение 57'/сутки.

Вращение Земли вокруг собственной оси происходит со средней угловой скоростью 7,292115·10-5рад/с, что примерно соответствует периоду в 23 ч 56 мин 4,1 с. Ось вращения наклонена к плоскости эклиптики под углом 66° 33' 39'' (около 23°26' наклон между экваториальной плоскостью и эклиптикой принят с 1 января 1983г, когда наклон уменьшился до 23° 26' 29". Влияние прецессии и нутации приводит к его изменению в пределах от 21°55' до 24°18'). Этот наклон и годовое обращение Земли вокруг Солнца обуславливают исключительно важную для климата Земли смену времен года, а собственное ее вращение --смену дня и ночи. Вращение Земли из-за приливных воздействий неуклонно (хотя и очень медленно --на 0,0015 с за столетие) замедляется. Имеются и небольшие нерегулярные вариации продолжительности суток.

Положение географических полюсов меняется с периодом 434 суток с амплитудой 0,36''. Кроме того, имеются и небольшие сезонные их перемещения.

2.2 Поверхность Земли

Площадь поверхности Земли 510,2 млн. км2, из которых примерно 70,8% приходится на Мировой океан. Его средняя глубина около 3,8 км, максимальная (Марианская впадина в Тихом океане) равна 11,022 км; объем воды 1370 млн. км3, средняя соленость 35 г/л. Суша составляет соответственно 29,2% и образует шесть материков и острова. Она поднимается над уровнем моря в среднем на 875 м; наибольшая высота (вершина Джомолунгма в Гималаях) 8848 м.

Самая низкая точка планеты становится еще ниже. За период с 1930 по 1999 годы Мертвое моря опустилось с отметки 390 метров до 414 метров ниже уровня океана. Данные, полученные с помощью радара на спутниках, наблюдавших за регионом с 1992-го по 1999 год показали, что в среднем суша уходит вниз примерно на 2 сантиметра в год, хотя в некоторых районах эта цифра составляет 6 сантиметров. Формулируя кратко существо происходящих изменений, геологи и океанографы говорят, что вода уходит из Мертвого моря, из-за чего пористые скальные породы высыхают и проседают под весом верхних слоев.

Горы занимают свыше 1/3 поверхности суши. Пустыни покрывают около 20% поверхности суши, саванны и редколесья --около 20%, леса --около 30%, ледники --свыше 10%. Свыше 10% суши занято под сельскохозяйственными угодьями. Значительная часть северных территорий представляет собой вечную мерзлоту. За минувшие 20 лет с начала подробных космических исследований с 1981г Северное полушарие нашей планеты стало гораздо зеленее. Одной из возможных причин такого феномена специалисты называют глобальное потепление климата. Если бы лед и снег на Земле растаяли, то уровень Мирового океана поднялся более чем на 50м, что привело бы к затоплению гигантских территорий.

Результаты нового анализа данных, полученных спутниками НАСА к концу 2002г, свидетельствуют о том, что площадь вечных льдов в Арктике уменьшается со скоростью, намного превосходящей ее ранние оценки. В период с 1978 по 2000 гг. площадь ледяного покрова в Северном Ледовитом океане уменьшилась на 1,2 млн. км2, что примерно равно площади Британии. Скорость его таяния составляет около 9% в десятилетие. Измерения, проводившиеся в предыдущие годы, давали скорость таяния, составлявшую примерно 3% в десятилетие. В 2002 году ледяная шапка была наименьшей за всю историю наблюдений. Сокращение поверхности ледяного покрова Северного Ледовитого океана отмечается на фоне тенденции к повышению средней летней температуры воздуха в приполярных регионах в среднем на 1,2 градуса за десятилетний период. Наибольшая скорость таяния отмечалась в Чукотском море и море Бофорта, в северных районах Канады и на Аляске.

Последние исследования с помощью космических спутников показали, что по экваториальной линии происходит увеличение диаметра Земли с 1998 года , то есть планета становится чуть более приплюснутой (расширяться в зоне экватора). Ученые столь озадачены этим феноменом, что пока не могут дать ясный ответ, что происходит с нашей планетой и чем это чревато.

К июлю 2002г специалисты NASA создали уникальную карту. Эта самая точная и подробная современная карта мира. В трехмерной графике здесь отмечены города, реки, горы, пустыни и моря. Одним нажатием кнопки можно совершить восхождение на Эверест или побывать в пустыне Сахара. Причем показывается не сразу конечная точка, а весь маршрут движения. Над созданием этой карты NASA работала почти два года, обработав на компьютере данные, полученные топографическим шаттлом - более триллиона различных отметок земной поверхности.

2.3 Химический состав

Масса Земли приблизительно равна 5,98Ч1024 кг. Общее число атомов, составляющих Землю ?1050(см. Приложение 1). Она состоит в основном из железа (32,1 %), кислорода (30,1 %), кремния (15,1 %), магния (13,9 %), серы (2,9 %), никеля (1,8 %), кальция (1,5 %) и алюминия (1,4 %); на остальные элементы приходится 1,2 %. Из-за сегрегации по массе внутреннее пространство, предположительно, состоит из железа(88,8 %), небольшого количества никеля (5,8 %), серы (4,5 %).

Геохимик Франк Кларк вычислил, что земная кора чуть более чем на 47 % состоит из кислорода. Наиболее распространённые породосоставляющие минералы земной коры практически полностью состоят из оксидов; суммарное содержание хлора, серы и фтора в породах обычно составляет менее 1 %. Основными оксидами являются кремнезём (SiO2), глинозём (Al2O3), оксид железа (FeO), окись кальция (CaO), окись магния (MgO), оксид калия (K2O) и оксид натрия (Na2O). Кремнезём служит главным образом кислотной средой, формирует силикаты; природа всех основных вулканических пород связана с ним. Из расчётов, основанных на анализе 1 672 видов пород, Кларк сделал вывод, что 99,22 % из них содержат 11 оксидов. Все прочие компоненты встречаются в очень незначительном количестве.

2.3 Внутреннее строение Земли

Основную роль в исследовании внутреннего строения Земли играют сейсмические методы, основанные на исследовании распространения в ее толще упругих волн (как продольных, так и поперечных), возникающих при сейсмических событиях --при естественных землетрясениях и в результате взрывов. На основании этих исследований Землю условно разделяют на три области: кору, мантию и ядро (в центре) (См. Приложение 2). Внешний слой --кора --имеет среднюю толщину порядка 35 км. Основные типы земной коры --континентальный (материковый) и океанический; в переходной зоне от материка к океану развита кора промежуточного типа. Толщина коры меняется в довольно широких пределах: океаническая кора (с учетом слоя воды) имеет толщину порядка 10 км, тогда как толщина материковой коры в десятки раз больше.

Поверхностные отложения занимают слой толщиной около 2 км. Под ними находится гранитный слой (на континентах его толщина 20 км), а ниже --примерно 14-километровый (и на континентах, и в океанах) базальтовый слой (нижняя кора). Средние плотности составляют: 2,6 г/см3 --у поверхности Земли, 2,67 г/см3 --у гранита, 2,85 г/см3 --у базальта.

На глубину примерно от 35 до 2885 км простирается мантия Земли, которую называют также силикатной оболочкой. Она отделяется от коры резкой границей (так называемая граница Мохоровича, или «Мохо»), глубже которой скорости как продольных, так и поперечных упругих сейсмических волн, а также механическая плотность скачкообразно возрастают. Плотности в мантии увеличиваются по мере возрастания глубины примерно от 3,3 до 9,7 г/см3.

Последние исследования проведенные в Гарварде на основании сведения о более 300 тысяч землетрясений, произошедших в 1964-1994 годах, показали, что существует внутренняя часть внутреннего ядра - диаметром около 600 километров с температурой в центре Земли до 7500К. (см. Приложение 3)

В коре и (частично) в мантии располагаются обширные литосферные плиты. Их вековые перемещения не только определяют дрейф континентов, заметно влияющий на облик Земли, но имеют отношение и к расположению сейсмических зон на планете. По планетарным понятиям поверхность Земли очень молода. Базальтовые породы, формирующие дно океанов, - одни из самых молодых. Докембрийские щиты, которые занимают около 10% поверхности, самые старые и наиболее близкие к покрытой кратерами поверхности других планет. Погодные процессы сгладили на поверхности Земли все следы имевшихся на ней когда-то кратеров, за исключением лишь нескольких.

Еще одна обнаруженная сейсмическими методами граница (граница Гутенберга) -- между мантией и внешним ядром --располагается на глубине 2775 км. На ней скорость продольных волн падает от 13,6 км/с (в мантии) до 8,1 км/с (в ядре), а скорость поперечных волн уменьшается от 7,3 км/с до нуля. Последнее означает, что внешнее ядро является жидким. По современным представлениям внешнее ядро состоит из серы (12%) и железа (88%). Наконец, на глубинах свыше 5120 км сейсмические методы обнаруживают наличие твердого внутреннего ядра, на долю которого приходится 1,7% массы Земли. Предположительно, это железо-никелевый сплав (80% Fe, 20% Ni). (см. Приложение 4)

В числе многих химических элементов, входящих в состав Земли, имеются и радиоактивные. Их распад, а также гравитационная дифференциация (перемещение более плотных веществ в центральные, а менее плотных в периферические области планеты) приводят к выделению тепла. Температура в центральной части Земли порядка 5000 °С. Максимальная температура на поверхности приближается к 60 °С (в тропических пустынях Африки и Северной Америки), а минимальная составляет около -90 °С (в центральных районах Антарктиды).

Давление монотонно возрастает с глубиной от 0 до 3,61 ГП. Тепло из недр Земли передается к ее поверхности благодаря теплопроводности и конвекции.

Плотность в центре Земли около 12,5 г/см3.

2.4 Атмосфера Земли

АТМОСФЕРА ЗЕМЛИ (от греч. atmos -- пар и сфера), воздушная среда вокруг Земли, вращающаяся вместе с нею; масса - 5,15·1015 т. По плотности атмосферы она занимает промежуточное место между Венерой и Марсом. Она уникальна в том отношении, что обладает обширными запасами жидкой воды. Сложное взаимодействие между океаном, атмосферой и планетарной поверхностью определяет ее энергетический баланс и температурный режим. Облачный покров обычно закрывает около 50% поверхности, и теплота, остающаяся внутри атмосферы (парниковый эффект), поднимает среднюю температуру более чем на 30 градусов.

Состав ее у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента углекислый газ, водород, гелий, неон и другие газы. В нижних 20 км содержится водный пар (у земной поверхности -- от 3% в тропиках до 2·10-5% в Антарктиде), количество которого с высотой быстро убывает. Углекислота - наиболее важная следовая компонента атмосферного воздуха. Высокая концентрация кислорода (возникшая примерно 2000 млн. лет назад) является прямым результатом существования растений. Присутствие кислорода позволило сформироваться в верхних слоях атмосферы озонному слою (на высоте 20-25 км), который экранирует поверхность планеты от солнечного ультрафиолетового излучения, вредного для жизни.

Выше 100 км растет доля легких газов, и на очень больших высотах преобладают гелий и водород; часть молекул разлагается на атомы и ионы, образуя ионосферу. Давление и плотность воздуха в атмосфере Земли с высотой убывают. В зависимости от распределения температуры атмосферу Земли подразделяют на тропосферу, стратосферу, мезосферу, термосферу, экзосферу. Неравномерность ее нагревания способствует общей циркуляции атмосферы, которая влияет на погоду и климат Земли. Атмосфера Земли обладает электрическим полем.

Все типы свечения, возникающие в верхней атмосфере Земли (ночное свечение атмосферы), исключая тепловое излучение, полярные сияния, молнии и яркие следы метеоров. Спектр ночного свечения лежит в диапазоне от 100 нм до 22,5 мкм. Основная часть свечения возникает в слое толщиной от 30 до 40 км на типичных высотах в 100 км и представляет собой излучение на длине волны кислорода 558 нм. Из космического пространства свечение неба выглядит как зеленоватое светлое кольцо вокруг Земли.

ТРОПОСФЕРА (от греч. tropos -- поворот и сфера), нижний, основной слой атмосферы до высоты 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах. В тропосфере сосредоточено более 1/5всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, развиваются циклоны и антициклоны - все происходящие здесь процессы играют определяющую роль для формирования погоды на планете. Температура в тропосфере падает с увеличением высоты. Тропосфера сверху ограничена тропопаузой, которая соответствует переходу к более устойчивым условиям лежащей выше стратосферы.

СТРАТОСФЕРА (от лат. stratum -- слой и сфера), слой атмосферы, лежащий над тропосферой от 8-10 км в высоких широтах и от 16-18 км вблизи экватора до 50-55 км. Стратосфера характеризуется возрастанием температуры с высотой от -40 °С (-80 °С) до температур, близких к 0 °С, малой турбулентностью, ничтожным содержанием водного пара, повышенным по сравнению с ниже- и вышележащими слоями содержанием озона.

ОЗОН (от греч. ozon -- пахнущий), О3, аллотропная модификация кислорода. Газ синего цвета с резким запахом, tкип -- 112 °С, сильный окислитель. При больших концентрациях разлагается со взрывом. Образуется из О2 при электрическом разряде (например во время грозы) и под действием ультрафиолетового излучения (в стратосфере под действием ультрафиолетового излучения Солнца). Основная масса О3 в атмосфере расположена в виде слоя -- озоносферы -- на высоте от 10 до 50 км с максимумом концентрации на высоте 20-25 км. Этот слой предохраняет живые организмы на Земле от вредного влияния коротковолновой ультрафиолетовой радиации Солнца. Поглощает свет с длиной волны от 240 до 270нм и сильно поглощает в интервале 200-320нм, в то время как кислород в основном поглощает до 170нм. Основная причина появления озона на Земле - молнии. В промышленности О3 получают действием на воздух электрического разряда. Используют для обеззараживания воды и воздуха.

ИОНОСФЕРА, верхние слои атмосферы, начиная от 50- 85 км до 600км, характеризующиеся значительным содержанием атмосферных ионов и свободных электронов. Атомы и молекулы в этом слое интенсивно ионизируются под действием солнечной радиации, в частности, ультрафиолетового излучения. Перемещение заряженных частиц по магнитным силовым линиям к полярным областям на широтах от 60 до 75° приводит к появлению полярных сияний. Верхняя граница ионосферы -- внешняя часть магнитосферы Земли. Причина повышения ионизации воздуха в ионосфере -- разложение молекул атмосферы газов под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения. Ионосфера оказывает большое влияние на распространение радиоволн. Состоит ионосфера из мезосферы и термосферы.

ПОЛЯРНОЕ СИЯНИЕ -быстро изменяющиеся разноцветные картины свечения, наблюдаемые время от времени на ночном или вечернем небе, обычно в высокоширотных областях Земли (как на севере, так и на юге). Зеленый и красный цвета соответствуют эмиссионным линиям атомов кислорода и молекул азота, которые возбуждаются энергичными частицами, приходящими от Солнца. Полярные сияния происходят на высотах порядка 100 км.

Во время полярных сияний в ионосфере протекают многочисленные процессы, такие как возмущения геомагнитного поля, электрические ионосферные токи и рентгеновское излучение. В невидимых частях спектра излучается гораздо больше энергии, чем в видимом диапазоне. Появление полярных сияний связано с солнечным циклом, вращением Солнца, сезонными изменениями и магнитной активностью.

Полярные сияния принимают несколько основных форм. Спокойные дуги или полосы шириной в несколько десятков километров простираются с востока на запад на расстояния до 1000 км. Полосы могут сворачиваться, принимая спиральную или S-образную форму. Можно увидеть и лучи, идущие вдоль магнитного поля. Пятна полярных сияний - это отдельные светящиеся области неба без образования каких-либо форм. Изредка встречаются обширные полярные сияния в форме драпри.

МЕЗОСФЕРА находится примерно до 80-85 км, над которой наблюдаются (обычно на высоте около 85 км) серебристые облака. Здесь температура с высотой уменьшается, достигая -90°C у верхней границы (мезопаузы).

Светлые голубоватые облака в летнем сумеречном небе. Они возникают в верхней атмосфере на высотах около 80 км и по структуре довольно разнообразны.

СЕРЕБРИСТЫЕ облака очень тонки и рассеивают лишь малую часть падающего на них солнечного света, так что с Земли днем или в начале сумерек их нельзя заметить. Так как они появляются только в летнее время, их невозможно наблюдать в самых высоких широтах, где небо никогда не становится достаточно темным. В то же время серебристые облака - явление высокоширотное, т.к. диапазон широт, в которых они практически наблюдаются, весьма узок (от 50°до 65°). Облака образуются в присутствие ядер конденсации, на которых вода превращается в лед. Точно не известно, каковы эти ядра (ионы, возникающие под действием солнечного ультрафиолета, или микрометеоритные частицы). Главное условие возникновения серебристых облаков - достаточно низкая температура, которая на высотах 80-90 км должна быть около 120 K (-150° C). Облака возникают в результате воздушных течений от одного полюса к другому и не зависят от уровня солнечной радиации. Имеются наблюдения, позволяющие предположить, что в течение последних десятилетий серебристые облака возникают чаще. Это связано с возрастанием концентрации водяных паров в верхней атмосфере из-за увеличения количества метана. Частота возникновения серебристых облаков изменяется с циклом солнечной активности по обратному закону.

ТЕРМОСФЕРА, слой атмосферы над мезосферой от высот 80-90 км, температура в котором растет до высот 200-300 км, где достигает значений порядка 1500 К, после чего остается почти постоянной до больших высот.

ЭКЗОСФЕРА (от экзо... и сфера) (сфера рассеяния), внешний слой атмосферы, начинающийся с высоты около 400-500 км, которые граничат с межпланетной средой. В этих слоях плотность настолько низка, что между атомами происходит очень мало столкновений и атомы, движущиеся с большой скоростью, могут выйти из сферы гравитационного притяжения планеты и улетать (ускользать) в космическое пространство.

Наконец, на расстояниях более 1000 км слой холодной плазмы высокой плотности (плазмосфера). Плазмосфера простирается до расстояний в 3 - 7 земных радиусов. Ее верхняя граница (плазмопауза) отмечена резким падением плазменной плотности. Большинство частиц в плазмосфере составляют протоны и электроны. газ настолько разрежен, что столкновения между молекулами перестают играть существенную роль, а атомы ионизированы более чем наполовину. На высоте порядка 1,6 и 3,7 радиусов Земли находятся первый и второй радиационные пояса.

2.5 Поля Земли

Гравитационное поле Земли с высокой точностью описывается законом всемирного тяготения Ньютона. Движение жидкостей, а также возникающие в твердых объектах напряжения, вызываемые циклическим изменением действующих на них гравитационных сил. Так, океанские приливы на Земле, запаздываемые ежедневно на 50 минут, возникают из-за изменения суммарного гравитационного действия Солнца и Луны, которое подвержено суточным, месячным и годичным вариациям, обусловленным вращением Земли, движением Луны по орбите вокруг Земли и движением Земли вокруг Солнца. Деформация за счет приливных сил Земли достигает 30см, Луны 40 см, водная поверхность поднимается до 1 метра, а в заливе Фапти (Атлантический океан) до 18 метров.

Ускорение свободного падения над поверхностью Земли определяется как гравитационной, так и центробежной силой, обусловленной вращением Земли. Зависимость ускорения свободного падения от широты приближенно описывается формулой g = 9,78031 (1+0,005302 sin2 ) m/c2, где m --масса тела.

Магнитное поле над поверхностью Земли складывается из постоянной (или меняющейся достаточно медленно) «главной» и переменной частей; последнюю обычно относят к вариациям магнитного поля. Наличие расплавленного металлического ядра приводит к появлению магнитного поля и магнитосферы Земли. Магнитосфера Земли определяется магнитным полем и его взаимодействием с потоками заряженных частиц космического происхождения (с солнечным ветром). Магнитосфера Земли с дневной стороны простирается до 8-14 R, с ночной -- вытянута, образуя магнитный хвост Земли в несколько сотен R; в магнитосфере находятся радиационные пояса. Измерения со спутников показали, что Земля является интенсивным источником радиоволн в километровом диапазоне, хотя такие волны генерируются высоко и на уровне земной поверхности не обнаружены. Магнитный дипольный момент Земли, равный 7,98·1025 единиц СГСМ, направлен примерно противоположно механическому, хотя в настоящее время магнитные полюсы несколько смещены по отношению к географическим. Их положение, впрочем, меняется со временем, и хотя эти изменения достаточно медленны, за геологические промежутки времени, по палеомагнитным данным, обнаруживаются даже магнитные инверсии, то есть обращения полярности. Нынешнюю полярность Земля приобрела 12 тысяч лет (по другим источникам 750 тыс.лет) назад, а в среднем каждые 250 тыс.лет (500 тыс.лет по другим источникам) меняется полярность, а иногда в 2-4 раза быстрее. Некоторые ученые утверждают, что возможно скоро полярность изменится.

В первом приближении магнитное поле Земли подобно полю намагниченного стержня (диполя), который смещен относительно центра Земли к Тихому океану и наклонен к земной оси. В настоящее время это смещение составляет 451 км, а наклон равен 11°. Сила и форма геомагнитного поля постепенно меняются, причем масштаб времени этих изменений составляет годы. Интенсивность геомагнитного поля обозначается векторной величиной F или B, а единицами измерения являются гаусс (Гс), тесла (Т) или гамма (г) (1 тесла = 10000 гаусс; 1 гамма = 1 нанотесла= 10-5 гаусс.) Направление поля в любой точке земной поверхности может быть описано двумя углами: 1) наклонением I , т.е. углом между горизонтальной плоскостью и вектором поля (угол считается положительным, когда поле направлено вниз); 2) склонением D, т.е. азимутом - углом, измеряемым от направления на север к востоку или западу на горизонтальной плоскости.

Положение магнитных полюсов Земли на 1985г:

Северный магнитный полюс - 77о36' с.ш.; 102о48' з.д.

Южный магнитный полюс - 65о06' ю.ш.; 139о00' в.д.

Положение геомагнитных полюсов на 1985г:

Северный геомагнитный полюс - 78о48' с.ш.; 70о54' з.д.

Южный геомагнитный полюс - 78о48' ю.ш.; 109о06' в.д.

Напряженности магнитного поля на северном и южном магнитных полюсах равны соответственно 0,58 и 0,68 Э, а на геомагнитном экваторе --около 0,4 Э.

Приборы Центрального военно-технического института Сухопутных войск (ЦНИВТИ СВ) зафиксировали в начале 2002 года, что магнитный полюс Земли сместился на 200 км. По мнению ученых, аналогичное смещение магнитных полюсов произошло и на других планетах Солнечной системы по видимому по причине, что Солнечная система проходит "определенную зону галактического пространства и испытывает влияние со стороны других космических систем, находящихся рядом". "Переполюсовка" повлияла на ряд процессов, происходящих на Земле. Так, "Земля через свои разломы и так называемые геомагнитные точки сбрасывает в космос избыток своей энергии, что не может не сказаться как на погодных явлениях, так и на самочувствии людей". Кроме того избыточные волновые процессы, возникающие при сбросе энергии Земли, влияют на скорость вращения нашей планеты. По данным Центрального военно-технического института, "примерно каждые две недели эта скорость несколько замедляется, а в последующие две недели наблюдается определенное ускорение ее вращения, выравнивающее среднесуточное время Земли". Смещение магнитного полюса Земли не влияет на географические полюса планеты, то есть точки Северного и Южного полюсов остались на месте.

РАДИАЦИОННЫЕ ПОЯСА - внутренние области планетных магнитосфер, в которых собственное магнитное поле планеты удерживает заряженные частицы (протоны, электроны), обладающие большой кинетической энергией. В радиационных поясах частицы под действием магнитного поля движутся по сложным траекториям из Северного полушария в Южное и обратно. У Земли обычно выделяют внутренний и внешний радиационные пояса. Внутренний радиационный пояс Земли имеет максимальную плотность частиц (преимущественно протонов) над экватором на высоте 3-4 тыс. км, внешний электронный радиационный пояс -- на высоте ок. 22 тыс. км. Радиационный пояс -- источник радиационной опасности при космических полетах. Мощными радиационными поясами обладают Юпитер и Сатурн.

Электрическое поле над поверхностью Земли в среднем имеет напряженность около 100 В/м и направлено вертикально вниз --это так называемое «поле ясной погоды», но это поле испытывает значительные (как периодические, так и нерегулярные) вариации. Две кольцеобразные области вокруг Земли с высокой концентрацией высокоэнергичных электронов и протонов, которые были захвачены магнитным полем планеты. Пояса были обнаружены первым американским искусственным спутником Земли "Эксплорер-1", запущенным 31 января 1958 г. Пояса названы по имени Джеймса Ван Аллена - физика, руководившего экспериментом на "Эксплорере-1". Внутренний пояс Ван Аллена лежит над экватором на высоте около 0,8 земных радиусов. Во внешнем поясе область наибольшей концентрации находится на высоте от 2 до 3 земных радиусов над экватором, а обширная область, простирающаяся от внутреннего пояса до высоты 10 земных радиуса, содержит протоны и электроны более низкой энергии, которые, по-видимому, принесены в основном солнечным ветром. Поскольку магнитное поле Земли отклоняется от оси вращения планеты, внутренний пояс опускается вниз к поверхности в Южной части Атлантического океана, недалеко от побережья Бразилии. Эта Южноатлантическая аномалия представляет потенциальную опасность для искусственных спутников. В 1993 г. в пределах внутреннего пояса Ван Аллена была обнаружена область, содержащая частицы, которые проникли туда из межзвездного пространства.

геомагнитная буря - существенное уменьшение горизонтальной компоненты магнитного поля Земли, продолжающееся обычно несколько часов. Причина - попадание в околоземное пространство электрически заряженных частиц, как правило, выбрасываемых из Солнца при солнечных вспышках. Во время таких бурь наблюдаются полярные сияния и происходит нарушение радиосвязи.

ІІ. Взаимодействие Земли с другими телами и условия жизни на Земле

1. Взаимодействие Земли с другими телами

1.1 Движение полюсов

Медленное и незначительное движение географических полюсов Земли относительно ее поверхности (но не относительно звезд). Движение полюсов не изменяет небесных координат звезд, хотя и изменяет результаты измерений, выполненных с земной поверхности (например, с помощью меридианного круга). Движение полюсов происходит в силу геофизических причин, прежде всего из-за неточного совпадения оси симметрии Земли и ее оси вращения. Смещение полюсов носит периодический характер с максимальным смещением около 0,3 дуговых секунды, причем наблюдаются два периода - 434 суток и один год. Кроме того, имеются и намного меньшие изменения (происходящие на коротких интервалах времени - от двух недель до трех месяцев), вызываемые изменением атмосферного давления.

1.2 Процессия

Процессия заставляет ось вращения Земли описывать конус с угловым радиусом около 23°27' относительно перпендикуляра к плоскости земной орбиты (т.е. к эклиптике). Период полного оборота составляет 25725 лет. Главный источник вращающего момента - действие гравитации Солнца и Луны на экваториальную "выпуклость" Земли. (Если бы Земля имела идеально сферическую форму, то прецессии бы не было. Вращение Земли, однако, приводит к тому, что ее экваториальный радиус превышает полярный примерно на 0,3%). Иногда общее влияние Солнца и Луны на движение оси вращения Земли называют лунно-солнечной прецессией. Вклад Луны в процессию (из-за небольшого расстояния до нее) примерно вдвое превышает вклад Солнца.

Гравитационное действие других планет вызывает небольшие изменения элементов орбиты Земли, что приводит к планетарной процессии. Сумма планетарной и лунно-солнечной прецессии называется общей процессией.


Подобные документы

  • Место планеты Земля в космическом пространстве, ее связь с другими космическими телами. Форма, размеры и масса планеты, особенности гравитационного и магнитного поля Земли. Оболочки Земли: атмосфера, стратосфера, термосфера, гидросфера, литосфера.

    реферат [22,6 K], добавлен 20.05.2010

  • Краткая характеристика Земли - планеты Солнечной системы. Античные и современные исследования планеты, ее изучение из космоса при помощи спутников. Возникновение жизни на Земле. Семейства ближайщих астероидов. О движении материков. Луна как спутник Земли.

    реферат [26,5 K], добавлен 25.06.2010

  • Земля как планета. Строение Земли. Геодинамические процессы. Структура земной коры. Биосфера. Географическая оболочка. Геологическая история и эволюция жизни на Земле. Геологическая история Земли. История развития органического мира. Человек и Земля.

    аттестационная работа [94,1 K], добавлен 19.01.2008

  • Форма, размеры и движение Земли. Поверхность Земли. Внутреннее строение Земли. Атмосфера Земли. Поля Земли. История исследований. Научный этап исследования Земли. Общие сведения о Земле. Движение полюсов. Затмение.

    реферат [991,6 K], добавлен 28.03.2007

  • Солнечная система, ее строение и место Земли в ней. Данные исследования метеоритов и лунных пород и возраст Земли: фазы эволюции. Строение Земли: гидросфера, тропосфера, стратосфера, атмосфера и литосфера. Сильно разреженная часть атмосферы – экзосфера.

    дипломная работа [105,0 K], добавлен 02.03.2009

  • Изучение строения и места Земли во Вселенной. Действие гравитационного, магнитного и электрического полей планеты. Геодинамические процессы. Физические характеристики и химический состав "твёрдой" Земли. Законы движения искусственных космических тел.

    реферат [43,1 K], добавлен 31.10.2013

  • Образование Солнечной системы. Теории прошлого. Рождение Солнца. Происхождение планет. Открытие других планетных систем. Планеты и их спутники. Строение планет. Планета земля. Форма, размеры и движение Земли. Внутреннее строение.

    реферат [126,1 K], добавлен 06.10.2006

  • Орбитальные, физические, географические характеристики Земли - третьей от Солнца планеты Солнечной системы, крупнейшей по диаметру, массе и плотности среди планет земной группы. Состав атмосферы. Особенности формы, которая близка к сплюснутому эллипсоиду.

    презентация [1,5 M], добавлен 22.10.2011

  • Характеристика астрономии – науки, изучающей движение, строение и развитие небесных тел и их систем. Открытие, строение и планеты солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер. История первого полета в космос, который совершил Ю.A. Гагарин.

    презентация [553,1 K], добавлен 13.01.2011

  • Восьмая планета от Солнца. Некоторые параметры планеты Нептун. Химический состав, физические условия, строение, атмосфера. Температура поверхностных областей. Спутники Нептуна, их размеры, характеристики, история открытий. Кольца Нептуна, магнитное поле.

    реферат [26,4 K], добавлен 03.04.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.