Состав и особенности Солнечной системы

Понятие космогонии как главной науки об изучении небесных тел. Общие положения о Солнце. Характеристика Солнечной системы: ее происхождение, состав и особенности. Планеты Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун.

Рубрика Астрономия и космонавтика
Вид контрольная работа
Язык русский
Дата добавления 15.10.2010
Размер файла 26,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

Введение

1. Космогония как главная наука об изучении небесных тел

2. Общие положения о солнце

3. Солнечная система: происхождение, состав и особенности

4. Планеты солнечной системы

Заключение

Список литературы

Введение

Изучением происхождения и развития небесных тел, например планет и их спутников, Солнца, звёзд, галактик, занимается наука космогония. Астрономы наблюдают космические тела на различной стадии развития, образовавшиеся недавно и в далёком прошлом, быстро "стареющие" или почти "застывшие" в своём развитии. Сопоставляя многочисленные данные наблюдений с физическими процессами, которые могут происходить при различных условиях в космическом пространстве, учёные пытаются объяснить, как возни кают небесные тела. Единой, завершённой теории образования звёзд, планет или галактик пока не существует. Проблемы, с которыми столкнулись учёные, подчас трудно разрешимы. Решение вопроса о происхождении Земли и Солнечной системы в целом значительно затрудняется тем, что других подобных систем мы пока не наблюдаем. Нашу солнечную систему не с чем пока ещё сравнивать, хотя системы, подобные ей, должны быть достаточно распространены и их возникновение должно быть не случайным, а закономерным явлением.

В настоящее время при проверке той или иной гипотезы о происхождении Солнечной системы в значительной мере основывается на данных о химическом составе и возрасте пород Земли и других тел Солнечной системы.

Цель данной работы - изучить солнце и солнечную систему.

В работе поставлены следующие задачи: изучение основных гипотез происхождения Солнечной системы, общие сведения о такой науке как космогония, рассмотрение состава и особенностей Солнечной системы, а также характеристика каждой из планет Солнечной системы.

1. Космогония как главная наука об изучении небесных тел

Космогония - наука, изучающая происхождение и развитие небесных тел, например планет и их спутников, Солнца, звёзд, галактик. Астрономы наблюдают космические тела на различной стадии развития, образовавшиеся недавно и в далёком прошлом, быстро "стареющие" или почти "застывшие" в своём развитии. Сопоставляя многочисленные данные наблюдений с физическими процессами, которые могут происходить при различных условиях в космическом пространстве, учёные пытаются объяснить, как возни кают небесные тела. Единой, завершённой теории образования звёзд, планет или галактик пока не существует. Проблемы, с которыми столкнулись учёные, подчас трудно разрешимы. Решение вопроса о происхождении Земли и Солнечной системы в целом значительно затрудняется тем, что других подобных систем мы пока не наблюдаем. Нашу солнечную систему не с чем пока ещё сравнивать, хотя системы, подобные ей, должны быть достаточно распространены и их возникновение должно быть не случайным, а закономерным явлением. В настоящее время при проверке той или иной гипотезы о происхождении Солнечной системы в значительной мере основывается на данных о химическом составе и возрасте пород Земли и других тел Солнечной системы. Наиболее точный метод определения возраста пород состоит в подсчёте отношения количества радиоактивного урана к количеству свинца, находящегося в данной породе. Скорость этого процесса известна точно, и её нельзя изменить никакими способами. Самые древние горные породы имеют возраст несколько миллиардов лет. Земля в целом, очевидно, возникла несколько раньше, чем земная кора. В середине XVIII века немецкий философ И. Кант предложил свою теорию образования Солнечной системы, основанную на законе всемирного тяготения. Она предполагала возникновение Солнечной системы из облака холодных пылинок, находящихся в беспорядочном хаотическом движении. В 1796 году французский учёный П. Лаплас подробно описал гипотезу образования Солнца и планет из уже вращающейся газовой туманности.

2. Общие положения о солнце

Солнце - центральное тело Солнечной системы, ближайшая к Земле звезда. Видимая звёздная величина m= -26.74, абсолютная звёздная величина М= +4.83m. Радиус С. - 6.96·105 км, т.е. в 109 раз больше экваториального радиуса Земли; масса С. - 1.99·1033 г, т.е. в 333 000 раз больше массы Земли.

В солнце сосредоточено 99.866% массы Солнечной системы.

Средняя плотность солнечного вещества - 1.41 г/куб.см, что составляет 0.256 средней плотности Земли (солнечное вещество содержит по массе свыше 70% водорода, свыше 20% гелия и ок. 2% др. элементов).

Солнце вращается вокруг собственной оси (наклонённой под углом 83° к плоскости эклиптики) в прямом (том же, что и Земля) направлении.

Вращение солнце имеет дифференциальный характер: экваториальная зона вращается быстрее (14.4° за сутки), чем высокоширотные зоны (порядка 10° за сутки у полюсов).

Средний синодический период вращения Солнца (экваториальная зона) - 25.380 сут, средний сидерический период 27.275 сут.

Скорость на экваторе - ок. 2 км/с.

Эклиптическая долгота восходящего узла экватора С. на 1.01.1950 - 75.0627°.

Мощность излучения Солнца. - его светимость - ок. 3.86·1033 эрг/с,

эффективная температура поверхности - 5780 К.

Солнце относится к жёлтым карликам спектрального класса G2. На диаграмме спектр-светимость (Герцшпрунга-Ресселла) Солнце находится в средней части главной последовательности, на которой лежат стационарные звёзды, практически не изменяющие своей светимости в течение многих миллиардов лет. Солнце имеет 9 спутников (больших планет), суммарная масса которых составляет всего лишь 0.13% массы С.

Под действием гравитации Солнце, как и любая звезда (I), стремится сжаться. Этому сжатию противодействует перепад давления, возникающий из-за высокой температуры и плотности внутренних слоёв Солнца. В центре Солнце температура составляет приблизительно 1.6·107 К, плотность около 160 г/куб.см. Столь высокая температура в центральных областях С. может поддерживаться длительно только ядерными реакциями синтеза гелия из водорода. Эти реакции и являются основным источником энергии Солнца. При температурах, характерных для центра Солнца основная энергия излучения приходится на рентгеновский диапазон. Из центральной области Солнца до его поверхности электромагнитное излучение из-за многократного поглощения и переизлучения доходит за время порядка 1 млн. лет, при этом его спектр существенно изменяется (напомним, что путь в 200 раз больший, - от Солнца до Земли - свет проходит за время около 8 мин). В недрах Солнца перенос энергии осуществляется в основном за счёт конвекции. Протяжённость по высоте солнечной конвективной зоны - около 150 тыс. км.

Скорости конвективных движений в глубоких слоях малы - порядка 1 м/с; в тонком верхнем слое они достигают 2-3 км/с. Выше, в самых поверхностных слоях Солнца, энергия вновь переносится излучением. Излучение, приходящее от Солнца к внешнему наблюдателю, возникает в чрезвычайно тонком поверхностном слое - фотосфере, имеющем толщину около 350 км. Располагающиеся над фотосферой хромосфера и корона практически свободно пропускают непрерывное оптическое излучение фотосферы.

При объяснении высокой температуры солнечной хромосферы и солнечной короны немецкими астрономами Л.Бирманом и М.Шварцшильдом в 1946-48 г. было высказано предположение о том, что солнечная атмосфера охвачена волновыми движениями. В качестве возможного источника нагрева хромосферы и короны рассматривалось превращение энергии волновых движений в тепловую. Генерация волн должна происходить в подфотосферных слоях, где существуют мощные турбулентные конвективные движения, создающие акустический шум. Акустическая теория нагрева короны в дальнейшем не подтвердилась. Но колебания на Солнце были обнаружены в 1962 г. Р.Лейтоном (США). Это были колебания с периодом в 5 минут и амплитудой от 100-200 м/с в фотосфере до 1-2 км/с в хромосфере. Горизонтальная (вдоль поверхности Солнца) длина волны - порядка 1000 - 10 000 км. Мощность колебаний зависит от частоты и горизонтальной длины волны. Спустя примерно 15 лет было установлено, что 5-минутные колебания - это резонансные колебания верхних слоёв конвективной зоны. Резонансный слой создаётся за счёт того, что выше и ниже некоторого уровня в атмосфере Солнца из-за увеличения скорости звука волны отражаются и не могут выйти за пределы этого слоя.

В солнечных пятнах наблюдаются колебания с периодом ок. 3 мин. Это также резонансные колебания, а резонатором является хромосфера над пятном.

В тех случаях, когда единый волновой процесс охватывает всё Солнце в целом, говорят о пульсациях (колебаниях) С. как звезды. В 1976 г. советские астрономы А.Б.Северный, В.А. Котов и Т.Т.Цап на Крымской астрофизической обсерватории открыли пульсации Солнца с периодом 2 ч 40 мин. Это открытие вызвало бурные дискуссии учёных, т.к. пульсации оказываются едва уловимыми для самой совершенной аппаратуры. Амплитуда колебаний - ок. 20 км, что составляет 0.001% диаметра Солнца. Наблюдаются также пульсации Солнца с периодами 20-40 мин и 5 мин. Появилось направление - гелиосейсмология, которая занимается исследованием недр Солнца на основе данных о его пульсациях.

При спокойных атмосферных условиях солнечный телескоп позволяет "увидеть" детали размером порядка 1", что на расстоянии в 1 а.е. соответствует приблизительно 700 км. Солнечная поверхность, наблюдаемая в телескоп, представляется совокупностью ярких площадок, окружённых относительно тёмными тонкими промежутками. Это - солнечные гранулы, их размеры различны и составляют в среднем ок. 700км, "время жизни" - ок. 8 минут. Гранулы разделяются тёмными промежутками шириной ок. 300 км. Флуктуации яркости, вызываемые грануляцией, невелики. Часто в областях, располагающихся в зоне ±30° от экватора, кроме спокойной грануляционной картины, наблюдаются солнечные пятна и факелы. Телескоп позволяет различить тёмный овал, окружённый более светлой полутенью. Характерный размер развитого пятна составляет ок. 30 тыс. км. Диаметр тени примерно вдвое меньше. Близ тени появляются отдельные яркие участки, которые в виде узких струй (диаметр - около 700 км) растекаются к периферии пятна. Они образуют характерную волокнистую структуру полутени. Время жизни отдельных волокон - приблизительно 30-60 мин. В самой тени пятна также наблюдаются слабоконтрастные флуктуации яркости - очень маленькие светлые точки (диаметр - около 350 км), живущие 15-30 мин. Их отождествляют с "остаточной" грануляцией в условиях сильного магнитного поля тени пятна. Поток лучистой энергии в тени пятна ослаблен примерно в три раза, что является следствием понижения температуры от 6000 до 4500 К.

3. Солнечная система: происхождение, состав и особенности

Вот уже два века проблема происхождения Солнечной системы волнует выдающихся мыслителей нашей планеты. Этой проблемой занимались, начиная от философа Канта и математика Лапласа, плеяда астрономов и физиков XIX и XX столетий.

И все же мы до сих пор довольно далеки от решения этой проблемы. Но за последние три десятилетия прояснился вопрос о путях эволюции звезд. И хотя детали рождения звезды из газово-пылевой туманности еще далеко не ясны, мы теперь четко представляем, что с ней происходит на протяжении миллиардов лет дальнейшей эволюции.

Переходя к изложению различных космогонических гипотез, сменявших одна другую на протяжении двух последних столетий, начнем с гипотезы великого немецкого философа Канта и теории, которую спустя несколько десятилетий независимо предложил французский математик Лаплас. Предпосылки к созданию этих теорий выдержали испытание временем. Точки зрения Канта и Лапласа в ряде важных вопросов резко отличались. Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело - будущее Солнце, а потом планеты, в то время как Лаплас считал первоначальную туманность газовой и очень горячей с высокой скоростью вращения.

Сжимаясь под действием силы всемирного тяготения, туманность, вследствие закона сохранения момента количества движения, вращалась все быстрее и быстрее. Из-за больших центробежных сил от него последовательно отделялись кольца. Потом они конденсировались, образуя планеты. Таким образом, согласно гипотезе Лапласа, планеты образовались раньше Солнца. Однако, несмотря на различия, общей важной особенностью является представление, что Солнечная система возникла в результате закономерного развития туманности. Поэтому и принято называть эту концепцию “гипотезой Канта-Лапласа”.

Однако эта теория сталкивается с трудностью. Наша Солнечная система, состоящая из девяти планет разных размеров и масс, обладает особенностью: необычное распределение момента количества движения между центральным телом Солнцем и планетами. Момент количества движения есть одна из важнейших характеристик всякой изолированной от внешнего мира механической системы. Именно как такую систему можно рассмотреть Солнце и окружающие его планеты. Момент количества движения можно определить как “запас вращения” системы. Это вращение складывается из орбитального движения планет и вращения вокруг осей Солнца и планет. Львиная доля момента количества движения Солнечной системы сосредоточена в орбитальном движении планет-гигантов Юпитера и Сатурна. С точки зрения гипотезы Лапласа, это совершенно непонятно. В эпоху, когда от первоначальной, быстро вращающейся туманности отделилось кольцо, слои туманности, из которых потом сконденсировалось Солнце, имели (на единицу массы) примерно такой же момент, как вещество отделившегося кольца (так как угловые скорости кольца и оставшихся частей были примерно одинаковы), так как масса последнего была значительно меньше основной туманности (“протосолнца”), то полный момент количества движения кольца должен быть много меньше, чем у “протосолнца”. В гипотезе Лапласа отсутствует какой-либо механизм передачи момента от “протосолнца” к кольцу. Поэтому в течение всей дальнейшей эволюции момент количества движения “протосолнца”, а затем и Солнца должен быть много больше, чем у колец и образовавшихся из них планет. Но этот вывод противоречит с фактическим распределением количества движения между Солнцем и планетами.

Для гипотезы Лапласа эта трудность оказалась непреодолимой.

Остановимся на гипотезе Джинса, получившей распространение в первой трети текущего столетия. Она полностью противоположна гипотезе Канта-Лапласа. Если последняя рисует образование планетарных систем как единственный закономерный процесс эволюции от простого к сложному, то в гипотезе Джинса образование таких систем есть дело случая.

Исходная материя, из которой потом образовались планеты, была выброшена из Солнца (которое к тому времени было уже достаточно “старым” и похожим на нынешнее) при случайном прохождении вблизи него некоторой звезды. Это прохождение был настолько близким, что его можно рассматривать практически как столкновение. Благодаря приливным силам со стороны налетевшей на Солнце звезды, из поверхностных слоев Солнца выброшена струя газа. Эта струя останется в сфере притяжения Солнца и после того, как звезда уйдет от Солнца. Потом струя сконденсируется и даст начало планетам.

Если бы гипотеза Джинса была правильной, число планетарных систем, образовавшихся за десять миллиардов лет ее эволюции, можно было пересчитать по пальцам. Но планетарных систем фактически много, следовательно, эта гипотеза несостоятельна. И ниоткуда не следует, что выброшенная из Солнца струя горячего газа может сконденсироваться в планеты. Таким образом, космологическая гипотеза Джинса оказалась несостоятельной.

Выдающийся советский ученый О. Ю. Шмидт в 1944 году предложил свою теорию происхождения Солнечной системы: наша планета образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти “современный” вид. При этом никаких трудностей с вращением момента планет не возникало, так как первоначально момент вещества облака может быть сколь угодно большим. Начиная с 1961 года эту гипотезу развивал английский космогонист Литтлтон, который внес в нее существенные улучшения. По обеим гипотезам “почти современное” Солнце сталкивается с более или менее “рыхлым” космическим объектом, захватывая части его вещества. Тем самым образование планет связывается с процессом звездообразования.

В Солнечную систему входит Солнце, 9 больших планет вместе с их 34 спутниками, более 100 тысяч малых планет (астероидов), порядка 10 в 11 степени комет, а также бесчисленное количество мелких, так называемых метеорных тел (поперечником от 100 метров до ничтожно малых пылинок). Центральное положение в Солнечной системе занимает Солнце. Его масса приблизительно в 750 раз превосходит массу всех остальных тел, входящих в систему. Гравитационное притяжение солнца является главной силой, определяющей движение всех обращающихся вокруг него тел Солнечной системы. Среднее расстояние от Солнца до самой далекой от него планеты - Плутон 39,5 а. е., т.е. 6 миллиардов километров, что очень мало по сравнению с расстояниями до ближайших звёзд. Только некоторые кометы удаляются от Солнца на 100 тысяч а. е. и подвергаются воздействию притяжения звезд. Двигаясь в Галактике, Солнечная система время от времени пролетает сквозь межзвездные газопылевые облака.

Вследствие крайней разреженности вещества этих облаков погружение Солнечной системы в облако может проявиться только при небольшом поглощении и рассеянии солнечных лучей. Проявления этого эффекта в прошлой истории Земли пока не установлены. Все большие планеты - Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон обращаются вокруг солнца в одном направлении (в направлении осевого вращения самого Солнца), по почти круговым орбитам, мало наклоненным друг к другу (и к солнечному экватору). Плоскость земной орбиты - эклиптика принимается за основную плоскость при отсчёте наклонений орбит планет и других тел, обращающихся вокруг Солнца.

Расстояния от планет до Солнца образуют закономерную последовательность - промежутки между соседними орбитами возрастают с удалением от Солнца. Эти закономерности движения планет в сочетании с делением их на две группы по физическим свойствам указывают на то, что Солнечная система не является случайным собранием космических тел, а возникла в едином процессе. Благодаря почти круговой форме планетных орбит и большим промежуткам между ними исключена возможность тесных сближений между планетами, при которых они могли бы существенно изменять своё движение в результате взаимных притяжений. Это обеспечивает длительное существование планетной системы.

Планеты вращаются так же вокруг своей оси, причём почти у всех планет, кроме Венеры и Урана, вращение происходит в том же направлении, что и их обращение вокруг Солнца. Чрезвычайно медленное вращение Венеры происходит в обратном направлении, а Уран вращается как бы лежа на боку. Большинство спутников обращаются вокруг своих планет в том же направлении, в котором происходит осевое вращение планеты. Орбиты таких спутников обычно круговые и лежат вблизи плоскости экватора планеты, образуя уменьшенное подобие планетной системы.

Таковы, например, система спутников Урана и система галилеевских спутников Юпитера. Обратными движениями обладают спутники, расположенные далеко от планеты. Сатурн, Юпитер и Уран кроме отдельных спутников заметных размеров имеют множество мелких спутников, как бы сливающихся в сплошные кольца. Эти спутники движутся по орбитам, настолько близко расположенным к планете, что её приливная сила не позволяет им объединиться в единое тело. Подавляющее большинство орбит ныне известных малых планет располагается в промежутке между орбитами Марса и Юпитера. Все малые планеты обращаются вокруг Солнца в том же направлении, что и большие планеты, но их орбиты, как правило, вытянуты и наклонены к плоскости эклиптики. Кометы движутся в основном по орбитам, близким к параболическим. Некоторые кометы обладают вытянутыми орбитами сравнительно небольших размеров - в десятки и сотни а. е.

У этих комет, называемых периодическими, преобладают прямые движения, т.е. движения в направлении обращения планет. Будучи вращающейся системой тел, Солнечная система обладает моментом количества движения (МКД). Главная часть его связана с орбитальным движение планет вокруг Солнца, причём массивные Юпитер и Сатурн дают около 90%. Осевое вращение Солнца заключает в себе лишь 2% общего МКД всей Солнечной системы, хотя масса самого Солнца составляет более 99,8% общей массы. Такое распределение МКД между Солнцем и планетами связано с медленным вращением Солнца и огромными размерами планетной системы - её поперечник в несколько тысяч раз больше поперечника Солнца. МКД планеты приобрели в процессе своего образования: он перешел к ним из того вещества, из которого они образовались.

Планеты делятся на две группы, отличающиеся по массе, химическому составу (это проявляется в различиях их плотности), скорости вращения и количеству спутников. Четыре планеты, ближайшие к Солнцу, планеты Земной группы, невелики, состоят из плотного каменистого вещества и металлов. Планеты-гиганты - Юпитер, Сатурн, Уран и Нептун - гораздо массивнее, состоят в основном из лёгких веществ и поэтому, несмотря на огромное давление в их недрах, имеют малую плотность. У Юпитера и Сатурна главную долю их массы составляют водород и гелий.

В них содержится так же до 20% каменистых веществ и легких соединений кислорода, углерода и азота, способных при низких температурах концентрироваться в льды. Недра планет и некоторых спутников находятся в раскалённом состоянии. У планет земной группы и спутников вследствие малой теплопроводности наружных слоёв внутреннее тепло очень медленно просачивается наружу и не оказывает заметного влияния на температуру поверхности. У планет-гигантов конвекция в их недрах приводит к заметному потоку тепла из недр, превосходящему поток, получаемый им от Солнца. Венера, Земля и Марс обладают атмосферами, состоящими из газов, выделившихся из их недр.

У планет-гигантов атмосферы представляют собой непосредственное продолжение их недр: эти планеты не имеют твердой или жидкой поверхности. При погружении внутрь атмосферные газы постепенно переходят в конденсированное состояние. Девятую планету - Плутон, по-видимому, нельзя отнести ни к одной из двух групп. По химическому составу он близок к группе планет-гигантов, а по размерам к земной группе.

Ядра комет по своему химическому составу родственны планетам-гигантам: они состоят из водяного льда и льдов различных газов с примесью каменистых веществ. Почти все малые планеты по своему современному составу относятся к каменистым планетам земной группы. Сравнительно недавно открытый Хирон, движущийся в основном между орбитами Сатурна и Урана, вероятно, подобен ледяным ядрам комет и небольшим спутникам далёких от Солнца планет.

Обломки малых планет, образующиеся при их столкновении друг с другом, иногда выпадают на Землю в виде метеоритов. У малых планет, именно вследствие их малых размеров, недра подогревались значительно меньше, чем у планет земной группы, и поэтому их вещество зачастую претерпело лишь небольшие изменения со времени их образования.

Измерения возраста метеоритов (по содержанию радиоактивных элементов и продуктов их распада) показали, что они, и следовательно вся Солнечная система существует около 5 миллиардов лет. Этот возраст Солнечной системы находится в согласии с измерениями древнейших земных и лунных образцов.

4. Планеты солнечной системы

Планеты земной группы - Меркурий, Венера, Земля и Марс отличаются от планет-гигантов меньшими размерами, меньшей массой. Они движутся внутри пояса малых планет. В пределах одной группы планеты близки по таким физическим характеристикам, как плотность, размеры химический состав, но одна группа резко отличается при этом от другой. Каждая планета имеет свои неповторимые особенности.

Меркурий - самая близкая к Солнцу планета Солнечной системы. Расположена на расстоянии 58 млн. км от Солнца. Полный оборот на небе завершает за 88 сут. Из-за близости к Солнцу и малых видимых размеров Меркурий долго оставался малоизученной планетой. Только в 1965 г. благодаря применению радиолокации был измерен период вращения Меркурия вокруг своей оси, оказавшийся равным 58,65 сут., т.е. 2/3 его обращения вокруг Солнца. Такое вращение является динамически устойчивым. Солнечные сутки на Меркурии продолжаются 176 дней. Ось вращения Меркурия почти перпендикулярна плоскости его орбиты. Как подсказали радионаблюдения температура на поверхности Меркурия в пункте, где Солнце находится в зените достигает 620 К. Температура ночного полушария около 110 К.

Венера - вторая по расстоянию от Солнца и ближайшая к Земле планета Солнечной системы. Среднее расстояние от Солнца - 108 млн. км. Период обращения вокруг него - 225 сут. Во время нижних соединений может приближаться к Земле до 40 млн. км, т.е. ближе любой другой большой планеты Солнечной системы. Синодический период (от одного нижнего соединения до другого) равен 584 сут. Венера - самое яркое светило на небе после Солнца и Луны. Известна людям с глубокой древности. Диаметр Венеры - 12 100 км. (95% диаметра Земли), масса 81,5% массы Земли или 1: 408 400 массы Солнца, средняя плотность 5,2 г/см, ускорение силы тяжести на поверхности - 8,6 м/с (90% земного). Период вращения Венеры долго не удавалось установить из-за плотной атмосферы и облачного слоя, окутывающих эту планету. Только с помощью радиолокации установили, что он равен 243,2 сут., причём Венера вращается в обратную сторону по сравнению с Землёй и другими планетами. По данным советских межпланетных станций серии "Венера", не долю углекислого газа приходится 97% всего состава атмосферы Венеры. В неё входят так же около 2% азота и инертных газов, не более 0,1% кислорода и небольшие количества окиси углерода, хромоводорода и фтороводорода. Кроме того, в её атмосфере содержится около 0,1% водяного пара. Углекислый газ и водяной пар создают в атмосфере Венеры парниковый эффект, приводящий к сильному разогреванию планеты. Самые верхние слои атмосферы Венеры состоят целиком из водорода. Водородная атмосфера простирается до высоты 5500 км. Радиолокация позволила изучить невидимый из-за облаков рельеф Венеры. В приэкваториальной зоне обнаружено белее 10 кольцевых структур, подобных кратерам Луны и Меркурия, диаметром от 35 до 150 км., но сильно сглаженных и плоских. Обнаружен разлом в коре планеты длиной 1500 км., шириной 150 км. и глубиной около 2 км., горные массивы, вулкан с диаметром основания 300-400 км. и высотой около 1 км., огромная котловина протяжённостью 1500 км с севера на юг и 1000 км с запада на восток.

Земля - одна из планет Солнечной системы. Подобно другим планетам она движется вокруг Солнца по эллиптической орбите. Расстояние от Земли до Солнца в разных точках орбиты неодинаковое. Среднее же расстояние около 149,6 млн. км. В процессе движения нашей планеты вокруг Солнца плоскость земного экватора (наклоненная к плоскости орбиты под углом 23 27') перемещается параллельно самой себе таким образом, что в одних участках орбиты земной шар наклонен к Солнцу своим северным полушарием, а в других - южным. Большую часть поверхности Земли (до 71%) занимает Мировой океан. Средняя глубина Мирового океана - 3900 м. Существование осадочных пород, возраст которых превосходит 3,5 млрд. лет, служит доказательством существования на Земле обширных водоёмов уже в ту далёкую пору. На современных континентах более распространены равнины, главным образом низменные, а горы - в особенности высокие - занимают незначительную часть поверхности планеты, так же как и глубоководные впадины на дне океанов. Форма Земли, как известно близкая к шарообразной, при более детальных измерениях оказывается очень сложной, даже если обрисовать её ровной поверхностью океана и условным продолжением этой поверхности под континенты. Неровности поддерживаются неравномерным распределением массы в недрах Земли. Такая поверхность называется геоидом. Геоид (с точностью порядка сотен метров) совпадает с эллипсоидом вращения, экваториальный радиус которого 6378 км, а полярный радиус на 21,38 км меньше экваториального. Разница этих радиусов возникла за счёт центробежной силы, создаваемой суточным вращением Земли. Суточное вращение земного шара происходит с практически постоянной угловой скоростью с периодом 23 ч. 56 мин. 4,1с. т.е. за одни звёздные сутки, количество которых в году ровно на одни сутки больше, чем солнечных. Ось вращения Земли направлена своим северным концом приблизительно на звезду альфа Малой Медведица, которая поэтому называется Полярной звездой. Одна из особенностей Земли - её магнитное поле, благодаря которому мы можем пользоваться компасом. Наша планета окружена обширной атмосферой.

Марс - четвёртая по расстоянию от Солнца планета Солнечной системы. На звёздном небе она выглядит как немигающая точа красного цвета, которая время от времени значительно превосходит по блеску звезды первой величины. Марс периодически подходит к Земле на расстояние до 5 7 млн. км, значительно ближе, чем любая планета, кроме Венеры. По основным физическим характеристикам Марс относится к планетам земной группы. По диаметру он почти вдвое меньше Земли и Венеры. Планета окутана газовой оболочкой - атмосферой, которая имеет меньшую плотность, чем земная. Даже в глубоких впадинах Марса, где давление атмосферы наибольшее, оно приблизительно в 100 раз меньше, чем у поверхности Земли, а на уровне марсианских горных вершин - в 500-1000 раз меньше. Тем не менее, в атмосфере Марса наблюдаются облака и постоянно присутствует более или менее плотная дымка из мелких частиц пыли и кристалликов льда. По химическому составу марсианская атмосфера отличается от земной и содержит 95,3% углекислого газа с примесью 2,7% азота, 1,6% аргона, 00,7% окиси углерода, 0,13% кислорода и приблизительно 0,03% водяного пара, содержание которого изменяется, а также примеси неона, криптона, ксенона. Марсианский год длится около 686,9 дней. Эллиптичность марсианской орбиты приводит к значительным различиям климата северного и южного полушарий: в средних широтах зима холоднее, а лето теплее, чем в южных, но короче, чем в северных. Температурные условия на Марсе суровы с точки зрения жителя Земли.

Юпитер - пятая по расстоянию от Солнца и самая большая планета Солнечной системы - отстоит от Солнца в 5,2 раза дальше, чем Земля, и затрачивает на одни оборот по орбите почти 12 лет. Экваториальный диаметр Юпитера 142 600 км (в 11 раз больше диаметра Земли). Период вращения Юпитера самый короткий из всех планет - 9ч. 50 мин. 30с. на экваторе и 9ч. 55мин. 40с. в средних широтах. Таким образом, Юпитер, подобно солнцу, вращается не как твёрдое тело - скорость вращения неодинакова в разных широтах. Из-за быстрого вращения эта планета имеет сильное сжатие у полюсов. Масса Юпитера равна 318 массам Земли. Средняя плотность 1,33 г/см , что близко к плотности Солнца. Ось вращения Юпитера почти перпендикулярна к плоскости его орбиты (наклон 87) . Даже в небольшой телескоп видно полярное сжатие Юпитера и полосы на его поверхности, параллельные экватору планеты. Видимая поверхность Юпитера представляет собой верхний уровень облаков, окружающих планету. Благодаря этому все детали на поверхности Юпитера постоянно меняют свой вид. Из устойчивых деталей известно Большое Красное пятно, наблюдающееся уже более 300 лет. Это - громадное овальное образование, размерами около 35 000 км по долготе и 14 000 по широте между Южной тропической и Южной умеренной полосами. Цвет его красноватый, но подвержен изменениям.

Сатурн - вторая по величине среди планет Солнечной системы. Его экваториальный диаметр лишь немного меньше, чем у Юпитера, но по массе Сатурн уступает Юпитеру более чем втрое и имеет очень низкую среднюю плотность - около 0,7 г/см3. Низкая плотность объясняется тем, что планеты-гиганты состоят главным образом из водорода и гелия. При этом в недрах Сатурна давление не достигает столь высоких значений, как на Юпитере, поэтому плотность вещества там меньше. Спектроскопические исследования обнаружили в атмосфере Сатурна некоторые молекулы. Температура поверхности облаков на Сатурне близка к температуре плавления метана (-184 С), из твёрдых частичек которого, скорее всего и состоит облачный слой планеты. В телескоп видны вытянутые вдоль экватора тёмные полосы, называемые также поясами, и светлые зоны, но эти детали менее контрастны, чем на Юпитере, и отдельные пятна в них наблюдаются гораздо реже. Сатурн окружен кольцами, которые хорошо видны в телескоп в виде "ушек" по обе стороны диска планеты. Они были замечены ещё Галилеем в 1610 году. Кольца Сатурна - одно из самых удивительных и интересных образований в Солнечной системе. Плоская система колец опоясывает планету вокруг экватора и нигде не соприкасается с поверхностью. В кольцах разделяются три основные концентрические зоны, разграниченные узкими щелями: внешнее кольцо А, среднее В (наиболее яркое) , внутреннее кольцо С, довольно прозрачное, "креповое", внутренний край его не резкий. Наиболее близкие к планете слаборазличимые части внутреннего кольца обозначаются символом D. Обнаружено также существование практически прозрачного самого внешнего кольца D.

Уран - седьмая по порядку от Солнца планета Солнечной системы. По диаметру он почти вчетверо больше Земли. Очень далёк от Солнца и освещён сравнительно слабо. Уран был открыт английским учёным В. Гершелем в 1781 г. Какие-либо детали на поверхности Урана различить не удаётся из-за малых угловых размеров планеты в поле зрения телескопа. Это затрудняет его исследования, в том числе и изучение закономерностей вращения. По-видимому, Уран (в отличие от всех других планет) вращается вокруг своей оси как бы лёжа на боку. Такой наклон экватора создаёт необычные условия освещения: на полюсах в определённый сезон солнечные лучи падают почти отвесно, а полярный день и полярная ночь охватывают (попеременно) всю поверхность планеты, кроме узкой полосы вдоль экватора. Так как Уран обращается по орбите вокруг Солнца за 84 года, то полярный день на полюсах продолжается 42 года, затем сменяется полярной ночью такой же продолжительности. Лишь в экваториальном поясе Урана Солнце регулярно восходит и заходит с периодичностью равномерного осевого вращения планеты. Даже в тех участках, где Солнце расположено в зените, температура на Уране (точнее на видимой поверхности облаков) составляет около -215 С. В таких условиях некоторые газы замерзают. Как и другие планеты-гиганты, Уран имеет такой состав, вероятно, почти до самого центра.

Нептун - восьмая по счёту планета Солнечной системы. Нептун был открыт необычным образом. Было замечено, что Уран движется не совсем так, как ему полагается двигаться под действием притяжения Солнца и известных в то время планет. Тогда заподозрили существование ещё одной массивной планеты и попытались предвычислить её положение на небе. Эту чрезвычайно сложную задачу независимо друг от друга успешно решили английский астроном Дж. Адамс и француз У. Леверье. Получив данные Леверье, ассистент Берлинской обсерватории И. Галле 23 сентября 1846 г. обнаружил планету. Открытие Нептуна имело величайшее значение прежде всего потому, что оно послужило блестящим подтверждение закона всемирного тяготения, положенного в основу расчётов. Средняя удалённость Нептуна от Солнца 30,1 а. е., период вращения по орбите - 164 года и 288 дней. Таким образом, с момента открытия Нептун даже не совершил полного оборота по своей орбите.

Заключение

В солнечной системе различают четыре внутренние планеты (Меркурий, Венера, Земля, Марс) и четыре внешние (Юпитер, Сатурн, Уран, Нептун). За Нептуном находится еще одна маленькая планета - Плутон, который, по-видимому, раньше был луной Нептуна. Между внутренней и внешней группами планет находится пояс астероидов - обломков различного размера от метров до километров в поперечнике. Для внутренних планет характерны радиоактивные процессы, протекающие в недрах. Это приводит к расплавлению вещества в центре, причем тяжелое вещество - железо - оказывается в самом ядре. Газы, выделяющиеся в процессе эволюции планеты, могут быть удержаны ею, только если масса планеты достаточно велика. Так, Меркурий полностью, а Марс в большой степени не удержали свои атмосферы. Внешние же весьма крупные планеты обладают толстыми атмосферами, состоящими в основном изо льдов.

Помимо планет к солнечной системе принадлежат также и кометы - небесные тела, периодически появляющиеся вблизи планет солнечной системы. Кометы двигаются по гораздо более вытянутым орбитам, чем планеты. Эти орбиты часто расположены не в плоскости орбит всех остальных планет, что указывает на то, что кометы были захвачены Солнцем из окружающего космического пространства, а не образовывались одновременно с планетами. Зачастую кометы состоят изо льда, который испаряется с поверхности при попадании в зону действия солнечной радиации, и комета приобретает хвост.

Современная наука располагает богатым материалом о физико-химической основе жизни, о путях, которые могли несколько миллиардов лет привести к возникновению примитивных организмов.

Список литературы

1. Астрономия: Учеб. для 11 кл. сред. шк., М: Просвещение, 2005.-453с.

2. Космос: Сборник. / Под ред. Ю. И. Коптев и С. А. Никитин -- СПб.: Дельта, 2002.-567с.

3. Климишин И. А. Астрономия наших дней. -- М.: Наука, 2000.- 453с.

4. Зигель Ф. Ю. Сокровища звездного неба. - М.: Наука, 2000.-562с.

5. Баев К. Л. Земля и Планеты. - М.: Наука, 2001.-469с.

6. Полак И. Ф. Строение Вселенной. - М.: ИНФРА. - 2002.-530с.

7. Засов А. В., Кононович Э. В. Астрономия. - М.: Высшая школа. - 2000.-624с.

8. Наука и Вселенная; Том 1/ Под ред. А. Д. Суханова, Г. С. Хромова. - М.: Наука, 2001.-571с.


Подобные документы

  • Гипотезы о происхождении солнечной системы. Современная теория происхождения солнечной системы. Солнце – центральное тело нашей планетной системы. Планеты-гиганты. Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон.

    реферат [181,9 K], добавлен 21.03.2004

  • Общая характеристика планет Солнечной системы. Солнце-центр Солнечной системы. Внутренняя или земная группа (расположенные ближе к Солнцу)-Меркурий, Венера, Земля, Марс. Внешняя группа (планеты-гиганты)-Юпитер, Сатурн, Уран, Нептун. Плутон.

    контрольная работа [254,6 K], добавлен 24.10.2007

  • Общие сведения о Солнечной системе как планетарной системе, имеющей центральную звезду и естественные космические объекты, вращающиеся вокруг неё. Характеристика планет земной группы: Меркурий, Венера, Земля, Марс и планет: Юпитер, Сатурн, Уран, Нептун.

    презентация [802,4 K], добавлен 21.04.2011

  • Расположение планет Солнечной системы в порядке удаления от центра: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Строение комет и метеоритов. Происхождение Солнечной системы. Внутреннее строение и географическая оболочка Земли.

    реферат [530,1 K], добавлен 15.02.2014

  • Общая характеристика планет Солнечной системы как наиболее массивных тел, движущихся по эллиптическим орбитам вокруг Солнца. Расположение планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Размеры и химический состав планет.

    презентация [406,8 K], добавлен 04.02.2011

  • Люди, проложившие дорогу к звездам. Планеты солнечной системы и их спутники: Солнце, Меркурий, Венера, Земля, Луна, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон. Астероиды - "подобные звезде", малые планеты. Галактики в космическом пространстве.

    реферат [48,7 K], добавлен 19.02.2012

  • Характеристика астрономии – науки, изучающей движение, строение и развитие небесных тел и их систем. Открытие, строение и планеты солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер. История первого полета в космос, который совершил Ю.A. Гагарин.

    презентация [553,1 K], добавлен 13.01.2011

  • Планеты Солнечной системы, известные с древних времен и открытые недавно: Меркурий, Венера, Земля, Марс, планеты-гиганты Юпитер, Сатурн, Уран и Нептун. Происхождение их названий, расстояния от Солнца, размеры и массы, периоды обращения вокруг Солнца.

    реферат [19,6 K], добавлен 11.10.2009

  • Изучение основных параметров планет Солнечной Системы (Венера, Нептун, Уран, Плутон, Сатурн, Солнце): радиус, масса планеты, средняя температура, среднее расстояние от Солнца, структура атмосферы, нналичие спутников. Особенности строения известных звезд.

    презентация [1,4 M], добавлен 15.06.2010

  • Планеты Земной группы: Земля и сходные с ней Меркурий, Венера и Марс. Венера - самая горячая планета группы. Планеты-гиганты: Юпитер, Сатурн, Уран и Нептун. Блеск Юпитера, кольца Сатурна. Основные характеристики планеты Уран. Нептун и его спутники.

    презентация [2,1 M], добавлен 08.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.